植物生态学报 ›› 2022, Vol. 46 ›› Issue (12): 1437-1447.DOI: 10.17521/cjpe.2021.0259
所属专题: 生态学研究的方法和技术; 青藏高原植物生态学:生态系统生态学; 生态系统碳水能量通量
• 中国典型生态脆弱区碳水通量过程研究专题论文 • 上一篇 下一篇
李红琴1, 张亚茹1, 张法伟2,3,*(), 马文婧4,5, 罗方林3, 王春雨3, 杨永胜2,3, 张雷明6, 李英年2,3
收稿日期:
2021-07-13
接受日期:
2021-12-03
出版日期:
2022-12-20
发布日期:
2023-01-13
通讯作者:
*张法伟(基金资助:
LI Hong-Qin1, ZHANG Ya-Ru1, ZHANG Fa-Wei2,3,*(), MA Wen-Jing4,5, LUO Fang-Lin3, WANG Chun-Yu3, YANG Yong-Sheng2,3, ZHANG Lei-Ming6, LI Ying-Nian2,3
Received:
2021-07-13
Accepted:
2021-12-03
Online:
2022-12-20
Published:
2023-01-13
Contact:
*ZHANG Fa-Wei(Supported by:
摘要:
涡度相关技术连续观测的碳水通量是准确评估生态系统固碳持水等生态功能的重要基础数据, 由于通量观测数据的缺失十分常见且比例较高, 引入现代机器学习算法以发展缺失数据的插补方法对降低研究结果不确定性具有重要意义。该研究利用青藏高原东北隅高寒金露梅(Potentilla fruticosa)灌丛已发布的2003-2005年水、热、CO2通量数据集, 结合气温、大气水汽压、风速、太阳短波辐射、表层土壤温度和表层土壤含水量等主要环境因子构建了增强回归树模型(BRT)以插补缺失通量数据, 并与中国通量观测研究联盟(ChinaFLUX)的数据序列进行了比对, 以评估BRT在通量数据集成分析中的应用。BRT对大样本(N > 10 000)通量数据具有较好的模拟效果, 观测值与模拟值的回归斜率为1.01-1.05 (R2 > 0.80)。BRT表明植被生长季(5-10月)白天30 min净CO2交换量(NEE)主要受控于太阳短波辐射和大气水汽压, 二者对NEE变异的相对贡献之和为74.7%。表层土壤温度是生长季夜间及非生长季全天30 min NEE的主要驱动因子, 其相对贡献为68.5%。30 min显热通量(H)和潜热通量(LE)均主要受控于太阳短波辐射(相对贡献大于58.6%)。BRT插补的30 min缺失通量数据均显著小于ChinaFLUX的插补结果。除逐日NEE无显著差异外(p = 0.14), BRT的逐日生态系统总交换(GEE)、生态系统呼吸(RES)、H和LE极显著小于ChinaFLUX的数据序列分别约17.5%、21.0%、2.7%和2.2%, 但由于量级差异较小, 二者具有较高的一致性(数据序列的回归斜率在0.95-1.17)。除逐月GEE和RES外, BRT的逐月NEE、H和LE与ChinaFLUX的数据序列无显著(p > 0.09)差异。相对于ChinaFLUX数据插补方法, BRT不需要复杂的数学表达就可模拟主要环境因子的非线性作用特征, 从而进行缺失通量数据的插补, 是通量数据集成分析的一种可行方法。
李红琴, 张亚茹, 张法伟, 马文婧, 罗方林, 王春雨, 杨永胜, 张雷明, 李英年. 增强回归树模型在青藏高原高寒灌丛通量数据插补中的应用. 植物生态学报, 2022, 46(12): 1437-1447. DOI: 10.17521/cjpe.2021.0259
LI Hong-Qin, ZHANG Ya-Ru, ZHANG Fa-Wei, MA Wen-Jing, LUO Fang-Lin, WANG Chun-Yu, YANG Yong-Sheng, ZHANG Lei-Ming, LI Ying-Nian. Application of boosted regression trees for the gap-filling to flux dataset in an alpine scrubland of Qingzang Plateau. Chinese Journal of Plant Ecology, 2022, 46(12): 1437-1447. DOI: 10.17521/cjpe.2021.0259
图1 一个2预测因子(X1和X2)、5叶节点(Y1, Y2, Y3, Y4和Y5)的回归树。t1, t2, t3和t4是最优预测因子的分裂值。
Fig. 1 A regression tree with 5 leaf nodes (Y1, Y2, Y3, Y4 and Y5) of 2 variables (X1 and X2). t1, t2, t3 and t4 are the splitting value of an optimal predictor.
图2 高寒灌丛30 min的净CO2交换量(A)、显热(H)和潜热(LE)通量(B)、气温(C)、大气水汽压(D)、风速(E)、太阳短波辐射(F)、5 cm土壤温度(G)和10 cm土壤含水量(H)的年际动态。
Fig. 2 Interannual variations of 30-min net CO2 exchange (A), sensible heat flux (H)(B), latent heat flux (LE)(B), air temperature (Ta)(C), atmospheric water vapor (D), wind speed (Ws)(E), solar shortwave radiation (Swin)(F), topsoil temperature at 5 cm depth (Ts)(G), and topsoil water content at 10 cm depth (SWC)(H) during 2003 to 2005 in an alpine scrubland.
图3 高寒灌丛生长季白天与其他时段(生长季夜间及非生长季全天)的30 min净CO2交换量(A), 以及生长季和非生长季的显热通量(B)和潜热通量(C)的增强回归树的观测值与模拟值的关系。MAE, 平均绝对误差; RMSE, 均方根误差。
Fig. 3 Relationships between the observed data of 30-min net CO2 exchange (NEE)(A), sensible heat flux (H)(B) and latent heat flux (LE)(C) with the predicted data by the boosted regression trees for NEE during the growing season daytime and other periods (nighttime during growing season and the whole non-growing season), and for H and LE during growing and non-growing season in an alpine scrubland. MAE, mean absolute error; RMSE, root mean square error.
图4 高寒灌丛环境因子对生长季白天和其他时段(生长季夜间及非生长季全天) 30 min净CO2交换量(A)、生长季与非生长季30 min显热通量(H)及潜热通量(LE)变异的相对贡献(B)。
Fig. 4 Relative contributions of environmental factors to the variations of 30 min net CO2 exchange at daytime during growing season and other periods (nighttime during growing season and the whole non-growing season)(A), sensible heat flux (H), and latent heat flux (LE) during growing season and non-growing season in an alpine scrubland (B). SWC, topsoil water content at 10 cm depth; Swin, shortwave radiation; Ta, air temperature; Ts, topsoil temperature at 5 cm depth; Vapor, atmospheric water vapor pressure; Ws, wind speed.
图5 高寒灌丛主要环境因子与增强回归树拟合的不同时段30 min净CO2交换量(A, B, 生长季白天; C, 生长季夜间及非生长季全天)、显热通量(D, 生长季; E, 非生长季)和潜热通量(F, 生长季; G, 非生长季)的关系。
Fig. 5 Relationships between fitted 30-min net CO2 exchange (A, B, daytime during growing season; C, nighttime during growing season and the whole non-growing season), sensible heat flux (D, growing season; E, non-growing season) and latent heat flux (F, growing season; G, non-growing season) from boosted regression trees with main environmental factors during the different stages in an alpine scrubland. H, sensible heat flux; LE, latent heat flux; Swin, solar shortwave radiation; Ts, topsoil temperature at 5 cm depth; Vapor, atmospheric water vapor pressure.
图6 高寒灌丛增强回归树模型(BRT)与中国通量观测研究联盟(ChinaFLUX)对生长季白天(A)和其他时段(生长季夜间及非生长季全天)(B) 30 min净CO2交换量, 生长季(C)和非生长季(D)显热通量, 生长季(E)和非生长季(F)潜热通量的缺失值插补结果的比对。
Fig. 6 Comparisons between the boosted regression trees (BRT) and Chinese flux observation and research network (ChinaFLUX) for gap-filled 30 min net CO2 exchange and during growing-season (NEE)(A) and other periods (nighttime during growing season and the whole non-growing season)(B), 30 min sensible heat flux (H) during growing season (C) and non-growing season (D), and latent heat flux (LE) during growing season (E) and non-growing season (F) in an alpine scrubland.
图7 高寒灌丛增强回归树模型(BRT)与中国通量观测研究联盟(ChinaFLUX)的逐日CO2通量(A)、显热通量(B)与潜热通量(C)数据序列的比对。GEE, 总生态系统CO2交换量; NEE, 净生态系统CO2交换量; RES, 生态系统呼吸。
Fig. 7 Comparisons between the boosted regression trees (BRT) and Chinese flux observation and research network (ChinaFLUX) for daily CO2 fluxes (A), sensible heat flux (H)(B) and latent heat flux (LE)(C) in an alpine scrubland. GEE, gross ecosystem CO2 exchange; NEE, net ecosystem CO2 exchange; RES, ecosystem respiration.
图8 高寒灌丛增强回归树模型(BRT)与中国通量观测研究联盟(ChinaFLUX)的逐月CO2通量(A)和热量通量(B)对比。GEE, 总生态系统CO2交换量; H, 显热通量; LE, 潜热通量; NEE, 净生态系统CO2交换量; RES, 生态系统呼吸。
Fig. 8 Comparisons between the boosted regression trees (BRT) and Chinese flux observation and research network (ChinaFLUX) for the modelled monthly CO2 fluxes (A) and heat fluxes (B) in an alpine scrubland. GEE, gross ecosystem CO2 exchange; H, sensible heat flux; LE, latent heat flux; NEE, net ecosystem CO2 exchange; RES, ecosystem respiration.
[1] |
Baldocchi DD (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9, 479-492.
DOI URL |
[2] |
Baldocchi DD (2020). How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biology, 26, 242-260.
DOI PMID |
[3] |
Chen SP, You CH, Hu ZM, Chen Z, Zhang LM, Wang QF (2020). Eddy covariance technique and its applications in flux observations of terrestrial ecosystems. Chinese Journal of Plant Ecology, 44, 291-304.
DOI URL |
[ 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤 (2020). 涡度相关技术及其在陆地生态系统通量研究中的应用. 植物生态学报, 44, 291-304.]
DOI |
|
[4] | De’Ath G (2002). Multivariate regression trees: a new technique for constrained classification analysis. Ecology, 83, 1105-1117. |
[5] |
De’Ath G (2007). Boosted trees for ecological modeling and prediction. Ecology, 88, 243-251.
DOI PMID |
[6] |
Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A, Falge E, Noormets A, Papale D, Reichstein M, Stauch VJ (2008). Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology, 148, 821-838.
DOI URL |
[7] |
Elith J, Leathwick JR, Hastie T (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
DOI PMID |
[8] |
Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, et al. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69.
DOI URL |
[9] | He HL, Yu GR, Zhang LM, Sun XM, Su W (2006). Simulating CO2 flux of three different ecosystems in ChinaFLUX based on artificial neural networks. Science in China Series D: Earth Sciences, 49, 252-261. |
[10] |
Kang M, Ichii K, Kim J, Indrawati YM, Park J, Moon M, Lim JH, Chun JH (2019). New gap-filling strategies for long-period flux data gaps using a data-driven approach. Atmosphere, 10, 568. DOI: 10.3390/atmos10100568.
DOI URL |
[11] |
Kim Y, Johnson MS, Knox SH, Black TA, Dalmagro HJ, Kang M, Kim J, Baldocchi D (2020). Gap-filling approaches for eddy covariance methane fluxes: a comparison of three machine learning algorithms and a traditional method with principal component analysis. Global Change Biology, 26, 1499-1518.
DOI PMID |
[12] | Li C, He HL, Liu M, Su W, Fu YL, Zhang LM, Wen XF, Yu GR (2008). The design and application of CO2 flux data processing system at ChinaFLUX. Geo-information Science, 10, 557-565. |
[ 李春, 何洪林, 刘敏, 苏文, 伏玉玲, 张雷明, 温学发, 于贵瑞 (2008). ChinaFLUX CO2通量数据处理系统与应用. 地球信息科学学报, 10, 557-565.] | |
[13] |
Li HQ, Zhang FW, Li YN, Cao GM, Zhao L, Zhao XQ (2014). Seasonal and interannual variations of ecosystem photosynthetic features in an alpine dwarf shrubland on the Qinghai-Tibetan Plateau, China. Photosynthetica, 52, 321-331.
DOI URL |
[14] |
Li HQ, Zhang FW, Li YN, Wang JB, Zhang LM, Zhao L, Cao GM, Zhao XQ, Du MY (2016). Seasonal and inter-annual variations in CO2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 228-229, 95-103.
DOI URL |
[15] |
Li HQ, Zhang FW, Li YN, Zhao XQ, Cao GM (2015). Thirty-year variations of above-ground net primary production and precipitation-use efficiency of an alpine meadow in the north-eastern Qinghai-Tibetan Plateau. Grass and Forage Science, 71, 208-218.
DOI URL |
[16] |
Li HQ, Zhang FW, Zhu JB, Guo XW, Li YK, Lin L, Zhang LM, Yang YS, Li YN, Cao GM, Zhou HK, Du MY (2021). Precipitation rather than evapotranspiration determines the warm-season water supply in an alpine shrub and an alpine meadow. Agricultural and Forest Meteorology, 300, 108318. DOI: 10.1016/j.agrformet.2021.108318.
DOI URL |
[17] |
Li HQ, Zhu JB, Zhang FW, He HD, Yang YS, Li YN, Cao GM, Zhou HK (2019). Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 268, 55-62.
DOI URL |
[18] |
Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui D, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007). Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147, 209-232.
DOI URL |
[19] |
Niu SL, Wang S, Wang JS, Xia JY, Yu GR (2020). Integrative ecology in the era of big data—From observation to prediction. Science China Earth Sciences, 63, 1429-1442.
DOI |
[20] |
Richardson AD, Hollinger DY (2007). A method to estimate the additional uncertainty in gap-filled NEE resulting from long gaps in the CO2 flux record. Agricultural and Forest Meteorology, 147, 199-208.
DOI URL |
[21] |
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439.
DOI URL |
[22] |
Soloway AD, Amiro BD, Dunn AL, Wofsy SC (2017). Carbon neutral or a sink? Uncertainty caused by gap-filling long-term flux measurements for an old-growth boreal black spruce forest. Agricultural and Forest Meteorology, 233, 110-121.
DOI URL |
[23] |
Soykan CU, Eguchi T, Kohin S, Dewar H (2014). Prediction of fishing effort distributions using boosted regression trees. Ecological Applications, 24, 71-83.
DOI URL |
[24] |
Wei D, Qi YH, Ma YM, Wang XF, Ma WQ, Gao TG, Huang L, Zhao H, Zhang JX, Wang XD (2021). Plant uptake of CO2outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 118, e2015283118. DOI: 10.1073/pnas.2015283118.
DOI |
[25] |
Yu G, Chen Z, Zhang L, Peng C, Chen J, Piao S, Zhang Y, Niu S, Wang Q, Luo Y, Philippe C, Dennis BD (2017). Recognizing the scientific mission of flux tower observation networks—Lay the solid scientific data foundation for solving ecological issues related to global change. Journal of Resources and Ecology, 8, 115-120.
DOI URL |
[26] | Yu GR, Sun XM (2006). Principles of Flux Measurements in Terrestrial Ecosystems. High Education Press, Beijing. |
[ 于贵瑞, 孙晓敏 (2006). 陆地生态系统通量观测的原理与方法. 高等教育出版社, 北京.] | |
[27] |
Zhang FW, Li HQ, Wang WY, Li YK, Lin L, Guo XW, Du YG, Li Q, Yang YS, Cao GM, Li YN (2018). Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau. Ecohydrology, 11, e1925. DOI: 10.1002/eco.1925.
DOI URL |
[28] | Zhang FW, Han Y, Li HQ, Li YN, Cao GM, Zhou HK (2020a). Turbulent heat exchange and partitioning and its environmental controls between the atmosphere and an alpine Potentilla fruticosa shrublands over the Qinghai-Tibetan Plateau. Chinese Journal of Agrometeorology, 41, 76-85. |
[ 张法伟, 韩赟, 李红琴, 李英年, 曹广民, 周华坤 (2020a). 青藏高原高寒金露梅灌丛湍流热通量交换与分配特征及其环境影响机制. 中国农业气象, 41, 76-85.] | |
[29] |
Zhang FW, Li HQ, Zhao L, Zhang LM, Chen Z, Zhu JB, Xu SX, Yang YS, Zhao XQ, Yu GR, Li YN (2020b). An observation dataset of carbon, water and heat fluxes over an alpine shrubland in Haibei (2003-2010). Science Data Bank, 6. DOI: 10.11922/csdata.2020.0034.zh.
DOI |
[ 张法伟, 李红琴, 赵亮, 张雷明, 陈智, 祝景彬, 徐世晓, 杨永胜, 赵新全, 于贵瑞, 李英年 (2020b). 2003-2010年海北高寒灌丛碳水热通量观测数据集. 中国科学数据, 6. DOI: 10.11922/csdata.2020.0034.zh.]
DOI |
|
[30] |
Zhang LM, Luo YW, Liu M, Chen Z, Su W, He HL, Zhu ZL, Sun XM, Wang YF, Zhou GY, Zhao XQ, Han SJ, Ouyang Z, Zhang XZ, Zhang YP, et al. (2019). Carbon and water fluxes observed by the Chinese Flux Observation and Research Network (2003- 2005). Science Data Bank, 4. DOI: 10.11922/csdata.2018.0028.zh.
DOI |
[ 张雷明, 罗艺伟, 刘敏, 陈智, 苏文, 何洪林, 朱治林, 孙晓敏, 王艳芬, 周国逸, 赵新全, 韩世杰, 欧阳竹, 张宪洲, 张一平, 等 (2019). 2003-2005年中国通量观测研究联盟(ChinaFLUX)碳水通量观测数据集. 中国科学数据, 4. DOI: 10.11922/csdata.2018.0028.zh.]
DOI |
|
[31] |
Zhao L, Li YN, Xu SX, Zhou HK, Gu S, Yu GR, Zhao XQ (2006). Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai- Tibetan Plateau. Global Change Biology, 12, 1940-1953.
DOI URL |
[1] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[2] | 刘秋蓉, 李丽, 罗垚, 陈冬东, 黄鑫, 胡君, 刘庆. 四川巴塘海子山高寒灌丛群落的基本特征[J]. 植物生态学报, 2022, 46(11): 1334-1341. |
[3] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
[4] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
[5] | 马志良, 赵文强, 赵春章, 刘美, 朱攀, 刘庆. 青藏高原东缘窄叶鲜卑花灌丛生长季土壤无机氮对增温和植物去除的响应[J]. 植物生态学报, 2018, 42(1): 86-94. |
[6] | 高巧, 阳小成, 尹春英, 刘庆. 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算[J]. 植物生态学报, 2014, 38(4): 355-365. |
[7] | 韩发, 贲桂英, 师生波. 不同放牧强度下高寒灌丛植物的生长特点[J]. 植物生态学报, 1993, 17(4): 331-338. |
[8] | 张堰青. 不同放牧强度下高寒灌丛群落特征和演替规律的数量研究[J]. 植物生态学报, 1990, 14(4): 358-365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19