植物生态学报 ›› 2018, Vol. 42 ›› Issue (10): 1000-1008.DOI: 10.17521/cjpe.2018.0129

• 研究论文 • 上一篇    下一篇

C4作物电子传递速率对CO2响应模型的构建及应用

叶子飘1,段世华2,安婷1,康华靖3,*()   

  1. 1 井冈山大学数理学院, 江西吉安 343009
    2 井冈山大学生命科学学院, 江西吉安 343009
    3 温州市农业科学研究院, 浙江温州 325006
  • 收稿日期:2018-05-29 出版日期:2018-10-20 发布日期:2019-01-30
  • 通讯作者: 叶子飘 ORCID: 0000-0002-7598-1822;康华靖 ORCID: 0000-0003-3808-3115
  • 基金资助:
    国家自然科学基金(31560069)

Construction of CO2-response model of electron transport rate in C4 crop and its application

YE Zi-Piao1,DUAN Shi-Hua2,AN Ting1,KANG Hua-Jing3,*()   

  1. 1 College of Math and Physics, Jinggangshan University, Ji’an, Jiangxi 343009, China
    2 School of Life Sciences, Jinggangshan University, Ji’an, Jiangxi 343009, China
    3 Wenzhou Academy of Agricultural Sciences, Wenzhou, Zhejiang 325006, China
  • Received:2018-05-29 Online:2018-10-20 Published:2019-01-30
  • Contact: Hua-Jing KANG
  • Supported by:
    Supported by the National Natural Science Foundation of China(31560069)

摘要:

准确估算光合电子流对CO2响应的变化趋势对深入了解光合过程具有重要意义。该研究在植物光合作用对CO2响应新模型(模型I)的基础上构建了电子传递速率(J)对CO2的响应模型(模型II), 并对用LI-6400-40便携式光合仪测量的玉米(Zea mays)和千穗谷(Amaranthus hypochondriacus)的数据进行了拟合。结果表明, 模型II可以很好地拟合玉米和千穗谷叶片J对CO2浓度的响应曲线(J-Ca曲线), 得到玉米和千穗谷的最大电子传递速率分别为262.41和393.07 mmol·m -2·s -1, 与估算值相符合。在此基础上, 对光合电子流分配到其他路径进行了探讨。结果显示, 380 mmol·mol -1 CO2浓度下玉米和千穗谷碳同化所需的电子流为247.92和285.16 mmol·m -2·s -1, 分配到其他途径的光合电子流为14.49和107.91 mmol·m -2·s -1(考虑植物CO2的回收利用)。比较两种植物的其他途径光合电子流分配值发现, 两者相差6倍之多。分析认为这与千穗谷和玉米的催化脱羧反应酶种类以及脱羧反应发生的部位不同密切相关。该发现为人们研究C4植物中烟酰胺腺嘌呤二核苷磷酸苹果酸酶型和烟酰胺腺嘌呤二核苷酸苹果酸酶型两种亚型之间的差异提供了一个新的视角。此外, 构建的电子传递速率对CO2的响应模型为人们研究C4植物的光合电子流的变化规律提供了一个可供选择的数学工具。

关键词: C4作物, 电子传递速率, CO2响应, 电子流分配, 模型构建

Abstract:

Aims Accurate estimation of variation tendency of photosynthetic electron flow response to CO2 is of great significance to understand the photosynthetic processes.
Methods A model of electron transport rate (J) response to CO2 (model II) was developed based on a new model of photosynthesis response to CO2 (model I). The data of maize (Zea mays) and grain amaranth (Amaranthus hypochondriacus) that were measured by LI-6400-40 portable photosynthetic apparatus were fitted by the two models, respectively.
Important findings The results indicated that the model II could well characterize and fit the CO2-response curves of electron transport rate (J-Ca curve) for maize and grain amaranth, and the maximum electron transport rates of maize and grain amaranth were 262.41 and 393.07 mmol·m -2·s -1, which were in very close agreement with the estimated values (p > 0.05), respectively. Based on these results, the allocation to other pathways of photosynthetic electronic flow were discussed. At 380 mmol·mol -1 CO2, the photosynthetic electron flows for carbon assimilation of maize and grain amaranth carbon were 247.92 and 285.16 mmol·m -2·s -1, respectively, when the CO2 for recovery of mitochondrial respiration was considered, and the photosynthetic electron flows for other pathways were 14.49 and 107.91 mmol·m -2·s -1, respectively. The photosynthetic electron flows for other pathways in grain amaranth were more six times than that in maize. The analysis shows that this difference is closely related to the types of catalytic decarboxylase and the locations of decarboxylation reactions. This finding provides a new perspective for investigating the differences between the two subtypes of nicotinamide adenine dinucleotide phosphate malic acid enzyme type and nicotinamide adenine dinucleotide malic acid enzyme type in C4 species. In addition, the CO2-response model of electron transport rate offers us an alternative mathematical tool for investigating the photosynthetic electron flow of C4 crop.

Key words: C4 crop, electron transport rate, CO2 response, electron flow allocation, model development