植物生态学报 ›› 2011, Vol. 35 ›› Issue (10): 1038-1049.DOI: 10.3724/SP.J.1258.2011.01038
张忠华1,2, 胡刚1, 祝介东3,4, 倪健2,3,*()
收稿日期:
2010-12-06
接受日期:
2011-01-31
出版日期:
2011-12-06
发布日期:
2011-11-07
通讯作者:
倪健
作者简介:
* (E-mail: jni@ibcas.ac.cn)
ZHANG Zhong-Hua1,2, HU Gang1, ZHU Jie-Dong3,4, NI Jian2,3,*()
Received:
2010-12-06
Accepted:
2011-01-31
Online:
2011-12-06
Published:
2011-11-07
Contact:
NI Jian
摘要:
以贵州省茂兰国家级自然保护区喀斯特峰丛坡面中原生性常绿落叶阔叶混交林为研究对象, 以建立的100 m × 100 m样地的群落学调查数据和基于网格取样的土壤养分数据为基础, 采用半方差函数、Kriging空间插值和典范对应分析(canonical correspondence analysis, CCA)等方法分析了喀斯特森林土壤养分的空间异质性特征及其对树种分布的影响。结果表明: 喀斯特峰丛坡面土壤养分的变异系数为10%-80%, 变异程度中等。各土壤养分指标均具有良好的空间自相关性, 其中全磷(TP)、全钾(TK)、全镁(TMg)和pH值呈强烈的空间自相关, 而有机质(OM)、全钙(TCa)、速效磷(AP)和速效钾(AK)为中等程度的空间自相关; TCa的空间变异尺度最小, OM、TP和AK的空间变异尺度较大。土壤TK、TP、TCa、TMg、AP和pH值等随着海拔高度的增加和岩石裸露率的降低而逐渐减少, OM则随着海拔高度的增加而趋于增加, 这表明喀斯特地形因子是造成土壤养分空间变异的重要因素。CCA分析表明, 土壤养分的空间变异性显著影响到群落中树种的组成与空间分布, 其中TK、TMg、pH值、TCa和OM的影响最为明显, 体现了不同植物在土壤资源利用上的生态位分化, 这有助于喀斯特森林群落物种多样性与稳定性的维持。
张忠华, 胡刚, 祝介东, 倪健. 喀斯特森林土壤养分的空间异质性及其对树种分布的影响. 植物生态学报, 2011, 35(10): 1038-1049. DOI: 10.3724/SP.J.1258.2011.01038
ZHANG Zhong-Hua, HU Gang, ZHU Jie-Dong, NI Jian. Spatial heterogeneity of soil nutrients and its impact on tree species distribution in a karst forest of Southwest China. Chinese Journal of Plant Ecology, 2011, 35(10): 1038-1049. DOI: 10.3724/SP.J.1258.2011.01038
土壤养分 Soil nutrient | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准偏差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|
有机质 Organic matter (%) | 24.169 | 4.245 | 11.338 | 3.884 | 34.3 |
全氮 Total nitrogen (%) | 0.844 | 0.241 | 0.421 | 0.124 | 29.4 |
全磷 Total phosphorus (%) | 0.435 | 0.021 | 0.064 | 0.041 | 63.7 |
全钾 Total potassium (%) | 0.310 | 0.027 | 0.181 | 0.069 | 38.2 |
全钙 Total calcium (%) | 1.960 | 0.045 | 0.582 | 0.435 | 74.7 |
全镁 Total magnesium (%) | 0.244 | 0.017 | 0.125 | 0.056 | 45.2 |
碱解氮 Available nitrogen (mg·kg-1) | 277.000 | 79.430 | 187.583 | 41.863 | 22.3 |
速效磷 Available phosphorus (mg·kg-1) | 19.197 | 1.220 | 6.455 | 3.836 | 59.4 |
速效钾 Available potassium (mg·kg-1) | 148.320 | 14.410 | 50.145 | 22.524 | 44.9 |
pH | 7.61 | 5.02 | 6.54 | 0.774 | 11.8 |
表1 土壤养分的描述性统计
Table 1 Descriptive statistics of soil nutrients
土壤养分 Soil nutrient | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准偏差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|
有机质 Organic matter (%) | 24.169 | 4.245 | 11.338 | 3.884 | 34.3 |
全氮 Total nitrogen (%) | 0.844 | 0.241 | 0.421 | 0.124 | 29.4 |
全磷 Total phosphorus (%) | 0.435 | 0.021 | 0.064 | 0.041 | 63.7 |
全钾 Total potassium (%) | 0.310 | 0.027 | 0.181 | 0.069 | 38.2 |
全钙 Total calcium (%) | 1.960 | 0.045 | 0.582 | 0.435 | 74.7 |
全镁 Total magnesium (%) | 0.244 | 0.017 | 0.125 | 0.056 | 45.2 |
碱解氮 Available nitrogen (mg·kg-1) | 277.000 | 79.430 | 187.583 | 41.863 | 22.3 |
速效磷 Available phosphorus (mg·kg-1) | 19.197 | 1.220 | 6.455 | 3.836 | 59.4 |
速效钾 Available potassium (mg·kg-1) | 148.320 | 14.410 | 50.145 | 22.524 | 44.9 |
pH | 7.61 | 5.02 | 6.54 | 0.774 | 11.8 |
土壤养分 Soil nutrient | 模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0 + C) | 块金值/基台值 C0/(C0 + C) | 变程 Rang (a) | R2 |
---|---|---|---|---|---|---|
有机质 Organic matter (%) | 指数模型 Exponential model | 12.76 | 25.53 | 0.450 | 310.90 | 0.573 |
全氮 Total nitrogen (%) | 线性模型 Linear model | 0.015 1 | 0.015 1 | 1.000 | 98.70 | 0.464 |
全磷 Total phosphorus (%) | 球状模型 Spherical model | 0.000 2 | 0.006 6 | 0.030 | 219.40 | 0.967 |
全钾 Total potassium (%) | 球状模型 Spherical model | 0.000 0 | 0.009 9 | 0.000 | 151.80 | 0.974 |
全钙 Total calcium (%) | 球状模型 Spherical model | 0.070 0 | 0.204 0 | 0.343 | 56.20 | 0.780 |
全镁 Total magnesium (%) | 球状模型 Spherical model | 0.000 3 | 0.004 1 | 0.073 | 78.40 | 0.972 |
碱解氮 Available nitrogen (mg·kg-1) | 线性模型 Linear model | 1 718.2 | 1 718.2 | 1.000 | 98.07 | 0.495 |
速效磷 Available phosphorus (mg·kg-1) | 指数模型 Exponential model | 0.038 5 | 0.081 3 | 0.474 | 74.30 | 0.912 |
速效钾 Available potassium (mg·kg-1) | 指数模型 Exponential model | 12.19 | 24.39 | 0.450 | 285.30 | 0.741 |
pH | 球状模型 Spherical model | 0.182 | 0.744 | 0.245 | 83.90 | 0.960 |
表2 土壤养分半方差函数的模型类型及参数
Table 2 Fitted model types and parameters for semivariograms of soil nutrients
土壤养分 Soil nutrient | 模型 Model | 块金值 Nugget (C0) | 基台值 Sill (C0 + C) | 块金值/基台值 C0/(C0 + C) | 变程 Rang (a) | R2 |
---|---|---|---|---|---|---|
有机质 Organic matter (%) | 指数模型 Exponential model | 12.76 | 25.53 | 0.450 | 310.90 | 0.573 |
全氮 Total nitrogen (%) | 线性模型 Linear model | 0.015 1 | 0.015 1 | 1.000 | 98.70 | 0.464 |
全磷 Total phosphorus (%) | 球状模型 Spherical model | 0.000 2 | 0.006 6 | 0.030 | 219.40 | 0.967 |
全钾 Total potassium (%) | 球状模型 Spherical model | 0.000 0 | 0.009 9 | 0.000 | 151.80 | 0.974 |
全钙 Total calcium (%) | 球状模型 Spherical model | 0.070 0 | 0.204 0 | 0.343 | 56.20 | 0.780 |
全镁 Total magnesium (%) | 球状模型 Spherical model | 0.000 3 | 0.004 1 | 0.073 | 78.40 | 0.972 |
碱解氮 Available nitrogen (mg·kg-1) | 线性模型 Linear model | 1 718.2 | 1 718.2 | 1.000 | 98.07 | 0.495 |
速效磷 Available phosphorus (mg·kg-1) | 指数模型 Exponential model | 0.038 5 | 0.081 3 | 0.474 | 74.30 | 0.912 |
速效钾 Available potassium (mg·kg-1) | 指数模型 Exponential model | 12.19 | 24.39 | 0.450 | 285.30 | 0.741 |
pH | 球状模型 Spherical model | 0.182 | 0.744 | 0.245 | 83.90 | 0.960 |
土壤养分 Soil nutrient | 海拔 Elevation | 坡度 Slope | 坡向 Slope aspect | 坡位 Slope location | 岩石裸露率 Rock-bareness rate |
---|---|---|---|---|---|
有机质 Organic matter (%) | 0.227* | -0.167 | -0.078 | 0.183 | -0.309** |
全氮 Total nitrogen (%) | -0.117 | 0.058 | 0.054 | -0.048 | -0.168 |
全磷 Total phosphorus (%) | -0.237* | 0.143 | 0.175 | -0.033 | -0.227** |
全钾 Total potassium (%) | -0.754** | 0.332** | 0.441** | -0.797** | 0.559** |
全钙 Total calcium (%) | -0.614** | 0.405** | 0.384** | -0.643** | 0.594** |
全镁 Total magnesium (%) | -0.449** | 0.324** | 0.429** | -0.532** | 0.474** |
碱解氮 Available nitrogen (mg·kg-1) | 0.092 | 0.093 | -0.131 | 0.164 | 0.083 |
速效磷 Available phosphorus (mg·kg-1) | -0.141 | 0.137 | 0.251* | -0.222* | 0.278** |
速效钾 Available potassium (mg·kg-1) | -0.087 | -0.038 | -0.190 | -0.013 | -0.058 |
pH | -0.583** | 0.306** | 0.223* | -0.589** | 0.481** |
表3 土壤养分与地形因子间的相关关系
Table 3 Correlationship between soil nutrients and topography factors
土壤养分 Soil nutrient | 海拔 Elevation | 坡度 Slope | 坡向 Slope aspect | 坡位 Slope location | 岩石裸露率 Rock-bareness rate |
---|---|---|---|---|---|
有机质 Organic matter (%) | 0.227* | -0.167 | -0.078 | 0.183 | -0.309** |
全氮 Total nitrogen (%) | -0.117 | 0.058 | 0.054 | -0.048 | -0.168 |
全磷 Total phosphorus (%) | -0.237* | 0.143 | 0.175 | -0.033 | -0.227** |
全钾 Total potassium (%) | -0.754** | 0.332** | 0.441** | -0.797** | 0.559** |
全钙 Total calcium (%) | -0.614** | 0.405** | 0.384** | -0.643** | 0.594** |
全镁 Total magnesium (%) | -0.449** | 0.324** | 0.429** | -0.532** | 0.474** |
碱解氮 Available nitrogen (mg·kg-1) | 0.092 | 0.093 | -0.131 | 0.164 | 0.083 |
速效磷 Available phosphorus (mg·kg-1) | -0.141 | 0.137 | 0.251* | -0.222* | 0.278** |
速效钾 Available potassium (mg·kg-1) | -0.087 | -0.038 | -0.190 | -0.013 | -0.058 |
pH | -0.583** | 0.306** | 0.223* | -0.589** | 0.481** |
图4 样地中主要树种与土壤养分间的典范对应分析二维排序图。Acfa, 罗浮槭; Aica, 香楠; Caca, 短刺米槠; Cafu, 糙果茶; Capu, 云贵鹅耳枥; Ciwi, 川桂; Cldu, 齿叶黄皮; Cych, 岭南青冈; Cygl, 青冈; Cymy, 小叶青冈; Daol, 虎皮楠; Dimy, 杨梅叶蚊母树; Enro, 黄杞; Erhe, 窄叶枇杷; Eumy, 大果卫矛; Ilfi, 榕叶冬青; Laja, 榄绿粗叶木; Lico, 香叶树; Lina, 绒毛山胡椒; Lihe, 棉槠石栎; Mefo, 香皮树; Neau, 新木姜子; Osfr, 桂花; Pllo, 圆果化香树; Rane, 密花树; Regl, 瑶山梭椤; Rhla, 鹿角杜鹃; Slsi, 猴欢喜; Syla, 光叶山矾; Sysu, 山矾。
Fig. 4 Ordination of the main species samples and soil nutrients in the canonical correspondence analysis (CCA) biplot. Acfa, Acer fabri; Aica, Aidia canthioides; Caca, Castanopsis carlesii var. spinulosa; Cafu, Camellia furfuracea; Capu, Carpinus pubescens; Ciwi, Cinnamomum wilsonii; Cldu, Clausena dunniana; Cych, Cyclobalanopsis championii; Cygl, Cyclobalanopsis glauca; Cymy, Cyclobalanopsis myrsinaefolia; Daol, Daphniphyllum oldhami; Dimy, Distylium myricoides; Enro, Engelhardtia roxburghiana; Erhe, Eriobotrya henryi; Eumy, Euonymus myrianthus; Ilfi, Ilex ficoidea; Laja, Lasianthus japonicus var. lancilimbus; Lico, Lindera communis; Lina, Lindera nacusua; Lihe, Lithocarpus henryi; Mefo, Meliosma fordii; Neau, Neolitsea aurata; Osfr, Osmanthus fragrans; Pllo, Platycarya longipes; Rane, Rapanea neriifolia; Regl, Reevesia glaucophylla; Rhla, Rhododendron latoucheae; Slsi, Sloanea sinensis; Syla, Symplocos lancifolia; Sysu, Symplocos sumuntia.
[1] | Bao SD (鲍士旦) (2000). Soil and Agricultural Chemistry Analysis (土壤农化分析). China Agriculture Press, Beijing. (in Chinese) |
[2] | Brady NC, Weil RR (1999). The Nature and Properties of Soils. Prentice-Hall, Upper Saddle River, New Jersey. |
[3] |
Critchley CNR, Chambers BJ, Fowbert JA, Sanderson RA, Bhogal A, Rose SC (2002). Association between lowland grassland plant communities and soil properties. Biological Conservation, 105, 199-215.
DOI URL |
[4] | Deng Y (邓艳), Jiang ZC (蒋忠诚), Cao JH (曹建华), Li Q (李强), Lan FN (蓝芙宁) (2004). Characteristics comparison of the leaf anatomy of Cyclobalanopsis glauca and its adaption to the environment of typical karst peak cluster areas in Nongla. Guihaia (广西植物), 24, 317-322. (in Chinese with English abstract) |
[5] | Du F (杜峰), Liang ZS (梁宗锁), Xu XX (徐学选), Zhang XC (张兴昌), Shan L (山仑) (2008). Spatial heterogeneity of soil nutrients and aboveground biomass in abandoned old-fields of Loess Hilly region in Northern Shanxi, China. Acta Ecologica Sinica (生态学报), 28, 13-22. (in Chinese with English abstract) |
[6] |
Enoki T, Kawaguchi H, Iwatsubo G (1996). Topographic variations of soil properties and stand structure in a Pinus thunbergii plantation. Ecological Research, 11, 299-309.
DOI URL |
[7] |
Gallardo A (2003). Spatial variability of soil properties in a floodplain forest in northwest Spain. Ecosystems, 6, 564-576.
DOI URL |
[8] | Gamma Design Software (2002). GS+ Geostatistics for the Environmental Sciences version 5.3.2. Gamma Design Software, Michigan, USA. |
[9] |
Härdtle W, von Oheimb G, Westphal C (2005). Relationships between the vegetation and soil conditions in beech and beech-oak forests of northern Germany. Plant Ecology, 177, 113-124.
DOI URL |
[10] | Hu ZL (胡忠良), Pan GX (潘根兴), Li LQ (李恋卿), Du YX (杜有新), Wang XZ (王新洲) (2009). Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in karst mountainous area of central Guizhou Province, China. Acta Ecologica Sinica (生态学报), 29, 4187-4194. (in Chinese with English abstract) |
[11] |
Imhoff S, da Silva AP, Tormena CA (2000). Spatial heterogeneity of soil properties in areas under elephant-grass short-duration grazing system. Plant and Soil, 219, 161-168.
DOI URL |
[12] |
Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillant F, Oomes MJM (1998). Relationship between soil chemical factors and grassland diversity. Plant and Soil, 202, 69-78.
DOI URL |
[13] |
Jirka S, McDonald AJ, Johnson MS, Feldpausch TR, Couto EG, Riha SJ (2007). Relationships between soil hydrology and forest structure and composition in the southern Brazilian Amazon. Journal of Vegetation Science, 18, 183-194.
DOI URL |
[14] | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007). Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 104, 864-869. |
[15] | Jongman RH, Ter Braak CJF, van Tongeren OFR (1995). Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge, UK. 137-144. |
[16] |
Kleb HR, Wilson SD (1997). Vegetation effects on soil resource heterogeneity in prairie and forest. The American Naturalist, 150, 283-298.
DOI URL |
[17] |
Lalley JS, Viles HA, Copeman N, Cowley C (2006). The influence of multi-scale environmental variables on the distribution of terricolous lichens in a fog desert. Journal of Vegetation Science, 17, 831-838.
DOI URL |
[18] | Li EX (李恩香), Jiang ZC (蒋忠诚), Cao JH (曹建华), Jiang GH (姜光辉), Deng Y (邓艳) (2004). The comparison of properties of karst soil and erosion ratio under different successional stages of karst vegetation in karst Nongla. Acta Ecologica Sinica (生态学报), 24, 1131-1139. (in Chinese with English abstract) |
[19] |
Li HB, Reynolds JF (1995). On definition and quantification of heterogeneity. Oikos, 73, 280-284.
DOI URL |
[20] | Li YB (李阳兵), Wang SJ (王世杰), Xie DT (谢德体), Shao JA (邵景安) (2004). Landscape ecological characteristics and ecological construction of karst mountain areas in Southwest China. Ecology and Environment (生态环境), 13, 702-706. (in Chinese with English abstract) |
[21] |
Lin HS, Wheeler D, Bell J, Wilding L (2005). Assessment of soils spatial variability at multiple scales. Ecological Modelling, 182, 271-290.
DOI URL |
[22] | Liu F (刘方), Wang SJ (王世杰), Luo HB (罗海波), Liu YS (刘元生), Liu HY (刘鸿雁) (2008). Micro-habitats in karst forest ecosystem and variability of soils. Acta Pedologica Sinica (土壤学报), 45, 1055-1062. (in Chinese with English abstract) |
[23] | Liu L (刘璐), Zeng FP (曾馥平), Song TQ (宋同清), Peng WX (彭晚霞), Wang KL (王克林), Qin WG (覃文更), Tan WN (谭卫宁) (2010). Spatial heterogeneity of soil nutrients in karst area’s Mulun National Nature Reserve. Chinese Journal of Applied Ecology (应用生态学报), 21, 1667-1673. (in Chinese with English abstract) |
[24] |
Lundholm JT, Larson DW (2003). Relationships between spatial environmental heterogeneity and plant species diversity on a limestone pavement. Ecography, 26, 715-722.
DOI URL |
[25] |
Maestre FT, Cortina J (2002). Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant and Soil, 241, 279-291.
DOI URL |
[26] | Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009). Vegan: 01空间自相关,而有机质、全钙、速效磷和速效钾的community ecology package. http://cran.r-project.org/web/packages/vegan/index.Html. Cited 12 Oct. 2010. |
[27] | Peng WX (彭晚霞), Song TQ (宋同清), Zeng FP (曾馥平), Wang KL (王克林), Fu W (傅伟), Liu L (刘璐), Du H (杜虎), Lu SY (鹿士杨), Yin QC (殷庆仓) (2010). The coupling relationships between vegetation, soil, and topography factors in karst mixed evergreen and deciduous broadleaf forest. Acta Ecologica Sinica (生态学报), 30, 3472-3481. (in Chinese with English abstract) |
[28] | R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/. Cited 12 Oct. 2010. |
[29] |
Raghubanshi AS (1992). Effect of topography on selected soil properties and nitrogen mineralization in a dry tropical forest. Soil Biology and Biochemistry, 24, 145-150.
DOI URL |
[30] |
Rossi RD, Mulla DJ, Journel ÁG, Franz EH (1992). Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 62, 277-314.
DOI URL |
[31] |
Sauer TJ, Cambardella CA, Meek DW (2006). Spatial variation of soil properties relating to vegetation changes. Plant and Soil, 280, 1-5.
DOI URL |
[32] |
Sollins P (1998). Factors influencing species composition in tropical lowland rain forest: Does soil matter? Ecology, 79, 23-30.
DOI URL |
[33] |
Song TQ (宋同清), Peng WX (彭晚霞), Zeng FP (曾馥平), Wang KL (王克林), Qin WG (覃文更), Tan WN (谭卫宁), Liu L (刘璐), Du H (杜虎), Lu SY (鹿士杨) (2010). Spatial pattern of forest communities and environmental interpretation in Mulun National Nature Reserve, karst cluster-peak depression region. Chinese Journal of Plant Ecology (植物生态学报), 34, 298-308. (in Chinese with English abstract)
DOI URL |
[34] |
Tateno R, Takeda H (2003). Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecological Research, 18, 559-571.
DOI URL |
[35] |
Tilman D (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2-16.
DOI URL |
[36] |
Wang LX, Mou PP, Huang JH, Wang J (2007). Spatial heterogeneity of soil nitrogen in a subtropical forest in China. Plant and Soil, 295, 137-150.
DOI URL |
[37] | Wang SJ (王世杰) (2003). The most serious eco-geologically environmental problem in southwestern China — karst rocky desertification. Bulletin of Mineralogy Petrology and Geochemistry (矿物岩石地球化学通报), 22, 120-126. (in Chinese with English abstract) |
[38] | Wang SY (王淑英), Lu P (路苹), Wang JL (王建立), Yang L (杨柳), Yang K (杨凯), Yu TQ (于同泉) (2008). Spatial variability and distribution of soil organic matter and total nitrogen at different scales: a case study in Pinggu County, Beijing. Acta Ecologica Sinica (生态学报), 28, 4957-4964. (in Chinese with English abstract) |
[39] | Wang ZQ (王政权) (1999). Geostatistics and Its Application in Ecology (地统计学及在生态学中的应用). Science Press, Beijing. (in Chinese) |
[40] |
Weiner J, Wright DB, Castro S (1997). Symmetry of below- ground competition between Kochia scoparia individuals. Oikos, 79, 85-91.
DOI URL |
[41] |
Wijesinghe DK, John EA, Hutchings MJ (2005). Does pattern of soil resource heterogeneity determine plant community structure? An experimental investigation. Journal of Ecology, 93, 99-112.
DOI URL |
[42] |
Wu HY (吴海勇), Zeng FP (曾馥平), Song TQ (宋同清), Peng WX (彭晚霞), Li XH (黎星辉), Ouyang ZW (欧阳资文) (2009). Spatial variations of soil organic carbon and nitrogen in peak-cluster depression areas of karst region. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 15, 1029-1036. (in Chinese with English abstract)
DOI URL |
[43] | Yavitt JB, Harms KE, Garcia MN, Wright SJ, He F, Mirabello MJ (2009). Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama. Australian Journal of Soil Research, 47, 674-687. |
[44] | Zhang W (张伟), Chen HS (陈洪松), Wang KL (王克林), Zhang JY (张继光), Hou Y (侯娅) (2007). Spatial variability of soil organic carbon and available phosphorus in a typical karst depression, northwest of Guangxi. Acta Ecologica Sinica (生态学报), 27, 5168-5175. (in Chinese with English abstract) |
[45] | Zhang W (张伟), Chen HS (陈洪松), Wang KL (王克林), Su YR (苏以荣), Zhang JG (张继光), Yi AJ (易爱军) (2006). The heterogeneity and its influencing factors of soil nutrients in peak-cluster depression areas of karst region. Scientia Agricultura Sinica (中国农业科学), 40, 1829-1835. (in Chinese with English abstract) |
[46] | Zhang ZH (张忠华), Hu G (胡刚), Ni J (倪健) (2010). Interspecific segregation of old-growth karst forests in Maolan, Southwest China. Acta Ecologica Sinica (生态学报), 30, 2235-2245. (in Chinese with English abstract) |
[47] |
Zhang ZH, Hu G, Zhu JD, Luo DH, Ni J (2010). Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research, 25, 1151-1160.
DOI URL |
[48] | Zhou YC (周运超), Pan GX (潘根兴) (2001). Adaptation and adjustment of Maolan forest ecosystem to karst environment. Carsologica Sinica (中国岩溶), 20, 47-52. (in Chinese with English abstract) |
[1] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[2] | 孙彩丽, 仇模升, 黄朝相, 王艺伟. 黔西南石漠化过程中土壤胞外酶活性及其化学计量变化特征[J]. 植物生态学报, 2022, 46(7): 834-845. |
[3] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[4] | 朱玉荷, 肖虹, 王冰, 吴颖, 白永飞, 陈迪马. 蒙古高原草地不同深度土壤碳氮磷化学计量特征对气候因子的响应[J]. 植物生态学报, 2022, 46(3): 340-349. |
[5] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[6] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[7] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[8] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
[9] | 胡琪娟, 盛茂银, 殷婕, 白义鑫. 西南喀斯特石漠化环境适生植物构树细根、根际土壤化学计量特征[J]. 植物生态学报, 2020, 44(9): 962-972. |
[10] | 梅孔灿, 程蕾, 张秋芳, 林开淼, 周嘉聪, 曾泉鑫, 吴玥, 徐建国, 周锦容, 陈岳民. 不同植物来源可溶性有机质对亚热带森林土壤酶活性的影响[J]. 植物生态学报, 2020, 44(12): 1273-1284. |
[11] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[12] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[13] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[14] | 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5): 562-572. |
[15] | 苟小林, 周青平, 陈有军, 魏小星, 涂卫国. 青藏高原不同气候区高寒沙地两种优势植物及其根际土壤的养分特征[J]. 植物生态学报, 2018, 42(1): 133-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19