Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (8): 1021-1034.DOI: 10.17521/cjpe.2023.0192 cstr: 32100.14.cjpe.2023.0192
• Research Articles • Previous Articles Next Articles
LIU Shi-Ling1,2, YANG Bao-Guo1, ZHENG Lu1,2, SHU Wei-Wei1,2, MIN Hui-Lin1,2, ZHANG Pei1, LI Hua1,2, YANG Kun1,2, ZHOU Bing-Jiang1, TIAN Zu-Wei1,*()
Received:
2023-07-06
Accepted:
2024-01-15
Online:
2024-08-20
Published:
2024-01-25
Contact:
*TIAN Zu-Wei(rlzxtzw@126.com)
Supported by:
LIU Shi-Ling, YANG Bao-Guo, ZHENG Lu, SHU Wei-Wei, MIN Hui-Lin, ZHANG Pei, LI Hua, YANG Kun, ZHOU Bing-Jiang, TIAN Zu-Wei. Seasonal stem radial growth of Castanopsis hystrix plantation and its response to climatic factors in Guangxi, China[J]. Chin J Plant Ecol, 2024, 48(8): 1021-1034.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0192
平均胸径 Mean DBH (cm) | 平均树高 Mean H (m) | 平均枝下高 Mean Hc (m) | 平均胸高断面积 Mean basal area (cm2) | 平均冠幅 Mean CD (m) |
---|---|---|---|---|
18.12 ± 2.35 | 15.66 ± 1.42 | 6.44 ± 2.06 | 267.70 ± 74.35 | 3.30 ± 0.67 |
Table 1 Basic information of Castanopsis hystrix plots (mean ± SE, n = 68)
平均胸径 Mean DBH (cm) | 平均树高 Mean H (m) | 平均枝下高 Mean Hc (m) | 平均胸高断面积 Mean basal area (cm2) | 平均冠幅 Mean CD (m) |
---|---|---|---|---|
18.12 ± 2.35 | 15.66 ± 1.42 | 6.44 ± 2.06 | 267.70 ± 74.35 | 3.30 ± 0.67 |
Fig. 2 Extracting growth-induced irreversible stem expansion and tree water deficit-induced stem shrinkage (TWD) from hourly recorded stem radius variation (SRV). A is hourly measured SRV during12 to 25 May 2018 (black line). The purple line is based on the ZG concept (Zweifel, 2016) which assumes no growth-induced irreversible expansion (GRO) during periods of stem shrinkage (= periods of TWD). Shaded areas indicate periods of GRO (when TWD is zero).
Fig. 3 Changes of air temperature, photosynthetically active radiation (PAR), precipitation (P), relative humidity (RH) and vapor pressure factor (VPD) in Guangxi Youyiguan Forest Ecosystem Research Station from 2018 to 2020. Tave, average air temperature; Tmax, maximum air temperature; Tmin, minimum air temperature.
Fig. 4 Cumulative daily stem radius variations (SRV), tree water deficit (TWD), daily growth-induced irreversible stem expansion (GROrate) and daily stem growth rates of Castanopsis hystrix from 2018 to 2020. C, Daily sums of growth-induced irreversible stem expansion calculated from a zero-growth (ZG) model (Zweifel, 2016). D, Daily stem growth rates of C. hystrix modeled with a Gompertz function for the years 2018-2020. Shaded areas indicate the standard error of the mean.
Fig. 5 Timing of growth onset and cessation, maximum growth rate and annual growth from 2018 to 2020 of Castanopsis hystrix in Guangxi. The boxplots show medians, the 25% and 75% quartiles, minimum and maximum values. ns, p > 0.05; *, p < 0.05. DOY, day of the year.
2018 | 2019 | 2020 | |
---|---|---|---|
生长开始时间 Start day of growth (DOY) | 92 ± 10.3 | 63 ± 2.0 | 82 ± 11.5 |
生长结束时间 End day of growth (DOY) | 298 ± 18.3 | 309 ± 16.1 | 266 ± 26.1 |
生长季长度 Growth season duration (d) | 207 ± 16.4 | 247 ± 10.4 | 186 ± 19.7 |
最大生长速率出现时间 Day of maximum growth (DOY) | 156 ± 5.5 | 159 ± 24.5 | 151 ± 8.7 |
最大生长速率 Maximum growth rate (μm) | 23.4 ± 5.7 | 30.1 ± 5.2 | 21.2 ± 5.0 |
年生长量 Annual growth (mm) | 4.4 ± 1.1 | 7.9 ± 1.9 | 4.0 ± 1.2 |
Table 2 Characteristics of the seasonal growth patterns of Castanopsis hystrix during 2018-2020 (mean ± SE, n = 4)
2018 | 2019 | 2020 | |
---|---|---|---|
生长开始时间 Start day of growth (DOY) | 92 ± 10.3 | 63 ± 2.0 | 82 ± 11.5 |
生长结束时间 End day of growth (DOY) | 298 ± 18.3 | 309 ± 16.1 | 266 ± 26.1 |
生长季长度 Growth season duration (d) | 207 ± 16.4 | 247 ± 10.4 | 186 ± 19.7 |
最大生长速率出现时间 Day of maximum growth (DOY) | 156 ± 5.5 | 159 ± 24.5 | 151 ± 8.7 |
最大生长速率 Maximum growth rate (μm) | 23.4 ± 5.7 | 30.1 ± 5.2 | 21.2 ± 5.0 |
年生长量 Annual growth (mm) | 4.4 ± 1.1 | 7.9 ± 1.9 | 4.0 ± 1.2 |
年份 Year | 径向生长量 GROrate (μm·d-1) | 树木水分亏缺 TWD (μm) | ||
---|---|---|---|---|
干季 Dry season | 湿季 Wet season | 干季 Dry season | 湿季 Wet season | |
2018 | 4.68 ± 2.98b | 23.69 ± 20.60ab | 31.82 ± 22.03b | 7.14 ± 4.08b |
2019 | 13.14 ± 9.59a | 27.63 ± 25.82a | 27.26 ± 14.94c | 7.59 ± 1.52b |
2020 | 2.84 ± 1.88b | 20.50 ± 15.86b | 48.08 ± 37.76a | 33.12 ± 26.13a |
Table 3 Growth-induced irreversible stem expansion and tree water deficit in dry and wet seasons during 2018-2020 of Castanopsis hystrix in Guangxi (mean ± SE, n = 4)
年份 Year | 径向生长量 GROrate (μm·d-1) | 树木水分亏缺 TWD (μm) | ||
---|---|---|---|---|
干季 Dry season | 湿季 Wet season | 干季 Dry season | 湿季 Wet season | |
2018 | 4.68 ± 2.98b | 23.69 ± 20.60ab | 31.82 ± 22.03b | 7.14 ± 4.08b |
2019 | 13.14 ± 9.59a | 27.63 ± 25.82a | 27.26 ± 14.94c | 7.59 ± 1.52b |
2020 | 2.84 ± 1.88b | 20.50 ± 15.86b | 48.08 ± 37.76a | 33.12 ± 26.13a |
Fig. 6 Correlation coefficients between normalized daily growth-induced irreversible stem expansion (GROrate), and tree water deficit-induced stem shrinkage (TWD) corresponding environmental variables for the years 2018-2020 of Castanopsis hystrix in Guangxi. *, p < 0.05; **, p < 0.01. P, precipitation; PAR, photosynthetic active radiation; RH, relative humidity; SWC10, soil water content at 10 cm depth; Tave, mean air temperature; Tmax, maximum air temperature; Tmin, minimum air temperature; TS10, soil temperature at 10 cm depth; VPD, vapor pressure deficit.
Fig. 7 Comparison between monthly sums of precipitation and monthly sums of daily growth-induced irreversible stem expansion (GROrate), and monthly sums of daily tree water deficit (TWD) of Castanopsis hystrix (mean ± SE).
Fig. 8 Moving-window correlations (21 days window) between normalized growth-induced irreversible stem expansion (GROrate) and tree water deficit (TWD) of Castanopsis hystrix in Guangxi, and the main environmental factors. Gray dashed lines represent the significance at the 0.05 level. The discontinuous line is caused by consecutive zero values. P, precipitation; PAR, photosynthetic active radiation; RH, relative humidity; SWC10, soil water content at 10 cm depth; Tmax, maximum air temperature; VPD, vapor pressure deficit.
Fig. 9 Principal component (PC) analysis of normalized growth-induced irreversible stem expansion (GROrate) and tree water deficit (TWD) and environmental factors during the main growing seasons of Castanopsis hystrix in Guangxi. P, precipitation; PAR, photosynthetic active radiation; RH, relative humidity; SWC, soil water content at 10 cm depth; Tave, mean air temperature; Tmax, maximum air temperature; Tmin, minimum air temperature; TS10, soil temperature at 10 cm depth; VPD, vapor pressure deficit.
降水指标 Precipitation index | 6月 June | 7月 July | 8月 August | |
---|---|---|---|---|
平均降水量 Mean precipitation sum per event (mm) | 11.0 | 14.3 | 9.5 | |
平均持续时间 Mean duration of precipitation events (h) | 5.2 | 5.0 | 5.7 | |
平均降雨强度 Mean intensity per event (mm·h-1) | 3.5 | 2.9 | 1.8 | |
不同降水量级事件数 Number of events per amount class | 5.0-9.9 mm | 2.0 | - | 5.0 |
10.0-19.9 mm | 3.0 | 1.0 | 2.0 | |
降雨事件总数 Total number of precipitation events | 5.0 | 1.0 | 7.0 | |
至少7天无降雨的干旱期 Dry periods with at least 7 days without precipitation | ||||
最长持续时间 Maximum duration (d) | 11.0 | 26.0 | 14.0 | |
平均持续时间 Mean duration (d) | 10.0 | 26.0 | 12.5 | |
干旱次数 Total number of dry periods | 2.0 | 1.0 | 2.0 |
Table 4 Characteristics of precipitation events and dry periods of 2020 (mean precipitation sum was calculated independent from the mean duration of the events)
降水指标 Precipitation index | 6月 June | 7月 July | 8月 August | |
---|---|---|---|---|
平均降水量 Mean precipitation sum per event (mm) | 11.0 | 14.3 | 9.5 | |
平均持续时间 Mean duration of precipitation events (h) | 5.2 | 5.0 | 5.7 | |
平均降雨强度 Mean intensity per event (mm·h-1) | 3.5 | 2.9 | 1.8 | |
不同降水量级事件数 Number of events per amount class | 5.0-9.9 mm | 2.0 | - | 5.0 |
10.0-19.9 mm | 3.0 | 1.0 | 2.0 | |
降雨事件总数 Total number of precipitation events | 5.0 | 1.0 | 7.0 | |
至少7天无降雨的干旱期 Dry periods with at least 7 days without precipitation | ||||
最长持续时间 Maximum duration (d) | 11.0 | 26.0 | 14.0 | |
平均持续时间 Mean duration (d) | 10.0 | 26.0 | 12.5 | |
干旱次数 Total number of dry periods | 2.0 | 1.0 | 2.0 |
[1] | Chan T, Hölttä T, Berninger F, Mäkinen H, Nöjd P, Mencuccini M, Nikinmaa E (2016). Separating water-potential induced swelling and shrinking from measured radial stem variations reveals a cambial growth and osmotic concentration signal. Plant, Cell & Environment, 39, 233-244. |
[2] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755. |
[3] |
Cuny HE, Rathgeber CBK, Lebourgeois F, Fortin M, Fournier M (2012). Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiology, 32, 612-625.
DOI PMID |
[4] | Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, Rathgeber CBK (2016). Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 73, 5-25. |
[5] |
Deslauriers A, Huang JG, Balducci L, Beaulieu M, Rossi S (2016). The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiology, 170, 2072-2084.
DOI PMID |
[6] | Deslauriers A, Morin H (2005). Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees, 19, 402-408. |
[7] | Deslauriers A, Morin H, Urbinati C, Carrer M (2003). Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17, 477-484. |
[8] | Deslauriers A, Rossi S, Anfodillo T (2007). Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25, 113-124. |
[9] |
Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008). Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 28, 863-871.
PMID |
[10] | Dong MY, Jiang Y, Yang HC, Wang MC, Zhang WT, Guo YY (2012). Dynamics of stem radial growth of Picea meyeri during the growing season at the treeline of Luya Mountain, China. Chinese Journal of Plant Ecology, 36, 956-964. |
[董满宇, 江源, 杨浩春, 王明昌, 张文涛, 郭媛媛 (2012). 芦芽山林线白杄生长季径向生长动态. 植物生态学报, 36, 956-964.]
DOI |
|
[11] |
Eilmann B, Zweifel R, Buchmann N, Graf Pannatier E, Rigling A (2011). Drought alters timing, quantity, and quality of wood formation in Scots pine. Journal of Experimental Botany, 62, 2763-2771.
DOI PMID |
[12] | Etzold S, Sterck F, Bose AK, Braun S, Buchmann N, Eugster W, Gessler A, Kahmen A, Peters RL, Vitasse Y, Walthert L, Ziemińska K, Zweifel R (2022). Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecology Letters, 25, 427-439. |
[13] | Fan ZX, Bräuning A, Fu P, Yang RQ, Qi JH, Grießinger J, Gebrekirstos A (2019). Intra-annual radial growth of Pinus kesiya var. langbianensis is mainly controlled by moisture availability in the Ailao Mountains, Southwestern China. Forests, 10, 899. DOI: 10.3390/f10100899. |
[14] | Forrest J, Miller-Rushing AJ (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3101-3112. |
[15] | Gao J, Yang B, He M, Shishov V (2019). Intra-annual stem radial increment patterns of Chinese pine, Helan Mountains, Northern Central China. Trees, 33, 751-763. |
[16] | Garnier E, Berger A (1986). Effect of water stress on stem diameter changes of peach trees growing in the field. Journal of Applied Ecology, 23, 193-209. |
[17] |
Gheyret G, Zhang HT, Guo Y, Liu TY, Bai YH, Li S, Schmid B, Bruelheide H, Ma K, Tang Z (2021). Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic and Applied Ecology, 55, 74-86.
DOI |
[18] | Guo XW, Liu SR, Wang H, Chen ZC, Zhang JL, Chen L, Nie XQ, Zheng L, Cai DX, Jia HY, Niu BL (2022). Divergent allocations of nonstructural carbohydrates shape growth response to rainfall reduction in two subtropical plantations. Forest Ecosystems, 9, 100021. DOI: 10.1016/j.fecs.2022.100021. |
[19] | Güney A, Zweifel R, Türkan S, Zimmermann R, Wachendorf M, Güney CO (2020). Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science, 77, 105. DOI: 10.1007/s13595-020-01007-2. |
[20] | Harvey JE, Smiljanić M, Scharnweber T, Buras A, Cedro A, Cruz-García R, Drobyshev I, Janecka K, Jansons Ā, Kaczka R, Klisz M, Läänelaid A, Matisons R, Muffler L, Sohar K, et al. (2020). Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Global Change Biology, 26, 2505-2518. |
[21] | Huang JG, Guo X, Rossi S, Zhai L, Yu B, Zhang S, Zhang M (2018). Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season. Tree Physiology, 38, 1225-1236. |
[22] | Huang J, Wang XM, Zheng MH, Mo JM (2021). 13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in southern China. Forest Ecology and Management, 481, 118748. DOI: 10.1016/j.foreco.2020.118748. |
[23] | Huang JG, Ma Q, Rossi S, Biondi F, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhang JL, Antonucci S, et al. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 117, 20645-20652. |
[24] | Knüsel S, Peters RL, Haeni M, Wilhelm M, Zweifel R (2021). Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests, 12, 765. DOI: 10.3390/f12060765. |
[25] |
Köcher P, Horna V, Leuschner C (2012). Environmental control of daily stem growth patterns in five temperate broad- leaved tree species. Tree Physiology, 32, 1021-1032.
DOI PMID |
[26] | Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016). Where, why and how? Explaining the low-temperature range limits of temperate tree species. Journal of Ecology, 104, 1076-1088. |
[27] | Larysch E, Stangler DF, Nazari M, Seifert T, Kahle HP (2021). Xylem phenology and growth response of European beech, silver fir and scots pine along an elevational gradient during the extreme drought year 2018. Forests, 12, 75. DOI: 10.3390/f12010075. |
[28] | Lewis S, Wheeler CE, Mitchard E, Koch A (2019). Regenerate natural forests to store carbon. Nature, 568, 25-28. |
[29] | Liu SL, Yang BG, Yao JF, Zheng L, Zhang P, Pang SJ, Liao SS, Zou WX (2020). Study on stem radial growth of Castanopsis hystrix in Guangxi. Journal of South China Agricultural University, 41(5), 82-90. |
[刘士玲, 杨保国, 姚建峰, 郑路, 张培, 庞圣江, 廖树寿, 邹位锡 (2020). 广西红椎树干径向生长研究. 华南农业大学学报, 41(5), 82-90.] | |
[30] | Liu XJ, Xu DP (2021). Characteristics of resource distribution, industry status and development proposal of precious tree species in Guangdong. Guangdong Agricultural Sciences, 48(7), 57-65. |
[刘小金, 徐大平 (2021). 广东省珍贵树种资源分布特点、产业现状与发展建议. 广东农业科学, 48(7), 57-65.] | |
[31] | Liu XS, Nie YQ, Wen F (2018). Seasonal dynamics of stem radial increment of Pinus taiwanensis Hayata and its response to environmental factors in the Lushan Mountains, southeastern China. Forests, 9, 387. DOI: 10.3390/f9070387. |
[32] | Lu M (2016). Monitoring Radial Growth of Three Conifer Species in the Eastern Qilian Mountains. Masters degree dissertation, Lanzhou University, Lanzhou. |
[路明 (2016). 祁连山东部不同针叶树种径向生长监测研究. 硕士学位论文, 兰州大学, 兰州.] | |
[33] | Mäkinen H, Seo JW, Nöjd P, Schmitt U, Jalkanen R (2008). Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. European Journal of Forest Research, 127, 235-245. |
[34] | Meng SW, Fu XL, Zhao B, Dai XQ, Li QK, Yang FT, Kou L, Wang HM (2021). Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees, 35, 1817-1830. |
[35] |
Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology, 32, 1033-1045.
DOI PMID |
[36] | Miller TW, Stangler DF, Larysch E, Honer H, Seifert T, Kahle HP (2022). A methodological framework to optimize models predicting critical dates of xylem phenology based on dendrometer data. Dendrochronologia, 72, 125940. DOI: 10.1016/j.dendro.2022.125940. |
[37] | Murray FW (1967). On the computation of saturation vapor pressure. Journal of Applied Meteorology, 6, 203-204. |
[38] | Niu HG, Zhang F, Yu AL, Wang F, Zhang JZ, Gou XH (2018). Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains. Acta Ecologica Sinica, 38, 7412-7420. |
[牛豪阁, 张芬, 于爱灵, 王放, 张军周, 勾晓华 (2018). 祁连山东部青杄年内径向生长动态对气候的响应. 生态学报, 38, 7412-7420.] | |
[39] |
Oberhuber W, Gruber A, Kofler W, Swidrak I (2014). Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner alpine site. European Journal of Forest Research, 133, 467-479.
PMID |
[40] | Oberhuber W, Hammerle A, Kofler W (2015). Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6, 703. DOI: 10.3389/fpls.2015.00703. |
[41] | Palacio S, Camarero JJ, Maestro M, Alla AQ, Lahoz E, Montserrat-Martí G (2018). Are storage and tree growth related? Seasonal nutrient and carbohydrate dynamics in evergreen and deciduous Mediterranean oaks. Trees, 32, 777-790. |
[42] |
Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist, 170, 301-310.
DOI PMID |
[43] | Sass-Klaassen U (2015). Tree physiology: tracking tree carbon gain. Nature Plants, 1, 15175. DOI: 10.1038/nplants.2015.175. |
[44] |
Steppe K, Sterck F, Deslauriers A (2015). Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20, 335-343.
DOI PMID |
[45] | Tian QY, He ZB, Xiao SC, Peng XM, Ding AJ, Lin PF (2017). Response of stem radial growth of Qinghai spruce (Picea crassifolia) to environmental factors in the Qilian Mountains of China. Dendrochronologia, 44, 76-83. |
[46] | Wan YF, Yu PT, Li XQ, Wang YH, Wang B, Yu YP, Zhang L, Liu XD, Wang SL (2020). Seasonal pattern of stem diameter growth of Qinghai spruce in the Qilian Mountains, northwestern China. Forests, 11, 494. DOI: 10.3390/f11050494. |
[47] | Wang YR, Liu ZB, Wang YH, Xiong W, Yu PT, Xu LH, Ma J (2020). Variation of stem radius of Larix principis- rupprechtii and its influencing factors in the semi-humid Liupan Mountains, China. Chinese Journal of Applied Ecology, 31, 3313-3321. |
[王亚蕊, 刘泽彬, 王彦辉, 熊伟, 于澎涛, 徐丽宏, 马菁 (2020). 六盘山半湿润区华北落叶松树干半径变化特征及其影响因素. 应用生态学报, 31, 3313-3321.]
DOI |
|
[48] | Wei XL, Fan ZX, Kaewmano A, Lin YX, Chen LM, Fu PL (2021). Intra-annual radial growth of Garuga floribunda in tropical seasonal rain forest and its response to environmental factors in Xishuangbanna, Southwest China. Chinese Journal of Applied Ecology, 32, 3567-3575. |
[韦小练, 范泽鑫, Kaewmano A, 林友兴, 陈礼敏, 付培立 (2021). 热带季节雨林多花白头树年内径向生长动态及其对环境因子的响应. 应用生态学报, 32, 3567-3575.]
DOI |
|
[49] |
Wu GX, He YR, Zhang W, Zhang XL (2022). Current situation and high-quality development strategies of national reserve forest construction in Guangxi. Guangxi Forestry Science, 51, 445-451.
DOI |
[吴国欣, 何彦然, 张伟, 张先来 (2022). 广西国家储备林建设现状及高质量发展策略. 广西林业科学, 51, 445-451.]
DOI |
|
[50] | Yang XH, Yang HX, Xu F, Liao HQ, Zhang WH, Xu B, Zhu BZ, Wang YX, Chen XY, Pan W (2021). Effect of different seedling containers on the growth and root system development of Castanopsis hystrix. Journal of Central South University of Forestry & Technology, 41(11), 16-26. |
[杨晓慧, 杨会肖, 徐放, 廖焕琴, 张卫华, 徐斌, 朱报著, 王裕霞, 陈新宇, 潘文 (2021). 不同育苗容器对红锥苗期生长及根系发育的影响. 中南林业科技大学学报, 41(11), 16-26.] | |
[51] | Zhang JZ (2018). Cambial Phenology and Intra-annual Radial Growth Dynamics of Conifers over the Qilian Mountains. PhD dissertation, Lanzhou University, Lanzhou. |
[张军周 (2018). 祁连山树木形成层活动及年内径向生长动态监测研究. 博士学位论文, 兰州大学, 兰州.] | |
[52] | Zweifel R, Item H, Häsler R (2000). Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15, 50-57. |
[53] |
Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57, 1445-1459.
PMID |
[54] | Zweifel R (2016). Radial stem variations—A source of tree physiological information not fully exploited yet. Plant, Cell & Environment, 39, 231-232. |
[55] |
Zweifel R, Sterck F, Braun S, Buchmann N, Eugster W, Gessler A, Häni M, Peters RL, Walthert L, Wilhelm M, Ziemińska K, Etzold S (2021). Why trees grow at night. New Phytologist, 231, 2174-2185.
DOI PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn