植物生态学报 ›› 2025, Vol. 49 ›› Issue (3): 488-501.DOI: 10.17521/cjpe.2023.0276 cstr: 32100.14.cjpe.2023.0276
田奥1(), 李苇洁2,*(
), 曹洋1, 贾真真1, 曾松3,4
收稿日期:
2023-09-27
接受日期:
2024-07-15
出版日期:
2025-03-20
发布日期:
2024-07-16
通讯作者:
* 李苇洁(lwj024333@163.com)基金资助:
TIAN Ao1(), LI Wei-Jie2,*(
), CAO Yang1, JIA Zhen-Zhen1, ZENG Song3,4
Received:
2023-09-27
Accepted:
2024-07-15
Online:
2025-03-20
Published:
2024-07-16
Contact:
* LI Wei-Jie(lwj024333@163.com)Supported by:
摘要:
杜鹃(Rhododendron)是极具观赏价值的花卉, 中国是全世界杜鹃资源最丰富的国家, 对杜鹃资源的开发利用具有很大潜力。在全球变暖背景下, 杜鹃遭受水分胁迫的风险快速增大, 但关于水分胁迫对杜鹃生长及生理生态指标的影响尚缺乏深入研究。该研究通过马缨杜鹃(R. delavayi)幼苗的土壤水分梯度实验, 研究其株高及地径生长差异, 并建立与生理指标的统计关系, 以期为杜鹃保护与管理等提供理论基础。2022年3月11日至10月15日, 用马缨杜鹃的二年生幼苗进行盆栽实验, 设计的土壤水分含量分别为田间持水量的15%、25%、35%、50%、70%、90%。分别在3-5月上旬和下旬以及6、7、10月的中旬测量每株杜鹃的株高和地径, 并于6-8月在每个处理中随机选择5株马缨杜鹃测定叶片渗透调节物质(脯氨酸(Pro)、可溶性糖(Ss)、可溶性蛋白(Sp))含量、抗氧化系统(超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性及丙二醛(MDA)含量)指标、光合作用(净光合速率(Pn)、气孔导度(gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr))指标。研究结果: 1)建立了各干旱水平下的马缨杜鹃株高及地径生长响应年序日(DOY)的生长方程, 拟合精度0.94-0.99; 比较发现田间持水量15%处理下植株死亡率最高; 2)建立了各时间段马缨杜鹃株高及地径相对累积生长量随土壤含水量增加而变化的方程, 表明株高相对累积增量方程呈单峰曲线变化; 但相对地径累积增长量在DOY 161之前随土壤相对含水量增加呈U形变化, DOY 161-201之间呈直线变化, DOY 201以后呈单峰曲线变化。3)随土壤含水量增加, SOD活性、CAT活性、POD活性、Pn、gs、Tr及Pro含量整体表现为先增后降, SOD、CAT、POD活性及Pro含量在田间持水量20%-30%达到最大值, Pn、gs、Tr在田间持水量60%-80%达到最大值; MDA含量整体表现为逐渐降低; Ci、Ss及Sp含量则呈先降后增的变化趋势, 整体表现为在田间持水量60%-80%时达到最低值。4)基于马缨杜鹃地径日增量与各生理指标的回归关系分析, 可知回归关系达到显著水平的生理指标包括MDA含量、Pn、gs、Tr及Ss含量, 除MDA含量与马缨杜鹃地径日增量存在一元二次函数关系外, 其余生理指标与其均为幂函数方程关系, 拟合精度为Tr > Pn > MDA含量> gs > Ss含量。马缨杜鹃幼苗在土壤含水量68%时累计生长量(地径增量)最大, 随着土壤水分含量的改变, 生长量主要受Tr、Pn、gs的显著促进作用和Ss含量的显著抑制作用, 以及MDA含量较低时的一定促进作用和超过33.53 nmol·g-1后的抑制作用, 进一步解释了水分胁迫下马缨杜鹃幼苗生长的生理机制。
田奥, 李苇洁, 曹洋, 贾真真, 曾松. 马缨杜鹃幼苗生长对土壤水分胁迫的响应及其生理机制. 植物生态学报, 2025, 49(3): 488-501. DOI: 10.17521/cjpe.2023.0276
TIAN Ao, LI Wei-Jie, CAO Yang, JIA Zhen-Zhen, ZENG Song. Growth response of Rhododendron delavayi seedlings to the soil water stress and its physiological mechanism. Chinese Journal of Plant Ecology, 2025, 49(3): 488-501. DOI: 10.17521/cjpe.2023.0276
生长指标 Growth index | 田间持水量水平 Soil water capacity level | a1/a2 | b1/b2 | c1/c2 | R2 | p |
---|---|---|---|---|---|---|
株高 Plant height (cm) | 15% | 26.2 | -0.026 8 | 0.93 | 0.96 | 0.000 |
25% | 31.0 | -1.40 × 10-4 | 2.03 | 0.96 | 0.000 | |
35% | 34.6 | -8.47 × 10-6 | 2.66 | 0.98 | 0.000 | |
50% | 35.8 | -1.68 × 10-5 | 2.54 | 0.97 | 0.000 | |
70% | 37.3 | -1.35 × 10-6 | 3.06 | 0.98 | 0.000 | |
90% | 37.6 | -4.74 × 10-6 | 2.82 | 0.98 | 0.000 | |
地径 Ground diameter (cm) | 15% | 6.13 | -0.018 8 | 29.8 | 0.99 | 0.000 |
25% | 6.24 | -0.011 1 | 83.1 | 0.94 | 0.000 | |
35% | 6.71 | -0.009 4 | 82.5 | 0.99 | 0.000 | |
50% | 7.07 | -0.009 0 | 82.3 | 0.99 | 0.000 | |
70% | 8.19 | -0.007 0 | 68.9 | 0.99 | 0.000 | |
90% | 6.96 | -0.013 8 | 30.5 | 0.99 | 0.000 |
表1 不同水分胁迫下的马缨杜鹃幼苗株高及地径生长方程参数
Table 1 Parameters of the growth equations of Rhododendron delavayi seedlings height and diameter of ground under different water stress levels
生长指标 Growth index | 田间持水量水平 Soil water capacity level | a1/a2 | b1/b2 | c1/c2 | R2 | p |
---|---|---|---|---|---|---|
株高 Plant height (cm) | 15% | 26.2 | -0.026 8 | 0.93 | 0.96 | 0.000 |
25% | 31.0 | -1.40 × 10-4 | 2.03 | 0.96 | 0.000 | |
35% | 34.6 | -8.47 × 10-6 | 2.66 | 0.98 | 0.000 | |
50% | 35.8 | -1.68 × 10-5 | 2.54 | 0.97 | 0.000 | |
70% | 37.3 | -1.35 × 10-6 | 3.06 | 0.98 | 0.000 | |
90% | 37.6 | -4.74 × 10-6 | 2.82 | 0.98 | 0.000 | |
地径 Ground diameter (cm) | 15% | 6.13 | -0.018 8 | 29.8 | 0.99 | 0.000 |
25% | 6.24 | -0.011 1 | 83.1 | 0.94 | 0.000 | |
35% | 6.71 | -0.009 4 | 82.5 | 0.99 | 0.000 | |
50% | 7.07 | -0.009 0 | 82.3 | 0.99 | 0.000 | |
70% | 8.19 | -0.007 0 | 68.9 | 0.99 | 0.000 | |
90% | 6.96 | -0.013 8 | 30.5 | 0.99 | 0.000 |
图2 马缨杜鹃不同时段的相对累积生长量对土壤水分梯度的响应。
Fig. 2 Response of accumulated relative growth of Rhododendron delavayi seedlings to soil water stress gradient during different time periods.
相对累积增长量 Accumulated relative growth | DOY时段 DOY period | 方程 Equation | R2 | p |
---|---|---|---|---|
相对株高累积增量 Accumulated relative height growth | 70-100 | y = -0.992x2 + 1.37x - 0.1100 | 0.93 | 0.020 |
70-130 | y = -1.20x2 + 1.50x + 0.0199 | 0.75 | 0.122 | |
70-161 | y = -1.04x2 + 1.29x + 0.0763 | 0.67 | 0.192 | |
70-201 | y = -1.06x2 + 1.31x + 0.0792 | 0.66 | 0.201 | |
70-288 | y = -1.04x2 + 1.35x + 0.0832 | 0.89 | 0.035 | |
相对地径累积增量 Accumulated relative ground diameter growth | 70-100 | y = 0.0308x2 - 0.0302x + 0.0543 | 0.10 | 0.852 |
70-130 | y = 0.1312x2 - 0.1168x + 0.0935 | 0.92 | 0.023 | |
70-161 | y = 0.0839x2 - 0.0439x + 0.1125 | 0.89 | 0.035 | |
70-201 | y = 0.0624x + 0.1124 | 0.93 | 0.020 | |
70-288 | y = -0.2670x2 + 0.3649x + 0.0743 | 0.90 | 0.030 |
表2 马缨杜鹃幼苗相对累积生长量对水分胁迫的响应方程
Table 2 Equations of relative accumulated growth of the Rhododendron delavayi seedlings response to different water stress gradient during different time interval
相对累积增长量 Accumulated relative growth | DOY时段 DOY period | 方程 Equation | R2 | p |
---|---|---|---|---|
相对株高累积增量 Accumulated relative height growth | 70-100 | y = -0.992x2 + 1.37x - 0.1100 | 0.93 | 0.020 |
70-130 | y = -1.20x2 + 1.50x + 0.0199 | 0.75 | 0.122 | |
70-161 | y = -1.04x2 + 1.29x + 0.0763 | 0.67 | 0.192 | |
70-201 | y = -1.06x2 + 1.31x + 0.0792 | 0.66 | 0.201 | |
70-288 | y = -1.04x2 + 1.35x + 0.0832 | 0.89 | 0.035 | |
相对地径累积增量 Accumulated relative ground diameter growth | 70-100 | y = 0.0308x2 - 0.0302x + 0.0543 | 0.10 | 0.852 |
70-130 | y = 0.1312x2 - 0.1168x + 0.0935 | 0.92 | 0.023 | |
70-161 | y = 0.0839x2 - 0.0439x + 0.1125 | 0.89 | 0.035 | |
70-201 | y = 0.0624x + 0.1124 | 0.93 | 0.020 | |
70-288 | y = -0.2670x2 + 0.3649x + 0.0743 | 0.90 | 0.030 |
图3 马缨杜鹃幼苗不同时段的生理指标随相对土壤含水量的变化趋势(平均值±标准差)。Ci, 胞间CO2浓度; CAT, 过氧化氢酶活性; gs, 气孔导度; MDA, 丙二醛含量; Pn, 净光合速率; POD, 过氧化物酶活性; Pro, 脯氨酸含量; SOD, 超氧化物歧化酶活性; Sp, 可溶性蛋白含量; Ss, 可溶性糖含量; Tr, 蒸腾速率。
Fig. 3 Variation of physiological indices of Rhododendron delavayi seedlings with relative soil water content in different time periods (mean ± SD). Ci, intercellular CO2 concentration; CAT, catalase activity; gs, stomatal conductance; MDA, malondialdehyde content; Pn, net photosynthetic rate; POD, peroxidase activity; Pro, proline content; SOD, superoxide dismutase activity; Sp, soluble protein content; Ss, soluble sugar content; Tr, transpiration rate.
图4 马缨杜鹃幼苗地径日增量(Δd)对生理指标的响应。生理指标同图3。
Fig. 4 Response of daily increment of ground diameter (Δd) of Rhododendron delavayi seedlings to the physiological indices. Physiological indices see Fig. 3.
生理指标类型 Physiological index type | 生理指标 Physiological index | 方程 Equation | R2 | p |
---|---|---|---|---|
氧化还原系统 Oxidation-reduction system | SOD | y = -3.18 × 10-6x + 0.0039 | 0.02 | 0.549 |
CAT | y = 2.87x-1.21 | 0.21 | 0.059 | |
POD | y = -3.75 × 10-4ln (x) + 0.00528 | 0.01 | 0.743 | |
MDA | y = -1.67 × 10-6x2 + 1.12 × 10-4 + 0.0026 | 0.52 | 0.004 | |
光合系统 Photosynthetic system | Pn | y = 0.00276x0.376 | 0.54 | 0.000 |
gs | y = 0.0133x0.371 | 0.42 | 0.004 | |
Ci | y = 38.78x-1.64 | 0.17 | 0.088 | |
Tr | y = 0.0040x0.531 | 0.68 | 0.033 | |
渗透调节系统 Osmotic regulation system | Pro | y = 0.017x-0.46 | 0.02 | 0.544 |
Ss | y = 0.0054x-0.445 | 0.35 | 0.009 | |
Sp | y = 0.0055x-0.301 | 0.21 | 0.055 |
表3 马缨杜鹃幼苗地径日增量对生理指标的响应方程
Table 3 Equations of response of daily increment of ground diameter of Rhododendron delavayi seedlings to the physiological indices
生理指标类型 Physiological index type | 生理指标 Physiological index | 方程 Equation | R2 | p |
---|---|---|---|---|
氧化还原系统 Oxidation-reduction system | SOD | y = -3.18 × 10-6x + 0.0039 | 0.02 | 0.549 |
CAT | y = 2.87x-1.21 | 0.21 | 0.059 | |
POD | y = -3.75 × 10-4ln (x) + 0.00528 | 0.01 | 0.743 | |
MDA | y = -1.67 × 10-6x2 + 1.12 × 10-4 + 0.0026 | 0.52 | 0.004 | |
光合系统 Photosynthetic system | Pn | y = 0.00276x0.376 | 0.54 | 0.000 |
gs | y = 0.0133x0.371 | 0.42 | 0.004 | |
Ci | y = 38.78x-1.64 | 0.17 | 0.088 | |
Tr | y = 0.0040x0.531 | 0.68 | 0.033 | |
渗透调节系统 Osmotic regulation system | Pro | y = 0.017x-0.46 | 0.02 | 0.544 |
Ss | y = 0.0054x-0.445 | 0.35 | 0.009 | |
Sp | y = 0.0055x-0.301 | 0.21 | 0.055 |
[1] | Blum A (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40, 4-10. |
[2] | Cai YF (2018). Physiological Responses and Gene Express to Drought Stress of Rhododendron delavavi Franch. PhD dissertation, Yunnan University, Kunming. |
[蔡艳飞 (2018).干旱胁迫下马缨杜鹃的生理生态响应及基因表达分析. 博士学位论文, 云南大学, 昆明.] | |
[3] | Cai YF, Wang JH, Li SF, Zhang L, Peng LC, Xie WJ, Liu FH (2015). Photosynthetic response of an alpine plant, Rhododendron delavayi Franch, to water stress and recovery: the role of mesophyll conductance. Frontiers in Plant Science, 6, 1089. DOI: 10.3389/fpls.2015.01089. |
[4] | Chen YL, Liu DM, Wang J, Jian SG, Wang FG (2023). Physiological response of Thuarea involuta under drought stress. Journal of Tropical and Subtropical Botany, 31, 46-52. |
[陈意兰, 刘东明, 王俊, 简曙光, 王发国 (2023). 干旱胁迫下蒭雷草的生理响应. 热带亚热带植物学报, 31, 46-52.] | |
[5] | Cheng YY, Su XL (2014). Research progress on plant drought resistance mechanism. Journal of Guizhou Normal University (Natural Sciences), 32(1), 113-120. |
[程媛媛, 苏孝良 (2014). 植物抗旱机制研究进展. 贵州师范大学学报(自然科学版), 32(1), 113-120.] | |
[6] |
Chown SL, Sørensen JG, Terblanche JS (2011). Water loss in insects: an environmental change perspective. Journal of Insect Physiology, 57, 1070-1084.
DOI PMID |
[7] | Cui Y, Li QX, Liu B, Wang Y, Zhang YN (2020). Effects of drought stress on morphology and physiological characteristics of Ficus tikoua seedlings. Journal of Northwest Forestry University, 35(6), 82-88. |
[崔颖, 李芊夏, 刘彬, 王营, 张彦妮 (2020). 干旱胁迫对地果幼苗形态与生理特性的影响. 西北林学院学报, 35(6), 82-88.] | |
[8] | Dai AG (2011). Drought under global warming: a review. WIREs Climate Change, 2, 45-65. |
[9] | Demirevska K, Stoilova LS, Vassileva V, Feller U (2008). Rubisco and some chaperone protein responses to water stress and rewatering at early seedling growth of drought sensitive and tolerant wheat varieties. Plant Growth Regulation, 56, 97-106. |
[10] | Ding L, Wu X, Du CX, Xu YL, Fan HF (2015). An antioxidant system in cucumber seedling leaves with short term drought stress. Journal of Zhejiang Agriculture & Forestry University, 32(2), 285-290. |
[丁玲, 吴雪, 杜长霞, 徐艳丽, 樊怀福 (2015). 短期干旱胁迫对黄瓜幼苗叶片抗氧化系统的影响. 浙江农林大学学报, 32(2), 285-290.] | |
[11] | Ghobadi M, Taherabadi S, Ghobadi ME, Mohammadi GR, Jalali-Honarmand S (2013). Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Industrial Crops Products, 50, 29-38. |
[12] | Grassi G, Magnani F (2005). Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment, 28, 834-849. |
[13] | Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E (2015). Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Frontiers in Plant Science, 6, 57. DOI: 10.3389/fpls.2015.00057. |
[14] | Hao SX, Cao HX, Wang HB, Pan XY (2019). The physiological responses of tomato to water stress and re-water in different growth periods. Scientia Horticulturae, 249, 143-154. |
[15] | IPCC (Intergovernmental Panel on Climate Change) (2019). Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. [2023-09-27]. https:www.ipcc.ch/srccl/. |
[16] | Ji KT, Lu JG, Guo CC (2015). Annual growth of one year old Sinocalycanthus chinensis seedling. Journal of Northwest Agriculture & Forestry University (Natural Science Edition), 43(9), 165-170. |
[纪凯婷, 芦建国, 郭聪聪 (2015). 夏蜡梅1年生实生苗的生长节律. 西北农林科技大学学报(自然科学版), 43(9), 165-170.] | |
[17] | Jia XJ, Dong LH, Ding CB, Li X, Yuan M (2013). Effects of drought stress on reactive oxygen species and their scavenging systems in Chlorophytum capense var. medio-pictum leaf. Acta Prataculturae Sinica, 22(5), 248-255. |
[贾学静, 董立花, 丁春邦, 李旭, 袁明 (2013). 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响. 草业学报, 22(5), 248-255.]
DOI |
|
[18] | Jiang DH, Liu XY, Chen Q, Rong JD, Chen LG, Li SK, Zheng YS (2020). Effects of drought stress on osmoregulatory substances in leaves of Prunus campanulata and Prunus yedoensis. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 49, 772-778. |
[江登辉, 刘晓颖, 陈乾, 荣俊冬, 陈礼光, 李士坤, 郑郁善 (2020). 干旱胁迫对福建山樱花和日本樱花叶片渗透调节物质的影响. 福建农林大学学报(自然科学版), 49, 772-778.] | |
[19] |
Jogaiah S, Govind SR, Tran LSP (2013). Systems biology-based approaches toward understanding drought tolerance in food crops. Critical Reviews in Biotechnology, 33, 23-39.
DOI PMID |
[20] | Ke SX, Jin ZX (2007). Effects of drought stress on lipid peroxidation and antioxidant system in leaves of Calycanthus chinensis. Scientia Silvae Sinicae, 43(10), 28-33. |
[柯世省, 金则新 (2007). 干旱胁迫对夏腊梅叶片脂质过氧化及抗氧化系统的影响. 林业科学, (10), 28-33.] | |
[21] | Lascano HR, Antonicelli GE, Luna CM, Melchiorre MN, Gómez LD, Racca RW, Trippi VS, Casano LM (2001). Antioxidant system response of different wheat cultivars under drought: field and in vitro studies. Functional Plant Biology, 28, 1095-1102. |
[22] |
Li JC, Yan BG, Pan ZX, Zhang L, Yue XW, He GX, Fan B, Shi LT, Fang HD (2019). Threshold effect of soil moisture on photosynthetic efficiency of tomato leaves at the seedling stage in dry-hot valley, Yunnan, China. Chinese Journal of Tropical Crops, 40, 2278-2284.
DOI |
[李建查, 闫帮国, 潘志贤, 张雷, 岳学文, 何光熊, 樊博, 史亮涛, 方海东 (2019). 干热河谷番茄苗期叶片光合效率的土壤水分阈值效应. 热带作物学报, 40, 2278-2284.]
DOI |
|
[23] | Li M (2021). Effects of Dought Stress on the Growth and Physiological Characteristics of Three Morus alba L Seedlings. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[李敏 (2021). 干旱胁迫对三种蛋白桑幼苗生长及生理特性的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[24] | Liu DT, Chang YH, Ma YP (2020). Unclear resource background seriously restricts biodiversity conservation of Rhododendron in China. Plant Science Journal, 38, 517-524. |
[刘德团, 常宇航, 马永鹏 (2020). 本底资源不清严重制约我国杜鹃花属植物的生物多样性保护. 植物科学学报, 38, 517-524.] | |
[25] | Liu YX, Wu JW, Wang LN, Li SM, Hu HC, Tan T (2023). Physiological and ecological response characteristics of Pinus yunnanensis seedlings under drought stress. Molecular Plant Breeding. https://kns.cnki.net/kcms/detail/46.1068.S.20230518.1319.004.html. |
[刘元玺, 吴俊文, 王丽娜, 李世民, 胡昊程, 谭天 (2023). 云南松幼苗生长及生理生化特性对持续干旱胁迫的响应. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20230518.1319.004.html.] | |
[26] | Ma BD, Huang HX, Lu G, Zhou XJ, Zhang JX (2022). Effects of soil drought on fluorescence characteristics and osmotic regulatory substances of Gymnocarpos przewalskii. Journal of Northwest Forestry University, 37(3), 30-36. |
[马步东, 黄海霞, 陆刚, 周晓瑾, 张君霞 (2022). 土壤干旱过程对裸果木荧光特性及渗透调节物质的影响. 西北林学院学报, 37(3), 30-36.] | |
[27] | Ma JR, Zhu YX, Zhu YJ, Mei YT, Ma GH, Guo XN (2022). Effects of drought stress and rehydration on the growth of quinoa seedlings. Barley and Cereal Sciences, 39(4), 14-20. |
[马建蓉, 朱玉雪, 朱永娟, 梅艳桃, 马国花, 郭晓农 (2022). 干旱胁迫对藜麦幼苗生长及生理的影响. 大麦与谷类科学, 39(4), 14-20.] | |
[28] | Ma ZY, Ren JX, Chen HT, Jiang H, Gao QX, Liu SL, Yan W, Li ZM (2022). Analysis and recommendations of IPCC working group I assessment report. Research of Environmental Sciences, 35, 2550-2558. |
[马占云, 任佳雪, 陈海涛, 姜华, 高庆先, 刘舒乐, 严薇, 李照濛 (2022). IPCC第一工作组评估报告分析及建议. 环境科学研究, 35, 2550-2558.] | |
[29] | Ni C, Wang ZY, Zheng W, Zou XX (2021). The influence of drought stress on Rhododendron ovatum on morphology and physiological indexes. Journal of Fujian Forestry Science and Technology, 48(2), 19-24. |
[倪川, 王智苑, 郑雯, 邹小兴 (2021). 干旱胁迫对马银花形态和生理指标的影响. 福建林业科技, 48(2), 19-24.] | |
[30] | Peng Z, Lu Q, Verma DP (1996). Reciprocal regulation of delta 1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Molecular & General Genetics, 253, 334-341. |
[31] |
Pérez-Llorca M, Caselles V, Müller M, Munné-Bosch S (2021). The threshold between life and death in Cistus albidus L. seedlings: mechanisms underlying drought tolerance and resilience. Tree Physiology, 41, 1861-1876.
DOI PMID |
[32] | Qi Y, Zhang Q, Hu SJ, Wang RY, Wang HL, Zhang K, Zhao H, Zhao FN, Chen F, Yang Y, Tang GY, Hu YB (2023). Applicability of stomatal conductance models comparison for persistent water stress processes of spring maize in water resources limited environmental zone. Agricultural Water Management, 277, 108090. DOI: 10.1016/j.agwat.2022.108090. |
[33] |
Shabala S, Shabala L (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomolecular Concepts, 2, 407-419.
DOI PMID |
[34] |
Signorelli S, Arellano JB, Melø TB, Borsani O, Monza J (2013). Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant Physiology and Biochemistry, 64, 80-83.
DOI PMID |
[35] | Sun SY, Feng C, Sun W, Xu XR (2022). Bioinformatics analysis of flavonoid-3′,5′-hydroxylase gene from Rhododendron pulchrum. Journal of Guizhou Normal University (Natural Sciences), 40(3), 33-38. |
[孙世宇, 冯猜, 孙威, 徐晓蓉 (2022) 锦绣杜鹃类黄酮-3′,5′-羟基化酶基因的生物信息学分析. 贵州师范大学学报(自然科学版), 40(3), 33-38.] | |
[36] | Tang SZ, Li Y (1998). Stand stochastic growth model and richard’s model. Journal of Biomathematics, 13, 537-543. |
[唐守正, 李勇 (1998). 林分随机生长模型与Richard模型. 生物数学学报, 13, 537-543.] | |
[37] | Tian A, Wang JG, Han ZC, Wu JW, Li WJ (2020). Impacts on decomposition of flower to leaf ration in the litter of Rhododendron delavayi in Baili Azalea forest area of Guizhou Province. Scientia Silvae Sinicae, 56(8), 1-10. |
[田奥, 王加国, 韩振诚, 吴佳伟, 李苇洁 (2020). 百里杜鹃林区马缨杜鹃凋落物花叶混合比例对分解的影响. 林业科学, 56(8), 1-10.] | |
[38] |
Wang SC, Liang D, Li C, Hao YL, Ma FW, Shu HR (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry, 51, 81-89.
DOI PMID |
[39] | Xu AY, Cao B, Xie Y (2020). Physiological-ecological responses of twelve herbaceous plant species under drought stress and evaluation of their drought resistance when planted in coal producting basis in arid windy and sandy areas. Acta Prataculturae Sinica, 29(10), 22-34. |
[许爱云, 曹兵, 谢云 (2020). 干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价. 草业学报, 29(10), 22-34.]
DOI |
|
[40] |
Xu CH, Jing TX, Yang YZ (2023). Study on the mechanism of aphid adaptation to drought. Chinese Agricultural Science Bulletin, 39(29), 109-115.
DOI |
[许淳皓, 景田兴, 杨益众 (2023). 蚜虫适应干旱的表现及相关机制研究. 中国农学通报, 39(29), 109-115.]
DOI |
|
[41] | Xu JH, Li LJ, Liu YF, Yu YY, Li H, Wang X, Pang YN, Cao H, Sun QH (2023). Molecular and physiological mechanisms of strigolactones-mediated drought stress in crab apple (Malus hupehensis Rehd.) seedlings. Scientia Horticulturae, 311, 111800. DOI: 10.1016/j.scienta.2022.111800. |
[42] | Yang ZY, Liang XJ, Zeng XY, Wei XJ, Wu SY, Li BC (2023). Annual growth rhythm and biomass allocation of Cinnamomum cassia Presl seedlings. Chinese Agricultural Science Bulletin, 39(8), 21-26. |
[杨卓颖, 梁晓静, 曾祥艳, 韦晓娟, 伍思宇, 李宝财 (2023). 肉桂一年生实生苗年生长节律及其生物量分配规律. 中国农学通报, 39(8), 21-26.]
DOI |
|
[43] | Zhang CQ, Luo JF, Su YF (2002). The research of drought tolerance on 6 species of Rhododendron. Guihaia, 22, 174-176. |
[张长芹, 罗吉风, 苏玉芬 (2002). 六种杜鹃花的耐旱适应性研究. 广西植物, 22, 174-176.] | |
[44] | Zhang MS, Xie B, Tan F, Zhang QT (2003). Relationship among soluble protein, chlorophyll and ATP in sweet potato under water stress with drought resistance. Scientia Agricultura Sinica, 36(1), 13-16. |
[张明生, 谢波, 谈锋, 张启堂 (2003). 甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究. 中国农业科学, 36(1), 13-16.] | |
[45] | Zhang YH, Wu YB, Liu X, Zhu JX (2017). Effects of elevated temperature and drought on photosynthetic characteristics and antioxidant enzyme system of poplar seedlings. Journal of Northeast Forestry University, 45(11), 32-38. |
[张燕红, 吴永波, 刘璇, 朱嘉馨 (2017). 高温和干旱胁迫对杨树幼苗光合性能和抗氧化酶系统的影响. 东北林业大学学报, 45(11), 32-38.] | |
[46] | Zhao H, Ren LW, Zhao FN, Qi Y, Cai DH, Wang CL, Chen F, Lei J, Wang RY, Wang HL, Zhang K, Yao YB, Wang X (2018). The progress on response of potato to soil water stress. Journal of Arid Meteorology, 36, 537-543. |
[赵鸿, 任丽雯, 赵福年, 齐月, 蔡迪花, 王春玲, 陈斐, 雷俊, 王润元, 王鹤龄, 张凯, 姚玉璧, 王兴 (2018). 马铃薯对土壤水分胁迫响应的研究进展. 干旱气象, 36, 537-543.]
DOI |
|
[47] | Zhou XY, Li XH (2021). Characteristics of spatial-temporal variation of dryness and wetness from 1978 to 2017 in southwestern China. Journal of Arid Meteorology, 39, 357-365. |
[周惜荫, 李谢辉 (2021). 1978-2017年西南地区干湿时空变化特征. 干旱气象, 39, 357-365.] | |
[48] | Zhu WW (2021). Effects of Drought Stress on Non-structural Carbon and Hotosynthetic Physiology of Chinese Fir. Master degree dissertation, Fujian Agriculture and Forestry University, Fuzhou. |
[朱雯雯 (2021). 不同干旱胁迫对杉木幼苗非结构性碳及光合生理的影响. 硕士学位论文, 福建农林大学, 福州.] | |
[49] | Zivcak M, Brestic M, Sytar O (2016). Osmotic adjustment and plant adaptation to drought stress. Drought Stress Tolerance in Plants, 1, 105-143. |
[50] | Zulipiye T, Xu M, Yalikun N, Hu Y, Ailijiang M (2022). Effects of different drought stress on seedling growth and photosynthetic characteristics of Aronia melanocarpa. Water Saving Irrigation, (7), 51-57. |
[祖丽皮耶·托合提麦麦提, 徐敏, 亚里坤·努尔, 胡艳, 艾力江·麦麦提 (2022). 不同干旱胁迫对黑果腺肋花楸幼苗生长及光合特性的影响. 节水灌溉, (7), 51-57.] |
[1] | 张振振, 杨轲嘉, 顾宇璐, 赵平, 欧阳磊. 模拟降雨格局变化对亚热带地区两树种液流特征的影响[J]. 植物生态学报, 2019, 43(11): 988-998. |
[2] | 李豆豆, 席本野, 王斐, 贾素苹, 赵洪林, 贺曰林, 刘洋, 贾黎明. 毛白杨叶片膨压变化规律及其对环境因子的响应[J]. 植物生态学报, 2018, 42(7): 741-751. |
[3] | 刘畅, 孙鹏森, 刘世荣. 植物反射光谱对水分生理变化响应的研究进展[J]. 植物生态学报, 2016, 40(1): 80-91. |
[4] | 张智猛, 万书波, 戴良香, 宋文武, 陈静, 石运庆. 花生抗旱性鉴定指标的筛选与评价[J]. 植物生态学报, 2011, 35(1): 100-109. |
[5] | 贺学礼, 张焕仕, 赵丽莉. 不同土壤中水分胁迫和AM真菌对油蒿抗旱性的影响[J]. 植物生态学报, 2008, 32(5): 994-1001. |
[6] | 蔡昆争, 吴学祝, 骆世明. 不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J]. 植物生态学报, 2008, 32(2): 491-500. |
[7] | 蔡一霞, 王维, 朱庆森. 水分胁迫对水稻籽粒蛋白质积累及营养品质的影响[J]. 植物生态学报, 2007, 31(3): 536-543. |
[8] | 韦莉莉, 张小全, 侯振宏, 徐德应, 余雪标. 杉木苗木光合作用及其产物分配对水分胁迫的响应[J]. 植物生态学报, 2005, 29(3): 394-402. |
[9] | 郑青松, 刘兆普, 刘友良, 刘玲. 等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应[J]. 植物生态学报, 2004, 28(6): 823-827. |
[10] | 王云龙, 许振柱, 周广胜. 水分胁迫对羊草光合产物分配及其气体交换特征的影响[J]. 植物生态学报, 2004, 28(6): 803-809. |
[11] | 刘洪升, 李凤民, 徐昊. 不同水分条件下春小麦根系耗碳及其与产量形成的关系[J]. 植物生态学报, 2004, 28(2): 191-197. |
[12] | 高洁, 曹坤芳, 王焕校. 干热河谷9种造林树种在旱季的水分关系和气孔导度[J]. 植物生态学报, 2004, 28(2): 186-190. |
[13] | 任红旭, 陈雄, 王亚馥. 抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化[J]. 植物生态学报, 2001, 25(6): 709-715. |
[14] | 高玉葆, 任安芝, 刘峰, 吴秀英. 黑麦草叶内游离脯氨酸含量对于不同类型和强度的水分胁迫的生理生态响应(英文)[J]. 植物生态学报, 1999, 23(3): 193-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19