Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (10): 1243-1255.DOI: 10.17521/cjpe.2023.0139 cstr: 32100.14.cjpe.2023.0139
Special Issue: 碳循环
• Research Articles • Next Articles
HUANG Mei1, SHI Yue2, SUN Wen-Juan2, ZHAO Xia2, CHANG Jin-Feng3, FANG Jing-Yun4,5,*()
Received:
2023-05-18
Accepted:
2023-08-03
Online:
2024-10-20
Published:
2024-12-03
Contact:
FANG Jing-Yun
Supported by:
HUANG Mei, SHI Yue, SUN Wen-Juan, ZHAO Xia, CHANG Jin-Feng, FANG Jing-Yun. Terrestrial carbon sink in Yunnan Province and its contribution to carbon neutrality[J]. Chin J Plant Ecol, 2024, 48(10): 1243-1255.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0139
参数 Parameter | 数值 Value | 来源 Source |
---|---|---|
排放系数 Emissions coefficient | ||
煤炭 Coal | 0.094 6 kg CO2·MJ-1 | Eggelston ( |
石油 Petroleum | 0.073 3 kg CO2·MJ-1 | Eggelston ( |
天然气 Natural gas | 0.0561 kg CO2·MJ-1 | Eggelston ( |
水泥 Cement | 0.538 kg CO2·kg-1 clinker | 国家发改委 NDRC ( |
氧化系数 Oxidation coefficient | ||
煤炭 Coal | 0.94 | 国家发改委 NDRC ( |
石油 Petroleum1) | 0.98 | 国家发改委 NDRC ( |
天然气 Gas | 0.99 | 国家发改委 NDRC ( |
水泥熟料比例 Cement clinker proportion | 59%-63% | 《中国水泥年鉴(2015)》 China Cement Almanac (2015) |
Table 1 Key parameters for carbon emission calculation
参数 Parameter | 数值 Value | 来源 Source |
---|---|---|
排放系数 Emissions coefficient | ||
煤炭 Coal | 0.094 6 kg CO2·MJ-1 | Eggelston ( |
石油 Petroleum | 0.073 3 kg CO2·MJ-1 | Eggelston ( |
天然气 Natural gas | 0.0561 kg CO2·MJ-1 | Eggelston ( |
水泥 Cement | 0.538 kg CO2·kg-1 clinker | 国家发改委 NDRC ( |
氧化系数 Oxidation coefficient | ||
煤炭 Coal | 0.94 | 国家发改委 NDRC ( |
石油 Petroleum1) | 0.98 | 国家发改委 NDRC ( |
天然气 Gas | 0.99 | 国家发改委 NDRC ( |
水泥熟料比例 Cement clinker proportion | 59%-63% | 《中国水泥年鉴(2015)》 China Cement Almanac (2015) |
类型 Type | 年代 Time period | |||
---|---|---|---|---|
1980s | 1990s | 2000s | 2010s | |
森林 Forest | 10.73 | 11.45 | 14.15 | 16.12 |
其他林地 Other forested land | ||||
果树林 Orchard | 0.09 | 0.23 | 0.49 | 0.84 |
其他经济林 Other commercial forests | 0.50 | 0.59 | 1.02 | 1.45 |
竹林 Bamboo forest | 0.14 | 0.12 | 0.09 | 0.11 |
灌丛 Shrubland | 6.87 | 5.44 | 5.04 | 4.77 |
草地 Grassland | 8.37 | 8.08 | 4.93 | 1.97 |
农田 Farmland | 6.31 | 6.38 | 6.19 | 6.07 |
湿地 Wetland | 0.31 | 0.29 | 0.30 | 0.29 |
建设用地 Built-up area | 0.68 | 0.77 | 0.91 | 1.61 |
其他类型 Other categories | 4.27 | 4.92 | 5.15 | 5.04 |
总计 Total | 38.27 | 38.27 | 38.27 | 38.27 |
Table 2 Area (106 hm2) of various ecosystems and land cover types in Yunnan during the 1980s-2010s
类型 Type | 年代 Time period | |||
---|---|---|---|---|
1980s | 1990s | 2000s | 2010s | |
森林 Forest | 10.73 | 11.45 | 14.15 | 16.12 |
其他林地 Other forested land | ||||
果树林 Orchard | 0.09 | 0.23 | 0.49 | 0.84 |
其他经济林 Other commercial forests | 0.50 | 0.59 | 1.02 | 1.45 |
竹林 Bamboo forest | 0.14 | 0.12 | 0.09 | 0.11 |
灌丛 Shrubland | 6.87 | 5.44 | 5.04 | 4.77 |
草地 Grassland | 8.37 | 8.08 | 4.93 | 1.97 |
农田 Farmland | 6.31 | 6.38 | 6.19 | 6.07 |
湿地 Wetland | 0.31 | 0.29 | 0.30 | 0.29 |
建设用地 Built-up area | 0.68 | 0.77 | 0.91 | 1.61 |
其他类型 Other categories | 4.27 | 4.92 | 5.15 | 5.04 |
总计 Total | 38.27 | 38.27 | 38.27 | 38.27 |
类型 Type | 年份 Time period | ||||
---|---|---|---|---|---|
1980s | 1990s | 2000s | 2010s | 1980s-2010s | |
森林 Forest | 8.40 | 14.52 | 13.75 | 29.29 | 16.49 |
灌丛 Shrubland | 0.41 | 0.30 | 0.60 | -0.26 | 0.26 |
草地 Grassland | 0.25 | 0.11 | 0.04 | -0.19 | 0.05 |
湿地 Wetland | 1.16 | 1.11 | 1.15 | 1.12 | 1.14 |
农田 Farmland | 2.19 | 1.59 | 0.82 | 1.26 | 1.47 |
合计 Total | 12.41 | 17.63 | 16.35 | 31.22 | 19.41 |
Table 3 Carbon sink (Tg C·a-1) of various ecosystem types in Yunnan during the 1980s-2010s
类型 Type | 年份 Time period | ||||
---|---|---|---|---|---|
1980s | 1990s | 2000s | 2010s | 1980s-2010s | |
森林 Forest | 8.40 | 14.52 | 13.75 | 29.29 | 16.49 |
灌丛 Shrubland | 0.41 | 0.30 | 0.60 | -0.26 | 0.26 |
草地 Grassland | 0.25 | 0.11 | 0.04 | -0.19 | 0.05 |
湿地 Wetland | 1.16 | 1.11 | 1.15 | 1.12 | 1.14 |
农田 Farmland | 2.19 | 1.59 | 0.82 | 1.26 | 1.47 |
合计 Total | 12.41 | 17.63 | 16.35 | 31.22 | 19.41 |
Fig. 1 Total ecosystem carbon sink estimated based on field measurements and multi-model predictions of total net ecosystem productivity (NEP) in Yunnan Province.
Fig. 3 Changes in ecosystem carbon sink contribution index in Yunnan Province during the period of 1981-2020. CI, regional carbon sink contribution index; CIe, ecosystem carbon sink contribution index.
Fig. 4 Relationship between CO2 emission and GDP, clean energy emission reduction and energy intensity in Yunnan Province. A, Relationship between GDP and CO2 emissions in different time periods. GDP here is the GDP at the constant price of 1980. B, Variation of reduction in CO2 emissions through clean energy production, CO2 emissions, and the sum of CO2 emissions and reduction in CO2 emissions through clean energy production during 1980-2020. C, Changes of energy intensity during 1980-2020.
[1] | Bontemps S, Defourny P, Radoux J, van Bogaert E, Lamarche C, Achard F, Mayaux P, Boettcher M, Brockmann C, Kirches G, Zulkhe M, Kalogirou V, Seifert F, Arino O (2013). Consistent global land cover maps for climate modelling communities:current achievements of the ESA’ land cover CCI. Proceedings of the ESA Living Planet Symposium. 9-13. Edinburgh, UK. |
[2] | Cai BR (2016). Research on the coordinated development of clean energy in Yunnan Province. Yunnan Water Power, 32(3), 134-137. |
[ 蔡葆锐 (2016). 云南省清洁能源协调发展问题研究. 云南水力发电, 32(3), 134-137.] | |
[3] | Cao C, Hou ZM, Xiong Y, Luo JS, Fang YL, Sun W, Liao JX (2022). Technical routes and action plan for carbon neutral for Yunnan Province. Advanced Engineering Sciences, 54(1), 37-46. |
[ 曹成, 侯正猛, 熊鹰, 罗佳顺, 方琰藜, 孙伟, 廖建兴 (2022). 云南省碳中和技术路线与行动方案. 工程科学与技术, 54(1), 37-46.] | |
[4] | Cao MK, Zhang QF, Shugart HH (2001). Dynamic responses of African ecosystem carbon cycling to climate change. Climate Research, 17, 183-193. |
[5] |
Chang J, Ciais P, Gasser T, Smith P, Herrero M, Havlík P, Obersteiner M, Guenet B, Goll DS, Li W, Naipal V, Peng S, Qiu C, Tian H, Viovy N, et al. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 12, 118. DOI: 10.1038/s41467-020-20406-7.
PMID |
[6] | Chen JM (2021). Carbon neutrality: toward a sustainable future. Innovation, 2, 100127. DOI: 10.1016/j.xinn.2021.1001272. |
[7] |
Chen J, Ju W, Ciais P, Viovy N, Liu R, Liu Y, Lu X (2019). Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 10, 4259. DOI: 10.1038/s41467-019-12257-8.
PMID |
[8] | Deng MX, Li W, Hu Y (2016). Decomposing industrial energy-related CO2 emissions in Yunnan Province, China: switching to low-carbon economic growth. Energies, 9, 23. DOI: 10.3390/en9010023. |
[9] | Eggelston S, Leandro B, Kyoko M, Todd N, Kiyoto T (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES) for the IPCC, Kanagawa, Japan. |
[10] | Fang JY (2021). Ecological perspectives of carbon neutrality. Chinese Journal of Plant Ecology, 45, 1173-1176. |
[ 方精云 (2021). 碳中和的生态学透视. 植物生态学报, 45, 1173-1176.]
DOI |
|
[11] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
DOI PMID |
[12] |
Fang J, Yu G, Liu L, Hu S, Chapin III FS (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015-4020.
DOI PMID |
[13] |
Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Peters Glen P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell JG, Ciais P, Jackson RB, Alin S, et al. (2020). Global Carbon Budget 2020. Earth System Science Data, 12, 3269-3340.
DOI |
[14] | Geng Y, Zhu R, Maimaituerxun M (2022). Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 29, 76668-76686. |
[15] | Gu FX, Tao B, Wen XF, Yu GR, Li KR (2010). Modeling long-term changes in carbon fluxes and storage in a subtropical coniferous plantation based on CEVSA2 model. Acta Ecologica Sinica, 30, 6598-6605. |
[ 顾峰雪, 陶波, 温学发, 于贵瑞, 李克让 (2010). 基于CEVSA2模型的亚热带人工针叶林长期碳通量及碳储量模拟. 生态学报, 30, 6598-6605.] | |
[16] | Guimberteau M, Zhu D, Maignan F, Huang Y, Yue C, Dantec-Nédélec S, Ottle C, Jornet-Puig A, Bastos A, Laurent P, Goll D, Bowring S, Chang JF, Guenet B, Tifafi M, et al. (2018). ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation. Geoscientific Model Development, 11, 121-163. |
[17] | Guo ZD, Hu HF, Li P, Li NY, Fang JY (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Science China: Life Sciences, 56, 661-671. |
[18] | Huang M, Ji JJ, Li KR, Liu YF, Yang FT, Tao B (2007). The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China. Tellus B: Chemical and Physical Meteorology, 59, 439-448. |
[19] | Huang Y, Yu YQ, Zhang W, Sun WJ, Liu SL, Jiang J, Wu JS, Yu WT, Wang Y, Yang ZF (2009). Agro-C: a biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 149, 106-129. |
[20] | IPCC Intergovernmental Panel on Climate Change (2023). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[21] | Ji JJ, Huang M, Li KR (2008). Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Science in China Series D: Earth Sciences, 51, 885-898. |
[22] | Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015. DOI: 10.1029/2003GB002199. |
[23] | Lange S, Mengel M, Treu S, Büchner M (2022). ISIMIP3a atmospheric climate input data (v1.0). ISIMIP Repository. [2023-05-01]. DOI: 10.48364/ISIMIP.982724. |
[24] | Li LH, Zhang Y, Zhou TJ, Wang KC, Wang C, Wang T, Yuan LW, An KX, Zhou CH, Lü GN (2022). Mitigation of China’s carbon neutrality to global warming. Nature Communications, 13, 5315. DOI: 10.1038/s41467-022-33047-9. |
[25] | Liu J, Chen JM, Cihlar J, Chen W (1999). Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. Journal of Geophysical Research: Atmospheres, 104, 27735-27754. |
[26] | Liu Z, Deng Z, He G, Wang HL, Zhang X, Lin J, Qi Y, Liang X (2021). Challenges and opportunities for carbon neutrality in China. Nature Reviews Earth & Environment, 3, 141-155. |
[27] | Lu WZ, Xiao JF, Liu F, Zhang Y, Liu CA, Lin GH (2017). Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data. Global Change Biology, 23, 1180-1198. |
[28] | Luo YJ, Wang XK, Zhang XQ, Lu F (2013). A Study on the Biomass and Allocation of Forest Ecosystems in China. China Forestry Publishing House, Beijing. |
[ 罗云建, 王效科, 张小全, 逯非 (2013). 中国森林生态系统生物量及其分配研究. 中国林业出版社, 北京.] | |
[29] | Matsushita B, Tamura M (2002). Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia. Remote Sensing of Environment, 81, 58-66. |
[30] | Mayaux P, Bartholomé E, Fritz S, Belward A (2004). A new land-cover map of Africa for the year 2000. Journal of Biogeography, 31, 861-877. |
[31] | National Development and Reform Commission (2011). Guidelines for the Preparation of Provincial Greenhouse Gas Inventories (for Trial Implementation). National Development and Reform Commission, Beijing. |
[ 国家发改委 (2011). 省级温室气体清单编制指南(试行). 国家发改委, 北京.] | |
[32] | Pei YH, Li J (2012). Carbon storage of forest vegetation in Yunnan Province and its dynamic change in recent 10 years. Science of Soil and Water Conservation, 10(3), 93-98. |
[ 裴艳辉, 李江 (2012). 云南省森林植被碳储量及其近10年动态变化. 中国水土保持科学, 10(3), 93-98.] | |
[33] | Peng S, Ciais P, Maignan F, Li W, Chang J, Wang T, Yue C (2017). Sensitivity of land use change emission estimates to historical land use and land cover mapping. Global Biogeochemical Cycles, 31, 626-643. |
[34] | Piao SL, Yue C, Ding JZ, Guo ZT (2022). Perspectives on the role of terrestrial ecosystems in the “carbon neutrality” strategy. Science China Earth Sciences, 65, 1178-1186. |
[35] | Poulter B, Ciais P, Hodson E, Lischke H, Maignan F, Plummer S, Zimmermann NE (2011). Plant functional type mapping for earth system models. Geoscientific Model Development, 4, 993-1010. |
[36] | Poulter B, MacBean N, Hartley A, Khlystova I, Arino O, Betts R, Bontemps S, Boettcher M, Brockmann C, Defourny P, Hagemann S, Herold M, Kirches G, Lamarche C, Lederer D, et al. (2015). Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geoscientific Model Development, 8, 2315-2328. |
[37] | Sprintsin M, Chen J, Desai A, Gough CM (2012). Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. Journal of Geophysical Research: Biogeosciences, 117, G01023. DOI: 10.1029/2010JG001407. |
[38] | Tang XL, Zhao X, Bai YF, Tang ZY, Wang WT, Zhao YC, Wan HW, Xie ZQ, Shi XZ, Wu BF, Wang GX, Yan JH, Ma KP, Du S, Li SG, et al. (2018). Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 115, 4021-4026. |
[39] | Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013). Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10, 1717-1736. |
[40] | Viovy N (2018). CRUNCEP Version 7—Atmospheric forcing data for the community land model. research data archive at the national center for atmospheric research, computational and information systems laboratory. [2023-05-18]. DOI: 10.5065/PZ8F-F017. |
[41] | Wang Q, Tenhunen J, Falge E, Bernhofer C, Granier A, Vesala T (2004). Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests. Global Change Biology, 10, 37-51. |
[42] | Wu BF, Yuan QZ, Yan CZ, Wang ZM, Yu XF, Li AN, Ma RH, Huang JL, Chen JS, Chang C, Liu CL, Zhang L, Li XS, Zeng Y, Bao AM (2014). Land cover changes of China from 2000 to 2010. Quaternary Sciences, 34, 723-731. |
[ 吴炳方, 苑全治, 颜长珍, 王宗明, 于信芳, 李爱农, 马荣华, 黄进良, 陈劲松, 常存, 刘成林, 张磊, 李晓松, 曾源, 包安明 (2014). 21世纪前十年的中国土地覆盖变化. 第四纪研究, 34, 723-731.] | |
[43] | Yang Y, Huang GS, Wang XJ, Su HR, Zhi CG (2017). Research on prediction of forest resources and the carbon sequestration potential in Yunnan Province. Forest Resources Management, (4), 44-49. |
[ 杨英, 黄国胜, 王雪军, 苏浩然, 智长贵 (2017). 云南省森林资源预测及其碳汇潜力研究. 林业资源管理, (4), 44-49.] | |
[44] | Yue C, Ciais P, Cadule P, Thonicke K, Archibald S, Poulter B, Hao WM, Hantson S, Mouillot F, Friedlingstein P, Maignan F, Viovy N (2014). Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE—Part 1: simulating historical global burned area and fire regimes. Geoscientific Model Development, 7, 2747-2767. |
[45] | Zhang LL, Ling J, Lin MW (2023). Carbon neutrality: a comprehensive bibliometric analysis. Environmental Science and Pollution Research, 30, 45498-45514. |
[46] | Zhou R, Li W, Zhang Y, Peng M, Wang C, Sha L, Liu Y, Song Q, Fei X, Jin Y, Gao J, Lin Y, Grace J, Wang S (2018). Responses of the carbon storage and sequestration potential of forest vegetation to temperature increases in Yunnan Province. Forests, 9, 227. DOI: 10.3390/f9050227. |
[47] | Zhou RW, Peng MC, Zhang YP (2017). The simulation research of carbon storage and sequestration potential of main forest vegetation in Yunnan Province. Journal of Yunnan University (Natural Sciences Edition), 39, 1089-1103. |
[ 周瑞伍, 彭明春, 张一平 (2017). 云南主要森林植被碳储量及固碳潜力模拟研究. 云南大学学报(自然科学版), 39, 1089-1103.] | |
[48] | Zhu Y, Wang XF, Fan LZ, Yang PW, Yang XP, Huang W (2013). Wind Energy Resources and Their Development and Utilization in Yunnan Province. China Meteorological Press, Beijing. |
[ 朱勇, 王学锋, 范立张, 杨鹏武, 杨晓鹏, 黄玮 (2013). 云南省风能资源及其开发利用. 气象出版社, 北京.] | |
[49] | Zou CN, Xue HQ, Xiong B, Zhang GS, Pan SQ, Jia CY, Wang Y, Ma F, Sun Q, Guan CX, Lin MJ (2021). Connotation, innovation and vision of “carbon neutrality”. Natural Gas Industry B, 8, 523-537. |
[1] | MA Xu-Han, HUANG Ju-Ying, YU Hai-Long, HAN Cui, LI Bing. Soil organic carbon and its easily decomposed components under precipitation change and nitrogen addition in a desert steppe in northwest China [J]. Chin J Plant Ecol, 2024, 48(8): 1065-1077. |
[2] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[3] | LI Zhao-Guang, YANG Wen-Gao, HE Gui-Qing, XU Tian-Cai, HE Qiong-Ji, HOU Zhi-Jiang, LI Yan, XUE Run-Guang. Phenological dynamics of nitrogen, phosphorus and potassium stoichiometry in Chenopodium quinoa in northwest Yunnan, China [J]. Chin J Plant Ecol, 2023, 47(5): 724-732. |
[4] | ZHANG Ling-Nian, ZHU Gui-Qing, YANG Kuan, LIU Xing-Yue, GONG He-De, ZHENG Li. Niche and interspecific association of main woody plants in Myrica nana shrubland in central Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(11): 1400-1410. |
[5] | ZHU Hua. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China [J]. Chin J Plant Ecol, 2021, 45(3): 224-241. |
[6] | HE Lu-Yan, HOU Man-Fu, TANG Wei, LIU Yu-Ting, ZHAO Jun. Vegetation types and their characteristics in karst forests of Junzi Mountain in East Yunnan, China [J]. Chin J Plant Ecol, 2021, 45(12): 1380-1390. |
[7] | FANG Jing-Yun. Ecological perspectives of carbon neutrality [J]. Chin J Plant Ecol, 2021, 45(11): 1173-1176. |
[8] | BAI Tian-Dao, YU Chun-Lan, GAN Ze-Chao, LAI Hai-Rong, YANG Yin-Chao, HUANG Hou-Chen, JIANG Wei-Xin. Association of cone and seed traits of Pinus yunnanensis var. tenuifolia with geo-meteorological factors [J]. Chin J Plant Ecol, 2020, 44(12): 1224-1235. |
[9] | SHEN Jia-Yan, LI Shuai-Feng, HUANG Xiao-Bo, LEI Zhi-Quan, SHI Xing-Quan, SU Jian-Rong. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin [J]. Chin J Plant Ecol, 2019, 43(11): 946-958. |
[10] | LI Su,LIU Wen-Yao,SHI Xian-Meng,LIU Shuai,HU Tao,HUANG Jun-Biao,CHEN Xi,SONG Liang,WU Chuan-Sheng. Responses of the distribution of four epiphytic cyanolichens to habitat changes in subtropical forests [J]. Chin J Plan Ecolo, 2015, 39(3): 217-228. |
[11] | WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation [J]. Chin J Plan Ecolo, 2015, 39(12): 1166-1175. |
[12] | LIANG Dong, MAO Jian-Feng, ZHAO Wei, ZHOU Xian-Qing, YUAN Hu-Wei, WANG Li-Ming, XING Fang-Qian, WANG Xiao-Ru, LI Yue. Seedling performance of Pinus densata and its parental population in the habitat of P. tab- uliformis [J]. Chin J Plant Ecol, 2013, 37(2): 150-163. |
[13] | HU Hai-Qing, WEI Shu-Jing, SUN Long. Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010 [J]. Chin J Plant Ecol, 2012, 36(7): 629-644. |
[14] | ZHU Hua. Tropical monsoon forest in Yunnan with comparison to the tropical rain forest [J]. Chin J Plant Ecol, 2011, 35(4): 463-470. |
[15] | CHENG Kai, SUN Kun, WEN Hong-Yan, ZHANG Min, JIA Dong-Rui, LIU Jian-Quan. MATERNAL DIVERGENCE AND PHYLOGEOGRAPHICAL RELATIONSHIPS BETWEEN HIPPOPHAE GYANTSENSIS AND H. RHAMNOIDES SUBSP. YUNNANENSIS [J]. Chin J Plant Ecol, 2009, 33(1): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn