Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (2): 320-330.DOI: 10.17521/cjpe.2023.0158 cstr: 32100.14.cjpe.2023.0158
• Research Articles • Previous Articles Next Articles
HAN Da-Yong1, LI Hai-Yan2, ZHANG Wei1, YANG Yun-Fei1,2,*()
Received:
2023-05-31
Accepted:
2024-04-09
Online:
2025-02-20
Published:
2025-02-20
Contact:
YANG Yun-Fei
Supported by:
HAN Da-Yong, LI Hai-Yan, ZHANG Wei, YANG Yun-Fei. Superior growth process of creeping ramets of Phragmites australis and its physiological mechanisms in an alkaline meadow in Northeast China[J]. Chin J Plant Ecol, 2025, 49(2): 320-330.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0158
Fig. 1 Bare patches (A) and composition of the tufted Phragmites australis growth form (B) in fenced plots in a salinized Leymus chinensis meadow during mid-July. CR, creeping ramet; LR, lying ramet; NR, nodal ramet; OR, oblique ramet; UR, upright ramet.
时间段(月-日) Time period (month-day) | 样本数 n | 最大值 Max | 最小值 Min | 平均值 Mean | 标准差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|---|
4-25-6-04 | 7 | 4.20 | 1.26 | 2.94c | 1.12 | 38.0 |
6-05-6-14 | 7 | 15.72 | 2.09 | 8.59ab | 4.72 | 54.9 |
6-15-6-24 | 7 | 15.08 | 7.92 | 11.46a | 2.67 | 23.3 |
6-25-7-04 | 7 | 16.22 | 8.21 | 10.74a | 2.78 | 25.9 |
7-05-7-14 | 7 | 12.95 | 5.27 | 8.51ab | 2.88 | 33.9 |
7-15-7-24 | 7 | 10.94 | 1.70 | 6.06b | 3.50 | 57.8 |
7-25-8-04 | 7 | 11.06 | 1.70 | 6.66b | 4.41 | 66.2 |
8-05-8-14 | 7 | 8.39 | 0.33 | 3.17bc | 2.75 | 86.6 |
8-15-8-24 | 7 | 6.71 | 0.04 | 1.64c | 2.29 | 139.8 |
Table 1 Basic statistics on the growth rate of the creeping ramets of Phragmites australis at different time periods (cm·d-1)
时间段(月-日) Time period (month-day) | 样本数 n | 最大值 Max | 最小值 Min | 平均值 Mean | 标准差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|---|
4-25-6-04 | 7 | 4.20 | 1.26 | 2.94c | 1.12 | 38.0 |
6-05-6-14 | 7 | 15.72 | 2.09 | 8.59ab | 4.72 | 54.9 |
6-15-6-24 | 7 | 15.08 | 7.92 | 11.46a | 2.67 | 23.3 |
6-25-7-04 | 7 | 16.22 | 8.21 | 10.74a | 2.78 | 25.9 |
7-05-7-14 | 7 | 12.95 | 5.27 | 8.51ab | 2.88 | 33.9 |
7-15-7-24 | 7 | 10.94 | 1.70 | 6.06b | 3.50 | 57.8 |
7-25-8-04 | 7 | 11.06 | 1.70 | 6.66b | 4.41 | 66.2 |
8-05-8-14 | 7 | 8.39 | 0.33 | 3.17bc | 2.75 | 86.6 |
8-15-8-24 | 7 | 6.71 | 0.04 | 1.64c | 2.29 | 139.8 |
Fig. 2 Comparison of differences in growth rate (mean ± SD) between the creeping ramets and the control upright ramets of Phragmites australis at different time periods. *, significant difference (p < 0.05) between different ramets at the same period; ns, no significant difference (p > 0.05).
分株 Ramet | 样本号 No. | 样本数 n | 函数类型 Function type | 方程参数 Equation parameters | R2 | p | |
---|---|---|---|---|---|---|---|
a | b | ||||||
匍匐型 CR | 1 | 9 | 对数 Logarithmic | -1 322.8 | 378.34 | 0.92 | <0.01 |
2 | 9 | 对数 Logarithmic | -1 686.9 | 502.44 | 0.99 | <0.01 | |
3 | 9 | 对数 Logarithmic | -1 727.7 | 522.14 | 0.93 | <0.01 | |
4 | 9 | 对数 Logarithmic | -2 316.3 | 635.67 | 0.98 | <0.01 | |
5 | 9 | 对数 Logarithmic | -1 682.3 | 514.24 | 0.95 | <0.01 | |
6 | 9 | 线性 Linear | -238.1 | 8.33 | 0.99 | <0.01 | |
7 | 9 | 对数 Logarithmic | -2 577.9 | 709.60 | 0.96 | <0.01 | |
平均值 Mean | 9 | 对数 Logarithmic | -1 946.3 | 556.36 | 0.99 | <0.01 | |
直立型对照 CK | 1 | 9 | 线性 Linear | 17.80 | 0.27 | 0.99 | <0.01 |
2 | 9 | 对数 Logarithmic | -57.88 | 23.10 | 0.98 | <0.01 | |
3 | 9 | 线性 Linear | 23.25 | 0.32 | 0.94 | <0.01 | |
4 | 9 | 线性 Linear | 13.50 | 0.44 | 0.99 | <0.01 | |
5 | 9 | 线性 Linear | 24.51 | 0.37 | 0.99 | <0.01 | |
6 | 9 | 线性 Linear | 17.38 | 0.45 | 0.99 | <0.01 | |
7 | 9 | 对数 Logarithmic | -97.72 | 35.43 | 0.99 | <0.01 | |
平均值 Mean | 9 | 线性 Linear | 0.38 | 19.18 | 0.97 | <0.01 |
Table 2 Parameters and significance tests of the fitting relationships between the length (y, cm) of the creeping (CR) and control upright ramets (CK), and growth time (x, d) of Phragmites australis
分株 Ramet | 样本号 No. | 样本数 n | 函数类型 Function type | 方程参数 Equation parameters | R2 | p | |
---|---|---|---|---|---|---|---|
a | b | ||||||
匍匐型 CR | 1 | 9 | 对数 Logarithmic | -1 322.8 | 378.34 | 0.92 | <0.01 |
2 | 9 | 对数 Logarithmic | -1 686.9 | 502.44 | 0.99 | <0.01 | |
3 | 9 | 对数 Logarithmic | -1 727.7 | 522.14 | 0.93 | <0.01 | |
4 | 9 | 对数 Logarithmic | -2 316.3 | 635.67 | 0.98 | <0.01 | |
5 | 9 | 对数 Logarithmic | -1 682.3 | 514.24 | 0.95 | <0.01 | |
6 | 9 | 线性 Linear | -238.1 | 8.33 | 0.99 | <0.01 | |
7 | 9 | 对数 Logarithmic | -2 577.9 | 709.60 | 0.96 | <0.01 | |
平均值 Mean | 9 | 对数 Logarithmic | -1 946.3 | 556.36 | 0.99 | <0.01 | |
直立型对照 CK | 1 | 9 | 线性 Linear | 17.80 | 0.27 | 0.99 | <0.01 |
2 | 9 | 对数 Logarithmic | -57.88 | 23.10 | 0.98 | <0.01 | |
3 | 9 | 线性 Linear | 23.25 | 0.32 | 0.94 | <0.01 | |
4 | 9 | 线性 Linear | 13.50 | 0.44 | 0.99 | <0.01 | |
5 | 9 | 线性 Linear | 24.51 | 0.37 | 0.99 | <0.01 | |
6 | 9 | 线性 Linear | 17.38 | 0.45 | 0.99 | <0.01 | |
7 | 9 | 对数 Logarithmic | -97.72 | 35.43 | 0.99 | <0.01 | |
平均值 Mean | 9 | 线性 Linear | 0.38 | 19.18 | 0.97 | <0.01 |
Fig. 3 Observed values and fitting curves on the relationship between the growth time and the average length of creeping ramets (A) and control upright ramets (B) of Phragmites australis (mean ± SD).
Fig. 4 Comparison of photosynthetic rate (Pn) and transpiration rate (Tr) (mean ± SD) of leaves at different orders of creeping Phragmites australis. Different lowercase letters indicate significant difference (p < 0.05) between leaf orders.
Fig. 5 Observed values and fitting curves of photosynthetic rate (Pn) and transpiration rate (Tr) of Phragmites australis leaves with varying leaf order on creeping ramets (A1, B1), nodal ramets (A2, B2) and control upright ramets (A3, B3).
因变量 Dependent variable (y) | 分株 Ramet | 样本数 n | 方程参数 Equation parameter | R2 | p | |||
---|---|---|---|---|---|---|---|---|
A1/a | A2/b | x0/c | m | |||||
光合速率 Pn (μmol·m-2·s-1) | 匍匐型分株 CR | 15 | 14.40 | 22.83 | 11.62 | 10.21 | 0.96 | <0.01 |
节生型分株 NR | 8 | 2.89 | 4.81 | -0.35 | 0.88 | <0.01 | ||
直立型分株 CK | 8 | -8.50 | 6.59 | -0.40 | 0.94 | <0.01 | ||
蒸腾速率 Tr (µmol·m-2·s-1) | 匍匐型分株 CR | 15 | 5.04 | 7.21 | 12.09 | 15.63 | 0.94 | <0.01 |
节生型分株 NR | 8 | 1.33 | 2.18 | -0.19 | 0.93 | <0.01 | ||
直立型分株 CK | 8 | -4.71 | 2.90 | -0.19 | 0.92 | <0.01 |
Table 3 Parameters and significance tests of the relationships between the photosynthetic physiological indices (y) and leaf order (x) of Phragmites australis creeping ramets (CR), nodal ramets (NR) and control upright ramets (CK)
因变量 Dependent variable (y) | 分株 Ramet | 样本数 n | 方程参数 Equation parameter | R2 | p | |||
---|---|---|---|---|---|---|---|---|
A1/a | A2/b | x0/c | m | |||||
光合速率 Pn (μmol·m-2·s-1) | 匍匐型分株 CR | 15 | 14.40 | 22.83 | 11.62 | 10.21 | 0.96 | <0.01 |
节生型分株 NR | 8 | 2.89 | 4.81 | -0.35 | 0.88 | <0.01 | ||
直立型分株 CK | 8 | -8.50 | 6.59 | -0.40 | 0.94 | <0.01 | ||
蒸腾速率 Tr (µmol·m-2·s-1) | 匍匐型分株 CR | 15 | 5.04 | 7.21 | 12.09 | 15.63 | 0.94 | <0.01 |
节生型分株 NR | 8 | 1.33 | 2.18 | -0.19 | 0.93 | <0.01 | ||
直立型分株 CK | 8 | -4.71 | 2.90 | -0.19 | 0.92 | <0.01 |
Fig. 6 Comparison of 15N abundance between tracer-treated and control Phragmites australis creeping ramets in different organs and sections (A), and among tracer-treated organs (B) (mean ± SD). L, leaf; LS, leaf sheath; S, stem. 1, 2 and 3 represent upper, middle and lower sections. *, significant difference (p < 0.05) between tracer treated (15N) and control treatments. Different lowercase letters indicate significant difference (p < 0.05) among organs.
[1] |
Ahmad I, Ahmad S, Kamran M, Yang XN, Hou FJ, Yang BP, Ding RX, Liu T, Han QF (2021). Uniconazole and nitrogen fertilization trigger photosynthesis and chlorophyll fluorescence, and delay leaf senescence in maize at a high population density. Photosynthetica, 59, 192-202.
DOI |
[2] | Arce MI, Gómez R, del Rosario Vidal-Abarca M, Suárez ML (2009). Effects of Phragmites australis growth on nitrogen retention in a temporal stream. Limnetica, 28, 229-242. |
[3] | Bellavance ME, Brisson J (2010). Spatial dynamics and morphological plasticity of common reed (Phragmites australis) and cattails (Typha sp.) in freshwater marshes and roadside ditches. Aquatic Botany, 93, 129-134. |
[4] | Charpentier A (2001). Consequences of clonal growth for plant mating. Evolutionary Ecology, 15, 521-530. |
[5] | Diachenko TN (2011). Biological and ecological peculiarities of the reed (Phragmites australis) in the aspect of optimal use of its resources. Hydrobiological Journal, 47(6), 23-33. |
[6] | Dong M (2011). Clonal Plant Ecology. Science Press, Beijing. 80-81. |
[董鸣 (2011). 克隆植物生态学. 科学出版社, 北京. 80-81.] | |
[7] | Engloner AI (2009). Structure, growth dynamics and biomass of reed (Phragmites australis)—A review. Flora, 204, 331-346. |
[8] | Engloner AI, Major Á (2011). Clonal diversity of Phragmites australis propagating along water depth gradient. Aquatic Botany, 94, 172-176. |
[9] | Fér T, Hroudová Z (2009). Genetic diversity and dispersal of Phragmites australis in a small river system. Aquatic Botany, 90, 165-171. |
[10] | Guo XY, Yang YF, Li JD (2003). Studies on the photosynthetic characteristics of the leaves of Phragmites communis in different dry land habitats in the Songnen Plains in China. Acta Pratacultural Science, 12(3), 16-21. |
[郭晓云, 杨允菲, 李建东 (2003). 松嫩平原不同旱地生境芦苇的光合特性研究. 草业学报, 12(3), 16-21.] | |
[11] | Honnay O, Jacquemyn H (2010). Clonal plants: beyond the patterns—Ecological and evolutionary dynamics asexual reproduction. Evolutionary Ecology, 24, 1393-1397. |
[12] | Jia ZF, Ma X, Ju ZL, Liu KQ, Zhao GQ (2021). Effects of nitrogen fertilizer and plant density on oat leaf senescence characteristics and cell structure. Acta Agrestia Sinica, 29(1), 80-87. |
[贾志锋, 马祥, 琚泽亮, 刘凯强, 赵桂琴 (2021). 氮肥和种植密度对燕麦叶片衰老特性及细胞结构的影响. 草地学报, 29(1), 80-87.].
DOI |
|
[13] | Jiao DZ, Huang ZY, Zhou C, Yang YF (2017). Rhizome dynamics and age structure of Phragmites australis populations in heterogeneous habitats of Northeast grasslands in China. Pakistan Journal of Botany, 49, 579-604. |
[14] | Jiao DZ, Liu RZ, Pan L, Wang SL, Yang YF (2021). Biomass allocation and growth analysis of the ramets of Phragmites communis in different growth stages in Zhalong wetland. Chinese Journal of Ecology, 40, 940-949. |
[焦德志, 刘润泽, 潘林, 王素玲, 杨允菲 (2021). 扎龙湿地不同生长期芦苇分株构件生物量分配及生长分析. 生态学杂志, 40, 940-949.] | |
[15] | Judy CR, Graham SA, Lin QX, Hou AX, Mendelssohn IA (2014). Impacts of Macondo oil from Deepwater Horizon spill on the growth response of the common reed Phragmites australis: a mesocosm study. Marine Pollution Bulletin, 79, 69-76. |
[16] | Li JD, Zheng HY (1997). The Saline Grassland Restoration and the Biological Ecological Mechanisms on the Songnen Plain. Science Press, Beijing. 1-30. |
[李建东, 郑慧莹 (1997). 松嫩平原盐碱化草地治理及其生物生态机理. 科学出版社, 北京. 1-30.] | |
[17] | Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006). Invasive alien plants in China: role of clonality and geographical origin. Biological Invasions, 8, 1461-1470. |
[18] | Long X (2015). The Physiological Integration of Light in Commelina benghalensis L. Master degree dissertation, Yangzhou University, Yangzhou, Jiangsu. |
[龙茜 (2015). 火柴头实生植株光照的生理整合研究. 硕士学位论文, 扬州大学, 江苏扬州.] | |
[19] | Lyu XQ, Zhang YL, You WH (2016). Growth and physiological responses of Eichhornia crassipes to clonal integration under experimental defoliation. Aquatic Ecology, 50, 153-162. |
[20] | McCormick MK, Kettenring KM, Baron HM, Whigham DF (2010). Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns, allee effects and interpretation. Journal of Ecology, 98, 1369-1378. |
[21] | Moi PE, Kitonyo OM, Chemining’wa GN, Kinama JM (2021). Intercropping and nitrogen fertilization altered the patterns of leaf senescence in Sorghum. International Journal of Agronomy, 2021, 5348859. DOI: 10.1155/2021/5348859. |
[22] | Pan RC (2004). Plant Physiology. 5th ed. Higher Education Press, Beijing. 142-145. |
[潘瑞炽 (2004). 植物生理学. 5版. 高等教育出版社, 北京. 142-145.] | |
[23] | Pennings SC, Callaway RM (2000). The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology, 81, 709-716. |
[24] | Qiu T, Jiang LL, Li SZ, Yang YF (2017). Small-scale habitat-specific variation and adaptive divergence of photosynthetic pigments in different alkali soils in reed identified by common garden and genetic tests. Frontiers in Plant Science, 7, 2016. DOI: 10.3389/fpls.2016.02016. |
[25] | Shi M, Zhang JB, Sun JL, Li Q, Lin XC, Song XZ (2022). Unequal nitrogen translocation pattern caused by clonal integration between connected ramets ensures necessary nitrogen supply for young moso bamboo growth. Environmental and Experimental Botany, 200, 104900. DOI: 10.1016/j.envexpbot.2022.104900. |
[26] | Vallejo-Marín M, Dorken ME, Barrett SCH (2010). The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution, and Systematics, 41, 193-213. |
[27] |
Wang P, Alpert P, Yu FH (2016). Clonal integration increases relative competitive ability in an invasive aquatic plant. American Journal of Botany, 103, 2079-2086.
DOI PMID |
[28] |
Xu S, Li CC, Abulahati N, Yang YF, Han DY (2023). Effects of functional leaves with different leaf positions on the formation of spike biomass in two habitats of wetland and dryland. Xinjiang Agricultural Sciences, 60, 472-478.
DOI |
[许顺, 李程程, 努尔阿力·阿布拉哈提, 杨允菲, 韩大勇 (2023). 湿地和旱地两种生境芦苇不同叶位功能叶片对穗生物量形成的影响. 新疆农业科学, 60, 472-478.]
DOI |
|
[29] | Yang YF, Li JD (2003). Biomass allocation and growth analysis on the ramets of Phragmites communis populations in different habitats in the Songnen Plains of China. Chinese Journal of Applied Ecology, 14, 30-34. |
[杨允菲, 李建东 (2003). 松嫩平原不同生境芦苇种群分株的生物量分配与生长分析. 应用生态学报, 14, 30-34.] | |
[30] | Zhai WL, Wang Y, Luan JW, Liu SR (2022). Effects of nitrogen addition on clonal integration between mother and daughter ramets of Moso bamboo: a 13C-CO2 pulse labeling study. Journal of Plant Ecology, 15, 756-770. |
[31] | Zhang YC, Liang GL, Qin Y, Liu WH, Jia ZF, Liu Y, Ma X (2022). Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus. Acta Prataculturae Sinica, 31, 229-237. |
[张永超, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥 (2022). 老芒麦衰老过程中叶片叶绿素和光合作用变化特征及对养分的响应. 草业学报, 31, 229-237.]
DOI |
|
[32] | Zhu AM, Zhang YX, Wang XG, Wang YL, Zhang QX, Hou WH, Du XY (2019). Effects of applying nitrogen fertilizer on leaf senescence characteristics of Leymus chinensis in sandy land. Grassland and Turf, 39(2), 39-46. |
[朱爱民, 张玉霞, 王显国, 王月林, 张庆昕, 侯文慧, 杜晓艳 (2019). 不同施氮水平对羊草抗衰老能力的影响. 草原与草坪, 39(2), 39-46.] | |
[33] | Zhu CG, Li WH, Chen YP, Ma JX (2017). Clonal water integration contributes to more survival advantages for Populus euphratica young ramets in the hyper-arid habitat. Chinese Journal of Applied Ecology, 28, 1448-1454. |
[朱成刚, 李卫红, 陈亚鹏, 马建新 (2017). 克隆水分整合有助胡杨无性系幼株在极端干旱生境下保持更高生存优势. 应用生态学报, 28, 1448-1454.]
DOI |
|
[34] | Zhuang Y, Sun YX, Wang ZS, Yang LL, Deng ZF, Yao ZG, An SQ (2010). Research advances in ecotypes of Phragmites australis. Acta Ecologica Sinica, 30, 2173-2181. |
[庄瑶, 孙一香, 王中生, 杨琳璐, 邓自发, 姚志刚, 安树青 (2010). 芦苇生态型研究进展. 生态学报, 30, 2173-2181.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn