植物生态学报 ›› 2012, Vol. 36 ›› Issue (5): 431-437.DOI: 10.3724/SP.J.1258.2012.00431
刘荣杰1, 吴亚丛1, 张英2, 李正才1,*(), 马少杰1, 王斌1, 格日乐图1
发布日期:
2012-05-04
通讯作者:
李正才
作者简介:
* E-mail: lizccaf@126.com
LIU Rong-Jie1, WU Ya-Cong1, ZHANG Ying2, LI Zheng-Cai1,*(), MA Shao-Jie1, WANG Bin1, GERI Le-Tu1
Published:
2012-05-04
Contact:
LI Zheng-Cai
摘要:
为了了解北亚热带东部地区天然次生林转变成杉木(Cunninghamia lanceolata)人工林对土壤活性有机碳库的影响, 以浙江省富阳市庙山坞森林生态系统定位研究站杉木人工林和天然次生林为研究对象, 对达到成熟林状态的两种林分类型0-60 cm内各土层土壤活性有机碳含量进行了比较研究。结果表明: 1)天然次生林土壤总有机碳、易氧化有机碳、水溶性有机碳和轻组有机质含量均高于杉木人工林, 与人工杉木林相比, 增幅分别为19.0%-32.6%、0.8%-30.3%、3.8%-54.1%和6.3%-38.6%, 且在0-10和10-20 cm土层差异显著(p < 0.05) (水溶性有机碳仅在0-10 cm土层差异显著); 2)杉木人工林土壤水溶性有机碳与易氧化碳占总有机碳的比率均高于天然次生林; 3)两个林分土壤水溶性有机碳、易氧化碳和轻组有机质与总有机碳含量均呈现极显著相关, 且天然次生林土壤易氧化碳、轻组有机质与总有机碳的相关系数均大于杉木人工林; 4)土壤有机碳、水溶性有机碳、易氧化碳和轻组有机质与土壤养分(全氮、水解氮、速效磷、速效钾、速效钙和速效镁)的相关性均达到显著(p < 0.05)或极显著(p < 0.01)水平。
刘荣杰, 吴亚丛, 张英, 李正才, 马少杰, 王斌, 格日乐图. 中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较. 植物生态学报, 2012, 36(5): 431-437. DOI: 10.3724/SP.J.1258.2012.00431
LIU Rong-Jie, WU Ya-Cong, ZHANG Ying, LI Zheng-Cai, MA Shao-Jie, WANG Bin, GERI Le-Tu. Comparison of soil labile organic carbon in Chinese fir plantations and natural secondary forests in north subtropical areas of China. Chinese Journal of Plant Ecology, 2012, 36(5): 431-437. DOI: 10.3724/SP.J.1258.2012.00431
土地利用类型 Land use type | 主要植物 Main plant | 平均树高 Average tree height (m) | 平均胸径 Average DBH (cm) | 立木密度 Stem density (株·hm-2) | 郁闭度 Canopy density | 管理方式 Management mode | 林龄 Stand age (a) |
---|---|---|---|---|---|---|---|
杉木人工林 Cunninghamia lanceolata plantation | 杉木 C. lanceolata | 16.0 | 16.2 | 1 560 | 0.9 | 抚育采伐 Tending felling | 32 |
天然次生林 Natural secondary forest | 壳斗科、樟科为主 Fagaceae, Lauraceae-based | 15.5 | 13.4 | 510 | 0.8 | 封山育林 Enclose the hills for natural afforestation | 43 |
表1 试验样地基本情况
Table 1 General conditions of experimental plots
土地利用类型 Land use type | 主要植物 Main plant | 平均树高 Average tree height (m) | 平均胸径 Average DBH (cm) | 立木密度 Stem density (株·hm-2) | 郁闭度 Canopy density | 管理方式 Management mode | 林龄 Stand age (a) |
---|---|---|---|---|---|---|---|
杉木人工林 Cunninghamia lanceolata plantation | 杉木 C. lanceolata | 16.0 | 16.2 | 1 560 | 0.9 | 抚育采伐 Tending felling | 32 |
天然次生林 Natural secondary forest | 壳斗科、樟科为主 Fagaceae, Lauraceae-based | 15.5 | 13.4 | 510 | 0.8 | 封山育林 Enclose the hills for natural afforestation | 43 |
土层 Soil layer (cm) | 土层总有机碳 TOC (g·kg-1) | 水溶性有机碳 WSOC (mg·kg-1) | 易氧化碳 EOC (g·kg-1) | 轻组有机质 LFOM (g·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
天然次生林 SF | 杉木人工林 CF | 天然次生林 SF | 杉木人工林 CF | 天然次生林 SF | 杉木人工林 CF | 天然次生林 SF | 杉木人工林 CF | ||||
0-10 | 38.65 ± 5.32A | 31.32 ± 2.57B | 73.99 ± 12.98A | 56.77 ± 8.82B | 15.58 ± 3.15A | 13.30 ± 1.20B | 27.84 ± 6.71A | 24.13 ± 6.28B | |||
10-20 | 30.37 ± 4.49A | 22.92 ± 1.43B | 61.07 ± 12.21 | 53.25 ± 10.35 | 12.21 ± 2.84 A | 7.92 ± 1.26 B | 20.66 ± 6.68A | 14.91 ± 2.43B | |||
20-30 | 23.12 ± 3.58 | 18.74 ± 1.82 | 51.99 ± 10.07 | 51.59 ± 9.14 | 7.14 ± 0.49 | 6.88 ± 0.66 | 14.82 ± 5.02 | 11.54 ± 1.87 | |||
30-40 | 18.94 ± 2.51 | 15.92 ± 1.83 | 52.70 ± 10.75 | 51.06 ± 6.00 | 5.68 ± 0.74 | 5.06 ± 0.92 | 11.14 ± 4.06 | 8.33 ± 1.45 | |||
40-50 | 18.58 ± 1.80 | 14.58 ± 2.19 | 53.44 ± 15.41 | 49.95 ± 6.78 | 4.33 ± 0.68 | 4.19 ± 0.84 | 8.64 ± 1.98 | 7.94 ± 2.26 | |||
50-60 | 16.67 ± 1.34 | 12.60 ± 2.41 | 51.93 ± 8.19 | 48.57 ± 4.44 | 3.85 ± 0.76A | 3.46 ± 0.47B | 7.61 ± 2.15 | 7.16 ± 2.65 |
表2 不同林分土壤活性碳含量的比较(平均值±标准偏差)
Table 2 Comparison of soil liable organic carbon content under different stands (mean ± SD)
土层 Soil layer (cm) | 土层总有机碳 TOC (g·kg-1) | 水溶性有机碳 WSOC (mg·kg-1) | 易氧化碳 EOC (g·kg-1) | 轻组有机质 LFOM (g·kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
天然次生林 SF | 杉木人工林 CF | 天然次生林 SF | 杉木人工林 CF | 天然次生林 SF | 杉木人工林 CF | 天然次生林 SF | 杉木人工林 CF | ||||
0-10 | 38.65 ± 5.32A | 31.32 ± 2.57B | 73.99 ± 12.98A | 56.77 ± 8.82B | 15.58 ± 3.15A | 13.30 ± 1.20B | 27.84 ± 6.71A | 24.13 ± 6.28B | |||
10-20 | 30.37 ± 4.49A | 22.92 ± 1.43B | 61.07 ± 12.21 | 53.25 ± 10.35 | 12.21 ± 2.84 A | 7.92 ± 1.26 B | 20.66 ± 6.68A | 14.91 ± 2.43B | |||
20-30 | 23.12 ± 3.58 | 18.74 ± 1.82 | 51.99 ± 10.07 | 51.59 ± 9.14 | 7.14 ± 0.49 | 6.88 ± 0.66 | 14.82 ± 5.02 | 11.54 ± 1.87 | |||
30-40 | 18.94 ± 2.51 | 15.92 ± 1.83 | 52.70 ± 10.75 | 51.06 ± 6.00 | 5.68 ± 0.74 | 5.06 ± 0.92 | 11.14 ± 4.06 | 8.33 ± 1.45 | |||
40-50 | 18.58 ± 1.80 | 14.58 ± 2.19 | 53.44 ± 15.41 | 49.95 ± 6.78 | 4.33 ± 0.68 | 4.19 ± 0.84 | 8.64 ± 1.98 | 7.94 ± 2.26 | |||
50-60 | 16.67 ± 1.34 | 12.60 ± 2.41 | 51.93 ± 8.19 | 48.57 ± 4.44 | 3.85 ± 0.76A | 3.46 ± 0.47B | 7.61 ± 2.15 | 7.16 ± 2.65 |
土层 Soil layer (cm) | 水溶性有机碳占总有机碳的比率 WSOC/TOC (%) | 易氧化碳占总有机碳的比率 EOC/TOC (%) | |||
---|---|---|---|---|---|
天然次生林 SF | 杉木人工林 CF | 天然次生林 SF | 杉木人工林 CF | ||
0-10 | 0.19 | 0.18 | 40.31 | 42.48 | |
10-20 | 0.20 | 0.23 | 40.19 | 34.56 | |
20-30 | 0.23 | 0.28 | 30.90 | 36.72 | |
30-40 | 0.28 | 0.32 | 30.00 | 31.81 | |
40-50 | 0.29 | 0.34 | 23.32 | 28.74 | |
50-60 | 0.31 | 0.39 | 23.09 | 27.45 |
表3 不同活性碳占土壤总有机碳的比率
Table 3 The percentages of different liable carbon to TOC
土层 Soil layer (cm) | 水溶性有机碳占总有机碳的比率 WSOC/TOC (%) | 易氧化碳占总有机碳的比率 EOC/TOC (%) | |||
---|---|---|---|---|---|
天然次生林 SF | 杉木人工林 CF | 天然次生林 SF | 杉木人工林 CF | ||
0-10 | 0.19 | 0.18 | 40.31 | 42.48 | |
10-20 | 0.20 | 0.23 | 40.19 | 34.56 | |
20-30 | 0.23 | 0.28 | 30.90 | 36.72 | |
30-40 | 0.28 | 0.32 | 30.00 | 31.81 | |
40-50 | 0.29 | 0.34 | 23.32 | 28.74 | |
50-60 | 0.31 | 0.39 | 23.09 | 27.45 |
图1 天然次生林及杉木人工林地土壤总有机碳与活性有机碳的相关关系。EOC, 易氧化碳; LFOM, 轻组有机质; TOC, 土壤总有机碳; WSOC, 水溶性有机碳。CF, 杉木林; SF, 次生林。**, p < 0.01。
Fig. 1 Relationships between liable organic carbon and TOC in natural secondary forests and Chinese fir plantations. EOC, easily-oxidized carbon; LFOM, light fraction organic matter; TOC, soil total organic carbon; WSOC, water-soluble organic carbon. CF, Cunninghamia lanceolata plantation; SF, natural secondary forest. **, p < 0.01.
土壤养分 Soil nutrient | 土壤总有机碳 TOC | 易氧化碳 EOC | 水溶性有机碳 WSOC | 轻组有机质 LFOM |
---|---|---|---|---|
全氮 Total N | 0.849** | 0.834** | 0.510** | 0.696** |
水解氮 Hydrolysis N | 0.854** | 0.851** | 0.531** | 0.680** |
速效磷 Available P | 0.645** | 0.562** | 0.380* | 0.688** |
速效钾 Available K | 0.884** | 0.835** | 0.601** | 0.765** |
速效钙 Available Ca | 0.659** | 0.668** | 0.582** | 0.481** |
速效镁 Available Mg | 0.793** | 0.827** | 0.567** | 0.669** |
表4 土壤有机碳与土壤养分的相关系数
Table 4 Correlation coefficients between soil organic carbon and nutrients
土壤养分 Soil nutrient | 土壤总有机碳 TOC | 易氧化碳 EOC | 水溶性有机碳 WSOC | 轻组有机质 LFOM |
---|---|---|---|---|
全氮 Total N | 0.849** | 0.834** | 0.510** | 0.696** |
水解氮 Hydrolysis N | 0.854** | 0.851** | 0.531** | 0.680** |
速效磷 Available P | 0.645** | 0.562** | 0.380* | 0.688** |
速效钾 Available K | 0.884** | 0.835** | 0.601** | 0.765** |
速效钙 Available Ca | 0.659** | 0.668** | 0.582** | 0.481** |
速效镁 Available Mg | 0.793** | 0.827** | 0.567** | 0.669** |
[1] | Anderson TH, Domsch KH (1989). Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology & Biochemistry, 21, 471-479. |
[2] | Blair GJ, Lefroy RDB, Lisle L (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459-1466. |
[3] | Boyer JN, Groffman PM (1996). Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biology & Biochemistry, 28, 783-790. |
[4] | Burford JR, Bremner JM (1975). Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biology & Biochemistry, 7, 389-394. |
[5] | Coleman DC, Reid CPP, Cole CV (1983). Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research, 13, 1-55. |
[6] | David MB, Driscoll CT (1984). Aluminum speciation and equilibria in soil solutions of a haplorthod in the Adirondack Mountains (New York, U.S.A.). Geoderma, 33, 297-318. |
[7] | Geng YQ (耿玉清), Yu XX (余新晓), Yue YJ (岳永杰), Li JM (李金海), Zhang GZ (张国桢), Liu S (刘松) (2009). Soil active organic carbon pool of coniferous and broadleaved forests in the mountainous area of Beijing. Journal of Beijing Forestry University (北京林业大学学报), 31(5), 19-24. (in Chinese with English abstract) |
[8] | Gregorich EG, Monreal CM, Carter MR, Angers DA, Ellert BH (1994). Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science, 74, 367-385. |
[9] | Janzen HH, Brandt CA, Lafond SA, Townley-Smith GP (1992). Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56, 1799-1806. |
[10] | Jiang PK (姜培坤) (2005). Soil active carbon pool under different types of vegetation. Scientia Silvae Sinicae (林业科学), 41(1), 10-13. (in Chinese with English abstract) |
[11] | Li CH (李昌华) (1981). A preliminary study on the nutrient balance of soil under Chinese fir plantation and broad- leaved mixed forest. Acta Pedologica Sinica (土壤学报), 18, 255-261. (in Chinese with English abstract) |
[12] | Liang BC, Mackenzie AF, Schnitzer M, Monreal CM, Voroney PR, Beyaert RP (1997). Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biology and Fertility of Soils, 26, 88-94. |
[13] | Liu CH (刘长怀), Luo RY (罗汝英) (1990). Chemical characteristics of humus in forest soils of Nanjing-Zhenjiang hills. Journal of Nanjing Forestry University (Natural Sciences Edition) (南京林业大学学报(自然科学版)), 14(1), 1-6. (in Chinese with English abstract) |
[14] | Shen H (沈宏), Cao ZH (曹志洪), Hu ZY (胡正义) (1999). Characteristics and ecological effects of the active organic carbon in soil. Chinese Journal of Ecology (生态学杂志), 18, 32-38. (in Chinese with English abstract) |
[15] | Sierra J (1996). Nitrogen mineralisation and its error of estimation under field conditions related to the light-fraction soil organic matter. Australian Journal of Soil Research, 34, 755-767. |
[16] | Smolander A, Kitunen V (2002). Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biology & Biochemistry, 34, 651-660. |
[17] | Wander MM, Traina SJ, Stinner BR, Peters SE (1994). Organic and conventional management effects on biologically active soil organic matter pools. Soil Science Society of America Journal, 58, 1130-1139. |
[18] | Wang J (王晶), Xie HT (解宏图), Zhu P (朱平), Li XY (李晓云) (2003). Connotation and modern analysis method for active soil organic matter (carbon). Chinese Journal of Ecology (生态学杂志), 22, 109-112. (in Chinese with English abstract) |
[19] | Wang QK (王清奎), Wang SL (汪思龙), Feng ZW (冯宗炜) (2006). Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forest. Journal of Beijing Forestry University (北京林业大学学报), 28(5), 1-6. (in Chinese with English abstract) |
[20] | Whitbread AM, Lefroy RDB, Blair GJ (1998). A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales. Australian Journal of Soil Research, 36, 669-682. |
[21] |
Xie JS (谢锦升), Yang YS (杨玉盛), Yang ZJ (杨智杰), Huang SD (黄石德), Chen GS (陈光水) (2008). Seasonal variation of light fraction organic matter in degraded red soil after vegetation restoration. Chinese Journal of Applied Ecology (应用生态学报), 19, 557-563. (in Chinese with English abstract)
URL PMID |
[22] | Xu MG (徐明岗), Yu R (于荣), Wang BR (王伯仁) (2006). Labile organic matter and carbon management index in red soil under long-term fertilization. Acta Pedologica Sinica (土壤学报), 43, 723-729. (in Chinese with English abstract) |
[23] | Xu QF (徐秋芳) (2003). Study on Labile Organic Carbon Pool in Forest Soils (森林土壤活性有机碳库的研究). PhD dissertation, Zhejiang University, Hangzhou. 39-40. (in Chinese) |
[24] | Xu QF (徐秋芳), Jiang PK (姜培坤) (2004). Study on active organic carbon of soils under different types of vegetation. Journal of Soil and Water Conservation (水土保持学报), 18(6), 84-87. (in Chinese with English abstract) |
[25] | Xu QF (徐秋芳), Jiang PK (姜培坤), Shen Q (沈泉) (2005). Comparison of organic carbon pool of soil in bush and broad-leaved forests. Journal of Beijing Forestry University (北京林业大学学报), 27(2), 18-22. (in Chinese with English abstract) |
[26] | Xu QF, Xu JM (2003). Changes in soil carbon pools induced by substitution of plantation for native forest. Pedosphere, 13, 271-278. |
[27] | Yan ER (闫恩荣), Wang XF (王希华), Chen XY (陈小勇) (2007). Impacts of evergreen broad-leaved forest, degradation on soil nutrients and carbon pools in Tiantong, Zhejiang Province. Acta Ecologica Sinica (生态学报), 27, 1646-1655. (in Chinese with English abstract) |
[28] | Zhang J (张剑), Wang SL (汪思龙), Wang QK (王清奎), Liu YX (刘燕新) (2009). Content and seasonal change in soil labile organic carbon under different forest covers. Chinese Journal of Eco-Agriculture (中国生态农业学报), 17, 41-47. (in Chinese with English abstract) |
[29] |
Zhao X (赵鑫), Yu WT (宇万太), Li JD (李建东), Jiang ZS (姜子绍) (2006). Research advances in soil organic carbon and its fractions under different management pattern. Chinese Journal of Applied Ecology (应用生态学报), 17, 2203-2209. (in Chinese with English abstract)
URL PMID |
[30] | Zhu ZJ (朱志建), Jiang PK (姜培坤), Xu QF (徐秋芳) (2006). Study on the active organic carbon in soil under different types of vegetation. Forest Research (林业科学研究), 19, 523-526. (in Chinese with English abstract) |
[1] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[2] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[3] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[4] | 赵睿宇, 李正才, 王斌, 葛晓改, 戴云喜, 赵志霞, 张雨洁. 毛竹林地表覆盖年限对土壤有机碳的影响[J]. 植物生态学报, 2017, 41(4): 418-429. |
[5] | 辜翔, 张仕吉, 项文化, 李雷达, 刘兆丹, 孙伟军, 方晰. 中亚热带4种森林类型土壤活性有机碳的季节动态特征[J]. 植物生态学报, 2016, 40(10): 1064-1076. |
[6] | 王清奎, 李艳鹏, 张方月, 贺同鑫. 短期施氮肥降低杉木幼林土壤的根系和微生物呼吸[J]. 植物生态学报, 2015, 39(12): 1166-1175. |
[7] | 孙宝伟, 杨晓东, 张志浩, 马文济, 黄海侠, 阎恩荣. 浙江天童常绿阔叶林演替过程中土壤碳库与植被碳归还的关系[J]. 植物生态学报, 2013, 37(9): 803-810. |
[8] | 马少杰, 李正才, 王刚, 刘荣杰, 傅懋毅, 周本智. 集约和粗放经营下毛竹林土壤活性有机碳的变化[J]. 植物生态学报, 2011, 35(5): 551-557. |
[9] | 陈光水, 杨玉盛, 高人, 谢锦升, 杨智杰, 毛艳玲. 杉木林年龄序列地下碳分配变化[J]. 植物生态学报, 2008, 32(6): 1285-1293. |
[10] | 师伟, 王政权, 刘金梁, 谷加存, 郭大立. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6): 1217-1226. |
[11] | 郝占庆, 张健, 李步杭, 叶吉, 王绪高, 姚晓琳. 长白山次生杨桦林样地:物种组成与群落结构[J]. 植物生态学报, 2008, 32(2): 251-261. |
[12] | 王旭, 周广胜, 蒋延玲, 贾丙瑞, 王风玉, 周莉. 山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较[J]. 植物生态学报, 2007, 31(3): 348-354. |
[13] | 吴建国, 张小全, 徐德应. 六盘山林区几种土地利用方式下土壤活性有机碳的比较[J]. 植物生态学报, 2004, 28(5): 657-664. |
[14] | 王淑平, 周广胜, 高素华, 郭建平. 中国东北样带土壤活性有机碳的分布及其对气候变化的响应[J]. 植物生态学报, 2003, 27(6): 780-786. |
[15] | 杨玉盛, 李振问, 俞新妥, 何宗明. 南平溪后杉木林取代杂木林后土壤肥力变化的研究[J]. 植物生态学报, 1994, 18(3): 236-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19