Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (2): 343-355.DOI: 10.17521/cjpe.2023.0363 cstr: 32100.14.cjpe.2023.0363
• Research Articles • Previous Articles Next Articles
WANG Kun-Ying1, QIU Gui-Fu4, LIU Zi-He1, MENG Jun1, LIU Yu-Xuan1, JIA Guo-Dong1,2,3,*()
Received:
2023-12-06
Accepted:
2024-09-18
Online:
2025-02-20
Published:
2025-02-20
Contact:
JIA Guo-Dong
Supported by:
WANG Kun-Ying, QIU Gui-Fu, LIU Zi-He, MENG Jun, LIU Yu-Xuan, JIA Guo-Dong. Climate change regulate tree growth and intrinsic water use efficiency of Populus simonii at different levels of degradation[J]. Chin J Plant Ecol, 2025, 49(2): 343-355.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0363
退化等级 Degradation level | 衰退树木比率 Rate of dieback trees (%) | 树高 Height (m) | 胸径 DBH (cm) | 叶面积指数 LAI | 密度 Density (·hm-2) | 采样点数量 (小区数量) Sites (subplots) | 海拔 Altitude (m) |
---|---|---|---|---|---|---|---|
正常生长 Normal growth | <20 | 13.88 ± 4.25a | 22.15 ± 2.25a | 2.06 ± 0.96a | 1 042 ± 532 | 9 (3) | 1 250-1 275 |
轻度退化 Mild degradation | 20-60 | 10.82 ± 2.25a | 17.62 ± 1.86a | 1.30 ± 0.53ab | 1 650 ± 839 | 9 (3) | 1 238-1 285 |
重度退化 Severe degradation | >60 | 8.95 ± 2.25b | 13.71 ± 1.64b | 0.98 ± 0.21c | 728 ± 230 | 9 (3) | 1 256-1 286 |
Table 1 Statistical information on sample plots of Populus simonii plantations at different levels of degradation (mean ± SD)
退化等级 Degradation level | 衰退树木比率 Rate of dieback trees (%) | 树高 Height (m) | 胸径 DBH (cm) | 叶面积指数 LAI | 密度 Density (·hm-2) | 采样点数量 (小区数量) Sites (subplots) | 海拔 Altitude (m) |
---|---|---|---|---|---|---|---|
正常生长 Normal growth | <20 | 13.88 ± 4.25a | 22.15 ± 2.25a | 2.06 ± 0.96a | 1 042 ± 532 | 9 (3) | 1 250-1 275 |
轻度退化 Mild degradation | 20-60 | 10.82 ± 2.25a | 17.62 ± 1.86a | 1.30 ± 0.53ab | 1 650 ± 839 | 9 (3) | 1 238-1 285 |
重度退化 Severe degradation | >60 | 8.95 ± 2.25b | 13.71 ± 1.64b | 0.98 ± 0.21c | 728 ± 230 | 9 (3) | 1 256-1 286 |
Fig. 4 Basal area increment (BAI) and intrinsic water use efficiency (iWUE) of Populus simonii at different degradation levels in Zhangbei (mean ± SD). Different uppercase letters indicate significant differences in iWUE between degradation levels, and different lowercase letters indicate significant differences in BAI between degradation levels (p < 0.05).
Fig. 5 Trends and comparisons of carbon stable isotope values of tree ring cellulose (δ13C) and 13C discrimination in the tree ring (Δ13C) changes in Populus simonii with different degradation levels in Zhangbei (mean ± SD). Significant differences (p < 0.05) in δ13C between different degrees of degradation are indicated by different uppercase letters, and significant differences (p < 0.05) in Δ13C between different degrees of degradation are indicated by different lowercase letters.
Fig. 6 Intercellular CO2 concentration (Ci) and the ratio of Ci to atmospheric CO2 concentration (Ca) in Populus simonii with different degradation levels. Significant differences (p < 0.05) in Ci between different degrees of degradation are indicated by different lowercase letters, and significant differences (p < 0.05) in Ci/Ca between different degrees of degradation are indicated by different uppercase letters.
Fig. 7 Correlation coefficients among basal area increment (BAI), intrinsic water use efficiency (iWUE) and inter-annual meteorological factors of Populus simonii with different degradation levels. * and ** represent significance levels less than 0.05 and 0.01, respectively. Figures A, B and C show BAI and iWUE correlations with pre-2000 meteorological factors, and Figures D, E and F show post-2000 meteorological factor correlations. BAIn, BAIm and BAIs represent BAI in normal, mild and severely degraded stands, respectively. P, precipitation; PDSI, Palmer drought severity index; RH, relative humidity; T, air temperature; VPD, vapor pressure deficit.
选取指标 Selection of indicators | 正常生长 Normal growth | 轻度退化 Mild degradation | 重度退化 Severe degradation | |||
---|---|---|---|---|---|---|
2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | |
T | 60.35 | 16.71 | 49.18 | 14.19 | 35.99 | 16.71 |
T+PDSI | 61.41 | 18.50 | 49.82 | 15.53 | 35.50 | 18.50 |
RH+PDSI | 59.31 | 14.75 | 59.31 | 16.63 | 43.72 | 17.99 |
P+T+PDSI | 63.14 | 20.46 | 51.53 | 17.44 | 36.87 | 20.46 |
T+RH+VPD+PDSI | 53.52 | 17.63 | 53.52 | 18.67 | 39.32 | 21.84 |
P+T+RH+VPD+PDSI | 67.07 | 19.61 | 55.32 | 20.66 | 40.74 | 23.80 |
Table 2 Akaike Information Criterion (AIC) values of stepwise regression between basal area increment (BAI) and meteorological factors for Populus simonii
选取指标 Selection of indicators | 正常生长 Normal growth | 轻度退化 Mild degradation | 重度退化 Severe degradation | |||
---|---|---|---|---|---|---|
2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | |
T | 60.35 | 16.71 | 49.18 | 14.19 | 35.99 | 16.71 |
T+PDSI | 61.41 | 18.50 | 49.82 | 15.53 | 35.50 | 18.50 |
RH+PDSI | 59.31 | 14.75 | 59.31 | 16.63 | 43.72 | 17.99 |
P+T+PDSI | 63.14 | 20.46 | 51.53 | 17.44 | 36.87 | 20.46 |
T+RH+VPD+PDSI | 53.52 | 17.63 | 53.52 | 18.67 | 39.32 | 21.84 |
P+T+RH+VPD+PDSI | 67.07 | 19.61 | 55.32 | 20.66 | 40.74 | 23.80 |
选取指标 Selection of indicators | 正常生长 Normal growth | 轻度退化 Mild degradation | 重度退化 Severe degradation | |||
---|---|---|---|---|---|---|
2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | |
PDSI | 56.09 | 40.80 | 73.23 | 58.40 | 78.36 | 59.71 |
T+PDSI | 58.06 | 40.39 | 45.22 | 60.36 | 77.94 | 59.23 |
T+VPD | 65.48 | 37.12 | 74.35 | 60.63 | 79.61 | 61.78 |
P+PDSI | 54.72 | 42.80 | 75.14 | 59.98 | 79.36 | 61.71 |
T+VPD+PDSI | 60.05 | 39.03 | 76.05 | 62.36 | 78.79 | 60.14 |
P+T+RH+PDSI | 58.19 | 44.33 | 78.27 | 63.90 | 80.80 | 63.14 |
P+T+RH+VPD+PDSI | 60.14 | 42.54 | 79.00 | 65.89 | 81.99 | 63.67 |
Table 3 Akaike Information Criterion (AIC) values of stepwise regression between intrinsic water use efficiency (iWUE) and meteorological factors for Populus simonii
选取指标 Selection of indicators | 正常生长 Normal growth | 轻度退化 Mild degradation | 重度退化 Severe degradation | |||
---|---|---|---|---|---|---|
2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | 2000年前 Pre-2000 | 2000年后 Post-2000 | |
PDSI | 56.09 | 40.80 | 73.23 | 58.40 | 78.36 | 59.71 |
T+PDSI | 58.06 | 40.39 | 45.22 | 60.36 | 77.94 | 59.23 |
T+VPD | 65.48 | 37.12 | 74.35 | 60.63 | 79.61 | 61.78 |
P+PDSI | 54.72 | 42.80 | 75.14 | 59.98 | 79.36 | 61.71 |
T+VPD+PDSI | 60.05 | 39.03 | 76.05 | 62.36 | 78.79 | 60.14 |
P+T+RH+PDSI | 58.19 | 44.33 | 78.27 | 63.90 | 80.80 | 63.14 |
P+T+RH+VPD+PDSI | 60.14 | 42.54 | 79.00 | 65.89 | 81.99 | 63.67 |
月份 Month | BAIn | BAIm | BAIs |
---|---|---|---|
1 | 0.18 | 0.24 | 0.26 |
2 | <0.01** | <0.01** | <0.01** |
3 | 0.26 | 0.28 | 0.22 |
4 | 0.23 | 0.22 | 0.19 |
5 | 0.20 | 0.19 | 0.16 |
6 | 0.04* | 0.04* | 0.29 |
7 | <0.01** | <0.01** | 0.27 |
8 | <0.01** | <0.01** | 0.04* |
9 | <0.01** | <0.01** | <0.01** |
10 | 0.11 | 0.05 | 0.01* |
11 | 0.20 | 0.23 | 0.20 |
12 | 0.06 | 0.01 | 0.12 |
Table 4 Effect of monthly mean air temperature on basal area increment (BAI) for Populus simonii
月份 Month | BAIn | BAIm | BAIs |
---|---|---|---|
1 | 0.18 | 0.24 | 0.26 |
2 | <0.01** | <0.01** | <0.01** |
3 | 0.26 | 0.28 | 0.22 |
4 | 0.23 | 0.22 | 0.19 |
5 | 0.20 | 0.19 | 0.16 |
6 | 0.04* | 0.04* | 0.29 |
7 | <0.01** | <0.01** | 0.27 |
8 | <0.01** | <0.01** | 0.04* |
9 | <0.01** | <0.01** | <0.01** |
10 | 0.11 | 0.05 | 0.01* |
11 | 0.20 | 0.23 | 0.20 |
12 | 0.06 | 0.01 | 0.12 |
[1] | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. |
[2] | Andreu-Hayles L, Planells O, Gutiérrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011). Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Global Change Biology, 17, 2095-2112. |
[3] | Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Korner C (2013). Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. Journal of Ecology, 101, 1509-1519. |
[4] | Bigler C, Veblen TT (2009). Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos, 118, 1130-1138. |
[5] | Boysen LR, Lucht W, Gerten D, Heck V, Lenton TM, Schellnhuber HJ (2017). The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future, 5, 463-474. |
[6] | Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008). Plantation forests and biodiversity: oxymoron or opportunity? Biodiversity and Conservation, 17, 925-951. |
[7] | Chen XJ, Yuan YJ, Chen F, Zhang RB, Zhang TW (2008). Analysis of tree-ring width chronology characteristics from eastern area on north slope of Tianshan Mountains. Journal of Desert Research, 28, 833-841. |
[陈向军, 袁玉江, 陈峰, 张瑞波, 张同文 (2008). 天山北坡东部地区树轮宽度年表特征分析. 中国沙漠, 28, 833-841.] | |
[8] | Cowan IR (1978). Stomatal behaviour and environment. Advances in Botanical Research, 4, 117-228. |
[9] | Du MM, Zhang F, Gou XH, Liu LY, Xia JQ, Wu XP (2022). Different responses of radial growth of Picea crassifolia to climate warming in the middle and eastern Qilian Mountains. Journal of Glaciology and Geocryology, 44(1), 14-23. |
[杜苗苗, 张芬, 勾晓华, 刘兰娅, 夏敬清, 吴秀平 (2022). 祁连山中东部青海云杉径向生长对气候变暖的响应差异. 冰川冻土, 44(1), 14-23.]
DOI |
|
[10] | Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJE, van Oosterzee P, MacKenzie J, Morning HS, Burrows D (2017). Large-scale dieback of mangroves in Australia. Marine and Freshwater Research, 68, 1816-1829. |
[11] | Fang SZ (2008). Silviculture of poplar plantation in China: a review. Chinese Journal of Applied Ecology, 19, 2308-2316. |
[方升佐 (2008). 中国杨树人工林培育技术研究进展. 应用生态学报, 19, 2308-2316.] | |
[12] | Farquhar GD, And JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537. |
[13] | Farquhar GD, O’Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology, 9, 121-137. |
[14] | Fernández ME, Gyenge J, Schlichter T (2009). Water flux and canopy conductance of natural versus planted forests in Patagonia, South America. Trees, 23, 415-427. |
[15] |
Granda E, Rossatto DR, Camarero JJ, Voltas J, Valladares F (2014). Growth and carbon isotopes of Mediterranean trees reveal contrasting responses to increased carbon dioxide and drought. Oecologia, 174, 307-317.
DOI PMID |
[16] | Griffis TJ (2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174, 85-109. |
[17] | Guariguata MR, Ostertag R (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185-206. |
[18] | Guo D, Kasim T, Wu XL, Zhang TW, Wang ZP, Abudureheman R, Ayimuguli S (2022). Applicability of four meteorological drought indices in Xinjiang. Desert and Oasis Meteorology, 16(3), 90-101. |
[郭冬, 吐尔逊·哈斯木, 吴秀兰, 张同文, 王兆鹏, 如先古丽·阿不都热合曼, 阿依姆古丽·赛麦提 (2022). 四种气象干旱指数在新疆区域适用性研究. 沙漠与绿洲气象, 16(3), 90-101.] | |
[19] | Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007). Response of forest trees to increased atmospheric CO2. Critical Reviews in Plant Sciences, 26, 265-283. |
[20] | Jump AS, Hunt JM, Peñuelas J (2006). Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12, 2163-2174. |
[21] | Kharuk VI, Ranson KJ, Oskorbin PA, Im ST, Dvinskaya ML (2013). Climate induced birch mortality in Trans-Baikal lake region, Siberia. Forest Ecology and Management, 289, 385-392. |
[22] | Kimak A, Leuenberger M (2015) Are carbohydrate storage strategies of trees traceable by early-latewood carbon isotope differences? Trees, 29, 859-870. |
[23] | Körner C (2006). Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172, 393-411. |
[24] | Kwak JH, Lim SS, Lee KS, Viet HD, Matsushima M, Lee KH Jung K, Kim HY, Lee SM, Chang S, Choi WJ (2016). Temperature and air pollution affected tree ring δ13C and water-use efficiency of pine and oak trees under rising CO2 in a humid temperate forest. Chemical Geology, 420, 127-138. |
[25] |
Lavergne A, Voelker S, Csank A, Graven H, de Boer HJ, Daux V, Robertson I, Dorado-Liñán I, Martínez-Sancho E, Battipaglia G, Bloomfield KJ, Still CJ, Meinzer FC, Dawson TE, Camarero J, et al. (2020). Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytologist, 225, 2484-2497.
DOI PMID |
[26] | Leavitt SW (2010). Tree-ring C-H-O isotope variability and sampling. Science of the Total Environment, 408, 5244-5253. |
[27] |
Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A (2014). Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist, 203, 94-109.
DOI PMID |
[28] | Li S, Luo YQ, Wu J, Zong SX, Yao GL, Li Y, Liu YM, Zhang YR (2009). Community structure and biodiversity in plantations and natural forests of seabuckthorn in southern Ningxia, China. Forestry Studies in China, 11, 49-54. |
[29] | Liu N, Sun PS, Liu SR (2012). Research advances in simulating land water-carbon coupling. Chinese Journal of Applied Ecology, 23, 3187-3196. |
[刘宁, 孙鹏森, 刘世荣 (2012). 陆地水-碳耦合模拟研究进展. 应用生态学报, 23, 3187-3196.] | |
[30] | Liu XH, Wang WZ, Xu GB, Zeng XM, Wu GJ, Zhang XW, Qin DH (2014). Tree growth and intrinsic water-use efficiency of inland riparian forests in northwestern China:evaluation via δ13C and δ18O analysis of tree rings. Tree Physiology, 34, 966-980. |
[31] | Liu Y, Li P, Shen B, Feng ZH, Liu Q, Zhang Y (2017). Effects of drought stress on Bothriochloa ischaemum water-use efficiency based on stable carbon isotope. Acta Ecologica Sinica, 37, 3055-3064. |
[刘莹, 李鹏, 沈冰, 冯朝红, 刘琦, 张祎 (2017). 采用稳定碳同位素法分析白羊草在不同干旱胁迫下的水分利用效率. 生态学报, 37, 3055-3064.] | |
[32] | Lucarini V, Ragone F, Lunkeit F (2017). Predicting climate change using response theory: global averages and spatial patterns. Journal of Statistical Physics, 166, 1036-1064. |
[33] |
Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014). A new look at water transport regulation in plants. New Phytologist, 204, 105-115.
DOI PMID |
[34] |
Maseyk K, Hemming D, Angert A, Leavitt SW, Yakir D (2011). Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. Oecologia, 167, 573-585.
DOI PMID |
[35] | Matsuo K, Heki K (2012). Anomalous precipitation signatures of the Arctic Oscillation in the time-variable gravity field by GRACE. Geophysical Journal International, 190, 1495-1506. |
[36] | Nardini A, Casolo V, Dal Borgo A, Savi T, Stenni B, Bertoncin P, Zini LC, McDowell NG (2016). Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant, Cell & Environment, 39, 618-627. |
[37] |
Oishi AC, Miniat CF, Novick KA, Brantley ST, Vose JM, Walker JT (2018). Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agricultural and Forest Meteorology, 252, 269-282.
DOI PMID |
[38] | Peñuelas J, Canadell JG, Ogaya R (2011). Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography, 20, 597-608. |
[39] | Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008). Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology, 14, 1076-1088. |
[40] |
Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323, 1344-1347.
DOI PMID |
[41] | Resco V, Ferrio JP, Carreira JA, Calvo L, Casals P, Ferrero-Serrano Á, Marcos E, Moreno JM, Ramírez DA, Sebastià MT, Valladares F, Williams DG (2011). The stable isotope ecology of terrestrial plant succession. Plant Ecology & Diversity, 4, 117-130. |
[42] | Saurer M, Siegwolf RT, Schweingruber FH (2004). Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology, 10, 2109-2120. |
[43] | Shen XJ, Liu BH, Xue ZS, Jiang M, Lu XG, Zhang Q (2019). Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Science of the Total Environment, 666, 1169-1177. |
[44] | Sun LB (2021). Study on Degradation Mechanism of Populus simonii Plantation in Bashang Area. PhD dissertation, Beijing Forestry University. Beijing. |
[孙立博 (2021). 坝上地区小叶杨人工林退化机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[45] | Sun LB, Chang XM, Yu XX, Jia GD, Chen LH, Liu ZQ, Zhu XH (2019). Precipitation and soil water thresholds associated with drought-induced mortality of farmland shelter forests in a semi-arid area. Agriculture, Ecosystems & Environment, 284, 106595. DOI: 10.1016/j.agee.2019.106595. |
[46] | Sun SJ, Li CY, He CX, Zhang JS, Meng P (2017). Retrospective analysis of the poplar plantation degradation based on stable carbon isotope of tree rings in Zhangbei County, Hebei, China. Chinese Journal of Applied Ecology, 28, 2119-2127. |
[孙守家, 李春友, 何春霞, 张劲松, 孟平 (2017). 基于树轮稳定碳同位素的张北杨树防护林退化原因解析. 应用生态学报, 28, 2119-2127.]
DOI |
|
[47] | van der Sleen P, Groenendijk P, Vlam M, Anten NPR, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA (2015). No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience, 8, 24-28. |
[48] |
Voelker SL, Brooks JR, Meinzer FC, Anderson R, Bader MKF, Battipaglia G, Becklin KM, Beerling D, Bert D, Betancourt JL, Dawson TE, Domec JC, Guyette RP, Körner C, Leavitt SW, et al. (2016). A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Global Change Biology, 22, 889-902.
DOI PMID |
[49] | Voelker SL, Muzika RM, Guyette RP, Stambaugh MC (2006). Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecological Monographs, 76, 549-564. |
[50] | Voltas J, Camarero JJ, Carulla D, Aguilera M, Ortiz A, Ferrio JP (2013). A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell & Environment, 36, 1435-1448. |
[51] | Wang WZ, Liu XH, An WL, Xu GB, Zeng XM (2012). Increased intrinsic water-use efficiency during a period with persistent decreased tree radial growth in Northwestern China: causes and implications. Forest Ecology and Management, 275, 14-22. |
[52] | Wang WZ, McDowell NG, Pennington S, Grossiord C, Leff RT, Sengupta A, Ward ND, Sezen UU, Rich R, Megonigal JP, Stegen JC, Bond-Lamberty B, Bailey V (2020). Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest. Agricultural and Forest Meteorology, 295, 108163. DOI: 10.1016/j.agrformet.2020.108163. |
[53] | Wehr R, Commane R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Saleska SR, Wofsy SC (2017). Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences, 14, 389-401. |
[54] | Wei J, Ma ZG (2003). Comparison of Palmer drought index, surface wetness index and precipitation anomaly. Acta Geographica Sinica, 58(S1), 117-124. |
[卫捷, 马柱国 (2003). Palmer干旱指数、地表湿润指数与降水距平的比较. 地理学报, 58(S1), 117-124.] | |
[55] | Wei JS, Li ZS, Feng XY, Zhang Y, Chen WL, Wu X, Jiao L, Wang XC (2018). Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: a review. Chinese Journal of Applied Ecology, 29, 2433-2444. |
[韦景树, 李宗善, 冯晓玙, 张园, 陈维梁, 伍星, 焦磊, 王晓春 (2018). 黄土高原人工刺槐林生长衰退的生态生理机制. 应用生态学报, 29, 2433-2444.]
DOI |
|
[56] | Wei P, Xu L, Pan XB, Hu Q, Li QY, Zhang XT, Shao CX, Wang CC, Wang XX (2020). Spatio-temporal variations in vegetation types based on a climatic grassland classification system during the past 30 years in Inner Mongolia, China. Catena, 185, 104298. DOI: 10.1016/j.catena.2019.104298. |
[57] | Wu GJ, Liu XH, Chen T, Xu GB, Wang WZ, Zeng XM, Wang B, Zhang XW (2015). Long-term variation of tree growth and intrinsic water-use efficiency in Schrenk spruce with increasing CO2 concentration and climate warming in the western Tianshan Mountains, China. Acta Physiologiae Plantarum, 37, 150. DOI: 10.1007/s11738-015-1903-y. |
[58] | Zadworny M, Jagodziński AM, Łakomy P, Mucha J, Oleksyn J, Rodríguez-Calcerrada J, Ufnalski K (2019). Regeneration origin affects radial growth patterns preceding oak decline and death—Insights from tree-ring δ13C and δ18O. Agricultural and Forest Meteorology, 278, 107685. DOI: 10.1016/j.agrformet.2019.107685. |
[59] | Zhu JJ, Zheng X (2019). The prospects of development of the Three-North Afforestation Program (TNAP): on the basis of the results of the 40-year construction general assessment of the TNAP. Chinese Journal of Ecology, 38, 1600-1610. |
[朱教君, 郑晓 (2019). 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果. 生态学杂志, 38, 1600-1610.] |
[1] | Mei FENG Sheng-Nan OUYANG Matthias Saurer Mai-He LI Xiaoqian Zhou Liehua TIE Weijun Shen Honglang Duan Arthur Gessler. Effects of previous nitrogen addition on aboveground and belowground carbon and nitrogen allocation dynamics in drought-exposed sessile oak seedlings [J]. Chin J Plant Ecol, 2025, 49(预发表): 1-0. |
[2] | Jianlin Ding Xiao-ming Li Qi-hua He. A dataset of species composition and community characteristics in a long-term biological monitoring plot of montane coniferous plantations in southwest China [J]. Chin J Plant Ecol, 2025, 49(典型生态系统数据集): 0-0. |
[3] | 兴权 饶 Yongbiao Lin. A dataset of species composition and community characteristics of long-term monitoring plot in Acacia mangium plantation in Heshan Station from 2005 to 2010. [J]. Chin J Plant Ecol, 2025, 49(典型生态系统数据集): 0-0. |
[4] | Ke-Yan LIU Lu HAN Wu-Ye SONG ChuRui Zhang Xu HU Hang Xu Lin-Xin Lin-Xin CHENCHEN. Detection of drought effects on photosynthetic stability of vegetation on the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2025, 49(3): 415-431. |
[5] | SHAO Chang-Chang, DUAN Hong-Lang, ZHAO Xi-Zhou, DING Gui-Jie. Research progress on the prediction of drought death point and the mechanism of drought- induced tree mortality [J]. Chin J Plant Ecol, 2025, 49(2): 221-231. |
[6] | SUN Jia-Mei, AN Bing-Er, LIU Wei, WANG Jing, PAN Qing-Min. Propagule regulation technique in grasslands: cultivation and transplantation of “propagule island” [J]. Chin J Plant Ecol, 2025, 49(1): 129-137. |
[7] | WANG Yin, TONG Xiao-Juan, ZHANG Jin-Song, LI Jun, MENG Ping, LIU Pei-Rong, ZHANG Jing-Ru. Impact of drought on carbon and water fluxes and their coupling in a Quercus variabilis plantation [J]. Chin J Plant Ecol, 2024, 48(9): 1157-1171. |
[8] | WU Feng-Yan, WU Yong-Sheng, CHEN Xiao-Han, FENG Ji, LU Li-Yuan, CHASINA , WANG Chao-Yu, MENG Yuan-Fa, YIN Qiang. Spatial-temporal variation of water use efficiency in three species of sand-fixing shrubs on the Ordos Plateau [J]. Chin J Plant Ecol, 2024, 48(9): 1180-1191. |
[9] | TONG Yu-Qiang, WU Meng-Ge, WANG Ling, ZHAO Shi, HAN Xu, ZHANG Tong, LIU Jing, QIN Sheng-Jin, DONG Ying-Hao, WEI Ya-Wei, ZHOU Yong-Bin. Transpiration estimates in Pinus sylvestris var. mongolica plantation based on the radial pattern of sap flow and its influencing factors [J]. Chin J Plant Ecol, 2024, 48(9): 1118-1127. |
[10] | ZHOU Hong-Juan, LIU Zi-He, LIU Ke-Yan, ZHANG Chu-Rui, HU Xu, HAN Lu, CHEN Li-Xin. Water uptake and niche characteristics of neighboring plants for arbors and shrubs under different rainfall conditions in a rocky mountainous area, Beijing [J]. Chin J Plant Ecol, 2024, 48(9): 1089-1103. |
[11] | SHI Qian, TONG Xiao-Juan, XU Ling-Ling, MENG Ping, YU Pei-Yang, LI Jun, YANG Ming-Xin. Response of radial growth of early and late wood of planted Pinus tabuliformis to climate variables [J]. Chin J Plant Ecol, 2024, 48(8): 988-1000. |
[12] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[13] | ZHANG Peng, JIAO Liang, XUE Ru-Hong, WEI Meng-Yuan, DU Da-Shi, WU Xuan, WANG Xu-Ge, LI Qian. Drought intensity affected the growth recovery of Picea crassifolia across different altitudes in western Qilian Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 977-987. |
[14] | DONG Yun-Tao, JIA Heng-Feng, YANG Jing, LI Pei-Xuan, FANG Ou-Ya. Reconstruction of disturbance history on Juniperus przewalskii forests in middle Qilian Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 967-976. |
[15] | LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect [J]. Chin J Plant Ecol, 2024, 48(7): 817-827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn