植物生态学报 ›› 2010, Vol. 34 ›› Issue (11): 1265-1273.DOI: 10.3773/j.issn.1005-264x.2010.11.003
收稿日期:
2010-05-17
接受日期:
2010-08-02
出版日期:
2010-05-17
发布日期:
2010-10-31
通讯作者:
张文丽
作者简介:
(E-mail: wendyibcas@163.com)
ZHANG Wen-Li*(), LIU Ju, WANG Jian-Zhu, CHEN Fang-Qing
Received:
2010-05-17
Accepted:
2010-08-02
Online:
2010-05-17
Published:
2010-10-31
Contact:
ZHANG Wen-Li
摘要:
土壤异养呼吸是土壤碳库净输出的主要途径, 其对气候变暖的响应已引起国内外学者的广泛关注。对森林生态系统来说, 林龄是影响生态系统碳平衡的一个重要因素。柑橘作为三峡库区第一大支柱产业, 种植面积极广, 对维持该区域的生态平衡起着巨大的调节作用。该文以三峡库区宜昌市郊区种植年限不同的3个橘林土壤为研究对象, 采用室内培养法, 研究在不同温度条件下, 不同林龄土壤的异养呼吸及其温度敏感系数的差异, 探讨该区域生态系统对未来气候变化的潜在响应。结果显示, 随着种植年限的增加, 橘林土壤pH值减小, 有机质和全氮含量显著增加, 土壤微生物生物量碳呈下降趋势。无论在低温、常温还是高温条件下, 林龄较小的橘树土壤异养呼吸及其累积释放量较低。与其他研究相比, 该区域人工橘林土壤异养呼吸的温度敏感系数Q10值相对较低(1.45-1.69), 且随着培养时间的变化而变化。随着种植年限的增加, 人工橘林土壤异养呼吸的温度敏感性逐渐降低, 表明在未来全球气候变暖条件下, 幼龄人工橘林要比成熟林对温度的反应敏感。
张文丽, 刘菊, 王建柱, 陈芳清. 三峡库区不同林龄人工橘林土壤异养呼吸及其温度敏感性. 植物生态学报, 2010, 34(11): 1265-1273. DOI: 10.3773/j.issn.1005-264x.2010.11.003
ZHANG Wen-Li, LIU Ju, WANG Jian-Zhu, CHEN Fang-Qing. Soil heterotrophic respiration and its temperature sensitivity in different-aged orange plantations in Three Gorges Reservoir area of China. Chinese Journal of Plant Ecology, 2010, 34(11): 1265-1273. DOI: 10.3773/j.issn.1005-264x.2010.11.003
样地 Site | 林龄 Stand age (a) | 海拔 Elevation (m) | 树高 Tree height (cm) | 胸径 DBH (cm) | 干周 Girth (cm) | 树距 Tree distance (cm) | 林下主要物种 Main species under forest |
---|---|---|---|---|---|---|---|
70s | 34 | 76 | 317.8 ± 3.2a | 14.6 ± 0.5a | 45.9 ± 1.5a | 343.8 ± 16.6b | 绿青苔(Haplocladium capillatum)、垂盆草(Sedum spectabilis)、马唐(Digitaria cruciata) |
80s | 25 | 73 | 301.3 ± 4.6b | 14.6 ± 0.5a | 45.8 ± 1.7a | 411.5 ± 82.2a | 绿青苔(Haplocladium capillatum)、酢浆草(Oxalis corniculata)、野艾蒿(Artemisia leucophylla) |
90s | 16 | 116 | 288.1 ± 2.6c | 12.5 ± 0.4b | 39.3 ± 1.3b | 325.5 ± 35.2b | 绿青苔(Haplocladium capillatum)、茜草(Rubia cordifolia)、马唐(Digitaria cruciata) |
表1 样地概况
Table 1 Site descriptions
样地 Site | 林龄 Stand age (a) | 海拔 Elevation (m) | 树高 Tree height (cm) | 胸径 DBH (cm) | 干周 Girth (cm) | 树距 Tree distance (cm) | 林下主要物种 Main species under forest |
---|---|---|---|---|---|---|---|
70s | 34 | 76 | 317.8 ± 3.2a | 14.6 ± 0.5a | 45.9 ± 1.5a | 343.8 ± 16.6b | 绿青苔(Haplocladium capillatum)、垂盆草(Sedum spectabilis)、马唐(Digitaria cruciata) |
80s | 25 | 73 | 301.3 ± 4.6b | 14.6 ± 0.5a | 45.8 ± 1.7a | 411.5 ± 82.2a | 绿青苔(Haplocladium capillatum)、酢浆草(Oxalis corniculata)、野艾蒿(Artemisia leucophylla) |
90s | 16 | 116 | 288.1 ± 2.6c | 12.5 ± 0.4b | 39.3 ± 1.3b | 325.5 ± 35.2b | 绿青苔(Haplocladium capillatum)、茜草(Rubia cordifolia)、马唐(Digitaria cruciata) |
样地 Site | 土壤含水量 Soil water content (%) | pH | 土壤有机碳 Soil organic carbon (g·kg-1) | 全N Total nitrogen (g·kg-1) | 土壤微生物生物量碳 Soil microbial biomass carbon (mg·kg-1) |
---|---|---|---|---|---|
70s | 12.8 ± 1.05b | 5.6 ± 0.05c | 19.6 ± 0.90a | 1.0 ± 0.05b | 163.0 ± 39.76 |
80s | 11.8 ± 0.56b | 6.3 ± 0.14b | 21.0 ± 0.25a | 1.2 ± 0.01a | 166.3 ± 34.65 |
90s | 17.1 ± 1.68a | 7.4 ± 0.15a | 11.7 ± 0.40b | 0.7 ± 0.02c | 266.2 ± 60.21 |
表2 不同林龄人工橘林土壤(0-10 cm)的主要理化性质(平均值±标准误差)
Table 2 Physical and chemical properties of soil (0-10 cm) in different-aged orange plantations (mean ± SE)
样地 Site | 土壤含水量 Soil water content (%) | pH | 土壤有机碳 Soil organic carbon (g·kg-1) | 全N Total nitrogen (g·kg-1) | 土壤微生物生物量碳 Soil microbial biomass carbon (mg·kg-1) |
---|---|---|---|---|---|
70s | 12.8 ± 1.05b | 5.6 ± 0.05c | 19.6 ± 0.90a | 1.0 ± 0.05b | 163.0 ± 39.76 |
80s | 11.8 ± 0.56b | 6.3 ± 0.14b | 21.0 ± 0.25a | 1.2 ± 0.01a | 166.3 ± 34.65 |
90s | 17.1 ± 1.68a | 7.4 ± 0.15a | 11.7 ± 0.40b | 0.7 ± 0.02c | 266.2 ± 60.21 |
图1 不同培养温度不同林龄人工橘林土壤异养呼吸随时间的变化(平均值±标准误差)。70s、80s和90s分别表示人工橘林种植年龄为34、25和16年。
Fig. 1 Dynamics of soil heterotrophic respiration in different- aged orange plantations under different culture temperatures (mean ± SE). 70s, 80s and 90s mean the stand age of orange plantations are 34, 25 and 16 years, respectively.
图2 不同温度条件下不同林龄人工橘林土壤异养呼吸的累积释放量(平均值±标准误差)。70s、80s和90s见图1; 不同大写字母表示同一橘林不同温度下在0.05水平上差异显著; 不同小写字母表示同一温度不同林龄橘林在0.05水平上差异显著。
Fig. 2 Cumulative CO2 released from soil heterotrophic respiration in different-aged orange plantations under different culture temperatures (mean ± SE). 70s, 80s and 90s see Fig. 1. Different capital letters indicate significant difference at 0.05 level under different temperatures in the same plantation; different small letters indicate significant difference at 0.05 level in different plantations under the same temperature.
培养周期 Culture period | 70s | 80s | 90s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Q10 | R0 | R2 | Q10 | R0 | R2 | Q10 | R0 | R2 | |||
1 | 1.67 ± 0.10 | 0.177 ± 0.023 | 0.67 | 1.42 ± 0.07 | 0.289 ± 0.034 | 0.55 | 1.45 ± 0.09 | 0.203 ± 0.028 | 0.56 | ||
2 | 1.73 ± 0.10 | 0.121 ± 0.017 | 0.69 | 1.79 ± 0.12 | 0.132 ± 0.020 | 0.68 | 2.01 ± 0.18 | 0.079 ± 0.017 | 0.65 | ||
3 | 1.36 ± 0.04 | 0.131 ± 0.009 | 0.73 | 1.48 ± 0.06 | 0.117 ± 0.012 | 0.68 | 1.38 ± 0.05 | 0.108 ± 0.011 | 0.62 | ||
4 | 1.54 ± 0.10 | 0.076 ± 0.012 | 0.53 | 1.46 ± 0.07 | 0.118 ± 0.012 | 0.64 | 1.86 ± 0.11 | 0.038 ± 0.006 | 0.75 | ||
5 | 1.32 ± 0.08 | 0.089 ± 0.012 | 0.36 | 1.27 ± 0.08 | 0.137 ± 0.020 | 0.23 | 1.57 ± 0.12 | 0.042 ± 0.008 | 0.48 |
表3 不同培养周期不同林龄人工橘林土壤异养呼吸与温度的指数关系及其参数(平均值±标准误差)
Table 3 Exponential relationship and the parameters between soil heterotrophic respirations and culture temperatures of different- aged orange plantations in different culture time (mean ± SE)
培养周期 Culture period | 70s | 80s | 90s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Q10 | R0 | R2 | Q10 | R0 | R2 | Q10 | R0 | R2 | |||
1 | 1.67 ± 0.10 | 0.177 ± 0.023 | 0.67 | 1.42 ± 0.07 | 0.289 ± 0.034 | 0.55 | 1.45 ± 0.09 | 0.203 ± 0.028 | 0.56 | ||
2 | 1.73 ± 0.10 | 0.121 ± 0.017 | 0.69 | 1.79 ± 0.12 | 0.132 ± 0.020 | 0.68 | 2.01 ± 0.18 | 0.079 ± 0.017 | 0.65 | ||
3 | 1.36 ± 0.04 | 0.131 ± 0.009 | 0.73 | 1.48 ± 0.06 | 0.117 ± 0.012 | 0.68 | 1.38 ± 0.05 | 0.108 ± 0.011 | 0.62 | ||
4 | 1.54 ± 0.10 | 0.076 ± 0.012 | 0.53 | 1.46 ± 0.07 | 0.118 ± 0.012 | 0.64 | 1.86 ± 0.11 | 0.038 ± 0.006 | 0.75 | ||
5 | 1.32 ± 0.08 | 0.089 ± 0.012 | 0.36 | 1.27 ± 0.08 | 0.137 ± 0.020 | 0.23 | 1.57 ± 0.12 | 0.042 ± 0.008 | 0.48 |
样地 Site | R0 | β | R2 | p | Q10 | Sig. |
---|---|---|---|---|---|---|
70s | 0.115 ± 0.010 | 0.041 ± 0.004 | 0.38 | <0.001 | 1.51 ± 0.03b | 0.022 |
80s | 0.149 ± 0.012 | 0.039 ± 0.003 | 0.39 | <0.001 | 1.48 ± 0.03b | |
90s | 0.076 ± 0.008 | 0.050 ± 0.004 | 0.41 | <0.001 | 1.65 ± 0.04a |
表4 不同林龄人工橘林土壤异养呼吸与温度的指数关系及其参数(平均值±标准误差)
Table 4 Exponential relationship and the parameters between soil heterotrophic respirations and culture temperatures of different- aged orange plantations (mean ± SE)
样地 Site | R0 | β | R2 | p | Q10 | Sig. |
---|---|---|---|---|---|---|
70s | 0.115 ± 0.010 | 0.041 ± 0.004 | 0.38 | <0.001 | 1.51 ± 0.03b | 0.022 |
80s | 0.149 ± 0.012 | 0.039 ± 0.003 | 0.39 | <0.001 | 1.48 ± 0.03b | |
90s | 0.076 ± 0.008 | 0.050 ± 0.004 | 0.41 | <0.001 | 1.65 ± 0.04a |
[1] | Bao SD ( 鲍士旦 ) (2000). The Analysis of Agriculture Soil Chemistry (土壤农化分析). China Agriculture Press, Beijing. 14-61. |
[2] | Benizri E, Amiaud B (2005). Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biology and Biochemistry, 37, 2055-2064. |
[3] | Bol R, Bolger T, Cully R, Little D (2003). Recalcitrant soil organic material mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and Soil Science, 166, 300-307. |
[4] | Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572. |
[5] | Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K (2001). Influence of microbial populations and residue quality on aggregate stability. Applied Soil Ecology, 16, 195-208. |
[6] | Dalias P, Anderson JM, Bottner P, Coûteaux MM (2001). Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Global Change Biology, 6, 181-192. |
[7] | Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biochemistry, 48, 53-69. |
[8] | Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Linder S, Ågren G (2005). The response of heterotrophic CO2 flux to soil warming. Global Change Biology, 11, 167-181. |
[9] | Fang C, Monkrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry, 33, 155-165. |
[10] | Giardina CP, Ryan MG (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858-861. |
[11] |
Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010). Significant acidification in major Chinese croplands. Science, 327, 1008-1010.
URL PMID |
[12] | Huang ZL (黄志霖), Xiao WF (肖文发 ) (2008). Biome and stand ages impacts on soil CO2 efflux and partitioning: a global trends. Acta Ecologica Sinica (生态学报), 28, 4078-4087. (in Chinese with English abstract) |
[13] | IPCC (2001). Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA eds. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[14] | Jastrow JD, Miller RM, Lussenhop J (1998). Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry, 30, 905-916. |
[15] | Jia BR (贾丙瑞), Zhou GS (周广胜), Wang FY (王风玉), Wang YH (王玉辉 ) (2005). Affecting factors of soil microorganism and root respiration. Chinese Journal of Applied Ecology (应用生态学报), 16, 1547-1552. (in Chinese with English abstract) |
[16] | Jiang PK (姜培坤), Zhou GM (周国模), Xu QF (徐秋芳 ) (2002). Effect of intensive cultivation on the carbon pool of soil in Phyllostachys praecox stands. Scientia Silvae Sinicae (林业科学), 38(6), 6-11. (in Chinese with English abstract) |
[17] | Knorr W, Prentice IC, House JI, Holland EA (2005). Long- term sensitivity of soil carbon turnover to warming. Nature, 433, 298-301. |
[18] | Li DF (李登峰), Zhang F (张放), Qiu LL (邱玲玲 ) (2004). Benefit analysis of orchard ecosystem in the Three Gorges Reservoir—A case study from ‘Huangxin’ immigrant industry area of high efficiency ecological agriculture in Chongqing. Chinese Journal of Eco-Agriculture (中国生态农业学报), 12(3), 178-180. (in Chinese with English abstract) |
[19] | Li Y, Liu SL, Yi QQ, Fu JF, Ding WL (2009). Dynamic of soil microorganisms from root region of Ginseng with different growing years. Agricultural Science and Technology, 10, 141-143. |
[20] | Liang BC, MacKenzie AF (1996). Effect of fertilization on organic and microbial nitrogen using 15N under corn (Zea mays L.) in two Quebec soils. Fertile Research, 44, 143-149. |
[21] | Liang BC, MacKenzie AF, Schnitzer M, Monreal CM, Voroney PR, Beyaert RP (1998). Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biology and Fertile of Soils, 26, 88-94. |
[22] | Liu BR (刘秉儒 ) (2010). Changes in soil microbial biomass carbon and nitrogen under typical plant communities along an altitudinal gradient in east side of Helan Mountain. Ecology and Environmental Sciences (生态环境学报), 19, 883-888. (in Chinese with English abstract) |
[23] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
[24] | Miao Q (缪琦), Shi XZ (史学正), Yu DS (于东升), Wang HJ (王洪杰), Ren HY (任红艳), Sun WX (孙维侠), Zhao YC (赵永存 ) (2010). Scale effect of climatic factors on forest soil organic carbon. Acta Pedologica Sinica (土壤学报), 47, 270-278. (in Chinese with English abstract) |
[25] | Papatheodorou EM, Argyropoulou MD, Stamou GP (2004). The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Applied Soil Ecology, 25, 37-49. |
[26] | Plaza C, Hernández JC, García-Gil AP (2004). Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biology and Biochemistry, 36, 1577-1585. |
[27] | Qin H (秦华), Xu QF (徐秋芳), Cao ZH (曹志洪 ) (2010). Soil microbial biomass in long-term and intensively managed Phyllostachys praecox stands. Journal of Zhejiang Forestry College (浙江林学院学报), 27, 1-7. (in Chinese with English abstract) |
[28] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99. |
[29] | Reichstein M, Bednorz F, Broll G, Kätterer T (2000). Temperature dependence of carbon mineralization: conclusions from a long term incubation subalpine soil samples. Soil Biology and Biochemistry, 32, 947-958. |
[30] | Reichstein M, Kätterer T, Andrén O, Ciais P, Schulze ED, Cramer W, Papale D, Valentini R (2005). Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences, 2, 317-321. |
[31] | Rey A, Pegoraro E, Tedeschi V, Parri ID, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology, 8, 851-866. |
[32] | Rey A, Petsikos C, Jarvis PG, Grace J (2005). Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. European Journal of Soil Science, 56, 589-599. |
[33] | Saiz G, Byrne KA, Butterbach-Bahl K, Kiese R, Blujdea V, Farrell EP (2006). Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland. Global Change Biology, 12, 1007-1020. |
[34] | Schimel JP, Gulledge JM (1998). Microbial community structure and global trace gases. Global Change Biology, 4, 745-758. |
[35] | Schindlbacher A, Zechmeister-boltenstern S, Jandl R (2009). Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally? Global Change Biology, 15, 901-913. |
[36] | Sedjo RA (1993). The carbon cycle and global forest ecosystem. Water, Air, and Soil Pollution, 70, 295-307. |
[37] | Shi Y (史央), Dai CC (戴传超), Lu L (陆玲 ) (2002). Investigation on microorganism community in different kind of red soil from CAS ecological experiment station. Journal of Nanjing Normal University (南京师大学报), 25(2), 32-36. (in Chinese with English abstract) |
[38] | Tang JW, Misson L, Gershenson A, Cheng W, Goldstein AH (2005). Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agriculture and Forest Meteorology, 132, 212-227. |
[39] | Uvarov AV, Tiunov AV, Scheu S (2006). Long-term effects of seasonal and diurnal temperature fluctuations on carbon dioxide efflux from a forest soil. Soil Biology and Biochemistry, 38, 3387-3397. |
[40] | Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703-707. |
[41] | Xiang SS (向珊珊), Wang GB (王国兵), Luo ZJ (罗治建), Ruan HH (阮宏华), Zhang ZX (张增信), Luan YL (栾以玲 ) (2008). Sensitivity of soil respiration to temperature in a Quercus variabilis secondary forest and a Pinus taeda plantation in north subtropical area of China: a laboratory simulation. Chinese Journal of Ecology (生态学杂志), 27, 1296-1301. (in Chinese with English abstract) |
[42] | Xiao HL, Zheng XJ (2001). Effects of soil warming on soil microbial activity. Soil and Environmental Sciences, 10, 138-142. |
[43] | Yang HS (杨恒山), Zhang QG (张庆国), Tai JC (邰继承), Ge XL (葛选良), Wang NN (王娜娜 ) (2009). Effects of growth years on soil pH and phosphatase activities in alfalfa fields. Chinese Journal of Grassland (中国草地学报), 31(1), 32-35, 44. (in Chinese with English abstract) |
[44] | Yang YS (杨玉盛), Chen GS (陈光水), Xie JS (谢锦升), Wang XG (王小国), Niu ZP (牛志鹏), Han YG (韩永刚), Zhang YL (张有利 ) (2006). Soil heterotrophic respiration in native Castanopsis kawakamii forest and monomulture Castanopsis kawakamii plantations in subtropical China. Acta Pedologica Sinica (土壤学报), 43, 53-61. (in Chinese with English abstract) |
[45] | Zhang CE (张成娥), Liang YL (梁银丽), He XB (贺秀斌 ) (2002). Effects of plastic cover cultivation on soil microbial biomass. Acta Ecologica Sinica (生态学报), 22, 508-512. (in Chinese with English abstract) |
[46] | Zhang TL (张桃林), Li ZP (李忠佩), Wang XX (王兴祥 ) (2006). Soil degradation and its eco-environmental impact under highly-intensified agriculture. Acta Pedologica Sinica (土壤学报), 43, 843-850. (in Chinese with English abstract) |
[47] | Zhang WJ, Xu Q, Wang XK, Bian XM (2004). Impacts of experimental atmospheric warming on soil microbial community structure in a tallgrass prairie. Acta Ecologica Sinica, 24, 1742-1747. |
[48] | Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S (2005). Soil microbial responses to experimental warming and clipping in a tall grass prairie. Global Change Biology, 11, 266-277. |
[49] | Zhang ZG (张祖光), Li J (李杰), Yang FY (杨方云 ) (2004). Current situation of the soil fertility of Citrus producing area in Chongqing. South China Fruits (中国南方果树), 33(1), 13-14. (in Chinese with English abstract) |
[50] |
Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J (2006). Old-growth forests can accumulate carbon in soils. Science, 314, 1417.
URL PMID |
[51] | Zhou GM (周国模), Xiu JM (徐建明), Wu JS (吴家森), Jiang PK (姜培坤 ) (2006). Changes in soil active organic carbon with history of intensive management of Phyllostachy pubescens forest. Scientia Silvae Sinicae (林业科学), 42(6), 124-128. (in Chinese with English abstract) |
[1] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[2] | 罗璐, 申国珍, 谢宗强, 周利光. 神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性[J]. 植物生态学报, 2011, 35(7): 722-730. |
[3] | 王光军, 田大伦, 闫文德, 朱凡, 项文化, 梁小翠. 改变凋落物输入对杉木人工林土壤呼吸的短期影响[J]. 植物生态学报, 2009, 33(4): 739-747. |
[4] | 王光军, 田大伦, 闫文德, 朱凡, 李树战. 亚热带杉木和马尾松群落土壤系统呼吸及其影响因子[J]. 植物生态学报, 2009, 33(1): 53-62. |
[5] | 冯文婷, 邹晓明, 沙丽清, 陈建会, 冯志立, 李检舟. 哀牢山中山湿性常绿阔叶林土壤呼吸季节和昼夜变化特征及影响因子比较[J]. 植物生态学报, 2008, 32(1): 31-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19