植物生态学报 ›› 2009, Vol. 33 ›› Issue (2): 331-337.DOI: 10.3773/j.issn.1005-264x.2009.02.010
收稿日期:
2008-06-06
接受日期:
2008-10-09
出版日期:
2009-06-06
发布日期:
2009-03-31
作者简介:
E-mail: liuqijing@gmail.com
基金资助:
Received:
2008-06-06
Accepted:
2008-10-09
Online:
2009-06-06
Published:
2009-03-31
摘要:
该文介绍了一种建立树木生物量模型的简单快速方法——嵌套式回归。基本原理是以枝轴为基本单位, 逐级拟合。过程是把枝条分解成枝轴, 从枝轴到枝条, 再到单株, 拟合不同层次或尺度的生物量模型。建立枝轴生物量方程, 估计各级枝轴生物量, 将枝轴生物量(实测值或模拟值)总和起来便得到枝条生物量。由于样本单元之间有包含关系, 实际测定的样本很小, 具有快速实用的特点。检验结果显示, 模型预测值和实测值具有较高的一致性。
刘琪璟. 嵌套式回归建立树木生物量模型. 植物生态学报, 2009, 33(2): 331-337. DOI: 10.3773/j.issn.1005-264x.2009.02.010
LIU Qi-Jing. NESTED REGRESSION FOR ESTABLISHING TREE BIOMASS EQUATIONS. Chinese Journal of Plant Ecology, 2009, 33(2): 331-337. DOI: 10.3773/j.issn.1005-264x.2009.02.010
图1 枝条分解成枝轴过程示意图 一个具有4级分支的枝条,首先分解成1个一级枝轴和4个二级枝条,继续分解后共有27个大小不同的枝轴, 枝轴为任意一级枝条去掉次级分枝后的部分, 每个枝轴为一个圆锥体,和树干的形状相似,其重量可以直接测定,也可以通过密度-体积关系换算
Fig. 1 A diagram showing the dissection of a branch into main branches The three-order branch is separated to 27 main branches for all orders. Phrase main branch means a limb at any order from which subbranches are removed
方法 Method | 要素 Item | 方程 Equation | |||||
---|---|---|---|---|---|---|---|
实测值法 | 叶 Leaf | 0.007 4D2.318 3 | |||||
By measuring | 枝 Brach | 0.013 7D2.368 3 | |||||
干 Bole | 0.042 0D2.345 5 | ||||||
总 Total | 0.063 2D2.349 6 | ||||||
估计值法 | 叶 Leaf | 0.007 0D2.250 7 | |||||
By estimation | 枝 Brach | 0.016 3D2.250 8 | |||||
干 Bole | 0.022 6D2.595 3 | ||||||
总 Total | 0.041 3D2.503 1 |
表1 实测值法和估计值法建立的单株分器官生物量(kg)-胸径(cm)回归方程
Table 1 Allometric equations of different components
方法 Method | 要素 Item | 方程 Equation | |||||
---|---|---|---|---|---|---|---|
实测值法 | 叶 Leaf | 0.007 4D2.318 3 | |||||
By measuring | 枝 Brach | 0.013 7D2.368 3 | |||||
干 Bole | 0.042 0D2.345 5 | ||||||
总 Total | 0.063 2D2.349 6 | ||||||
估计值法 | 叶 Leaf | 0.007 0D2.250 7 | |||||
By estimation | 枝 Brach | 0.016 3D2.250 8 | |||||
干 Bole | 0.022 6D2.595 3 | ||||||
总 Total | 0.041 3D2.503 1 |
项目 Item | 因变量 Dependent variable | a | b | R |
---|---|---|---|---|
叶片 Leaf | 实测值法模拟值 | 2.768 8 | 0.637 5 | 0.76 |
枝条 Branch | Simulated with | 5.704 7 | 0.623 5 | 0.79 |
全株 Total | measured value | 8.637 9 | 0.820 9 | 0.98 |
叶片 Leaf | 估计值法模拟值 | 2.225 2 | 0.479 3 | 0.77 |
枝条 Branch | Simulated with | 5.136 9 | 0.798 3 | 0.79 |
全株 Total | estimated value | 5.515 1 | 0.897 7 | 0.98 |
表2 不同方法建立方程的估计值和实测值之间的相关性
Table 2 Regression between measured and estimated values of component-specific biomass
项目 Item | 因变量 Dependent variable | a | b | R |
---|---|---|---|---|
叶片 Leaf | 实测值法模拟值 | 2.768 8 | 0.637 5 | 0.76 |
枝条 Branch | Simulated with | 5.704 7 | 0.623 5 | 0.79 |
全株 Total | measured value | 8.637 9 | 0.820 9 | 0.98 |
叶片 Leaf | 估计值法模拟值 | 2.225 2 | 0.479 3 | 0.77 |
枝条 Branch | Simulated with | 5.136 9 | 0.798 3 | 0.79 |
全株 Total | estimated value | 5.515 1 | 0.897 7 | 0.98 |
[1] | Behera SK, Misra MK (2006). Aboveground tree biomass in a recovering tropical sal ( Shorea robusta Gaertn. f.) forest of Eastern Ghats, India. Biomass and Bioenergy, 30,509-521. |
[2] | Brandeis TJ, Delaney M, Parresol BR, Royer L (2006). Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecology and Management, 233,133-142. |
[3] | Colea TG, John J, Ewel JJ (2006). Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229,351-360. |
[4] | Ibrahim S (1995). Estimating branchwood biomass of tropical hill-forest stand. Bioresource Technology, 52,53-57. |
[5] | Ingerslev M (1999). Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce ( Picea abies) plantation Part I. Nutrient concentrations. Forest Ecology and Management, 119,13-20. |
[6] | Jepsen MR (2006). Above-ground carbon stocks in tropical fallows, Sarawak, Malaysia. Forest Ecology and Management, 225,287-295. |
[7] | Jiang ZK (蒋宗垲) (2000) Biomass and its allocation in a 34-year-old Fokienia hodginsii plantation. Journal of Northeast Forestry University (东北林业大学学报), 28,16-19. (in Chinese with English abstract) |
[8] | Li XR (李轩然), Liu QJ (刘琪璟), Chen YR (陈永瑞), Hu LL (胡理乐), Yang FT (杨风亭) (2006). Above ground biomass of three conifers in Qianyanzhou plantation. Chinese Journal of Applied Ecology (应用生态学报), 17,1382-1388. (in Chinese with English abstract) |
[9] | Li XR (李轩然), Liu QJ (刘琪璟), Hu LL (胡理乐), Ma ZQ (马泽清) (2006). Calculation of Pinus elliotii biomass: a comparison of different methods. Chinese Journal of Ecology (生态学杂志), 25,1594-1598. (in Chinese with English abstract) |
[10] | Li YD (李意德) (1993). Comparative analysis for biomass measurement of tropical mountain rain forest in Hainan island, China. Acta Ecolgica Sinica (生态学报), 13,313-320. (in Chinese with English abstract) |
[11] | Liu F (刘芳), Tu CJ (涂传进), Wu LD (吴良栋), Lin TL (林同龙) (2001). Biomass and nutrient elements distribution under agerd Chinese fir plantation. Journal of Central South Forestry University (中南林学院学报), 21,41-45. (in Chinese with English abstract) |
[12] | Lü Y (吕勇), Liu H (刘辉), Wang CX (王才喜) (2001) Comparison of the different measurement methods of stand volume. Journal of Central South Forestry University (中南林学院学报), 21,50-53. (in Chinese with English abstract) |
[13] | Nelson BW, Mesquita R, Pereira JLG, de Souza SGA, Batista GT, Couto LB (1999). Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117,149-167. |
[14] | Nordh EE, Verwijst T (2004). Above-ground biomass assessments and first cutting cycle production in willow ( Salix sp.) coppice-a comparison between destructive and non-destructive methods. Biomass and Bioenergy, 27,1-8. |
[15] | Pan P (潘攀), Mu CL (慕长龙), Mu JY (牟菊英), Su YM (宿以明), He F (何飞), Liu XL (刘兴良), Wang M (汪明), Lan H (兰海), Feng YC (冯永超) (2005). Research on biomass and productivity of Pinus radiata plantations. Journal of Sichuan Forestry Science and Technology (四川林业科技), 26,21-27. (in Chinese with English abstract) |
[16] | Porté A, Trichet P, Bert D, Loustau D (2002). Allometric relationships for branch and tree woody biomass of Maritime pine ( Pinus pinaster Aït.). Forest Ecology and Management, 158,71-83. |
[17] | Sah JP, Ross MS, Koptur S, Snyder JR (2004). Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests. Forest Ecology and Management, 203,319-329. |
[18] |
Son Y, Hwang JW, Kim ZS, Lee WK, Kim JS (2001). Allometry and biomass of Korean pine ( Pinus koraiensis) in central Korea. Bioresource Technology, 78,251-255.
DOI URL PMID |
[19] | Tang JW (唐建维), Zhang JH (张建侯), Song QS (宋启示), Huang ZY (黄自云), Li ZN (李自能), Wang LF (王利繁), Zeng R (曾荣) (2003). Biomass and net primary productivity of artificial tropical rainforest in Xishuangbanna. Chinese Journal of Applied Ecology (应用生态学报), 14,1-6. (in Chinese with English abstract) |
[20] | Ter-Mikaelian MT, Korzukhin MD (1997). Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 97,1-24. |
[21] | Vann DR, Palmiotto PA, Strimbeck GR (1998). Allometric equations for two South American conifers: test of a non-destructive method. Forest Ecology and Management, 106,55-71. |
[22] | Wang C (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222,9-16. |
[23] | Woolley TJ, Harmon ME, O’Connell KB (2007). Estimating annual bole biomass production using uncertainty analysis. Forest Ecology and Management, 253,202-210. |
[24] | Yang ZW (杨宗武), Tan FL (谭芳林), Xiao XX (肖祥希), Chen LS (陈林生), Zhuo KF (卓开发) (2000). A study on biomass of Fokienia hodginsii plantation. Scientia Silvae Sinicae (林业科学), 36,120-124. (in Chinese with English abstract) |
[25] | Zhang XB (张希彪), Shangguan ZP (上官周平) (2005). The bio-cycle patterns of nutrient elements and stand biomass in forest communities in hilly loess regions. Acta Ecologica Sinica (生态学报), 25,327-337. (in Chinese with English abstract) |
[26] | Zheng SL (郑少玲) (2001) Determination of the cone biomass of Pinus taiwanensis plantation. Journal of Fujian Forestry Science and Technology (福建林业科技), 28,65-67. (in Chinese with English abstract) |
[27] | Zianis D, Mencuccini M (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187,311-332. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[9] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[10] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[11] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[12] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[13] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[14] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[15] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19