Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (2): 244-255.DOI: 10.17521/cjpe.2024.0211 cstr: 32100.14.cjpe.2024.0211
• Research Articles • Previous Articles Next Articles
ZHENG Lin-Min, XIONG Xiao-Ling, JIANG Yong-Meng, WANG Man, ZHANG Jin-Xiu, ZENG Zhi-Wei, LYU Mao-Kui*(), XIE Jin-Sheng
Received:
2024-07-01
Accepted:
2024-12-24
Online:
2025-02-20
Published:
2025-02-20
Contact:
LYU Mao-Kui
Supported by:
ZHENG Lin-Min, XIONG Xiao-Ling, JIANG Yong-Meng, WANG Man, ZHANG Jin-Xiu, ZENG Zhi-Wei, LYU Mao-Kui, XIE Jin-Sheng. Decomposition regularities of leaf litter and fine roots of Cunninghamia lanceolata and their divergent drivers at different altitudes in the Wuyi Mountain[J]. Chin J Plant Ecol, 2025, 49(2): 244-255.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0211
凋落物类型 Litter type | 碳含量 Carbon content (g·kg-1) | 氮含量 Nitrogen content (g·kg-1) | 磷含量 Phosphorus content (g·kg-1) | 可萃取物含量 Extractive content (%) | 纤维素含量 Cellulose content (%) | 木质素含量 Lignin content (%) |
---|---|---|---|---|---|---|
凋落叶 Leaf litter | 482.06 ± 3.90 | 5.59 ± 0.14 | 0.50 ± 0.00 | 48.20 ± 0.34 | 21.23 ± 0.13 | 30.57 ± 0.23 |
细根 Fine root | 452.22 ± 2.56 | 6.80 ± 0.11 | 0.45 ± 0.00 | 35.82 ± 0.52 | 26.91 ± 0.55 | 37.39 ± 0.17 |
Table 1 Initial chemical composition of leaf litter and fine root of Cunninghamia lanceolata (mean ± SE, n = 4)
凋落物类型 Litter type | 碳含量 Carbon content (g·kg-1) | 氮含量 Nitrogen content (g·kg-1) | 磷含量 Phosphorus content (g·kg-1) | 可萃取物含量 Extractive content (%) | 纤维素含量 Cellulose content (%) | 木质素含量 Lignin content (%) |
---|---|---|---|---|---|---|
凋落叶 Leaf litter | 482.06 ± 3.90 | 5.59 ± 0.14 | 0.50 ± 0.00 | 48.20 ± 0.34 | 21.23 ± 0.13 | 30.57 ± 0.23 |
细根 Fine root | 452.22 ± 2.56 | 6.80 ± 0.11 | 0.45 ± 0.00 | 35.82 ± 0.52 | 26.91 ± 0.55 | 37.39 ± 0.17 |
海拔 Altitude (m) | 坡向 Aspect of slope | 坡度 Slope (°) | 土壤类型 Soil type | 年平均气温 Annual average air temperature (℃) | 年降水量 Annual precipitation (mm) | 土壤含水量 Soil water content (%) |
---|---|---|---|---|---|---|
200 | 东南 Southeast | 25 | 红壤 Red soil | 18.85 | 2 411 | 10.18 |
700 | 东南 Southeast | 35 | 黄红壤 Yellow-red soil | 16.74 | 2 374 | 14.74 |
1 200 | 东南 Southeast | 24 | 黄壤 Yellow soil | 14.65 | 2 481 | 15.00 |
Table 2 Basic information of pure forests of Cunninghamia lanceolata at different altitudes in the Wuyi Mountain
海拔 Altitude (m) | 坡向 Aspect of slope | 坡度 Slope (°) | 土壤类型 Soil type | 年平均气温 Annual average air temperature (℃) | 年降水量 Annual precipitation (mm) | 土壤含水量 Soil water content (%) |
---|---|---|---|---|---|---|
200 | 东南 Southeast | 25 | 红壤 Red soil | 18.85 | 2 411 | 10.18 |
700 | 东南 Southeast | 35 | 黄红壤 Yellow-red soil | 16.74 | 2 374 | 14.74 |
1 200 | 东南 Southeast | 24 | 黄壤 Yellow soil | 14.65 | 2 481 | 15.00 |
微生物类群 Microbial type | 磷脂脂肪酸标志物 Phospholipid fatty acid signatures | |
---|---|---|
细菌 Bacteria | 常见细菌 Common bacteria | 12:0, 14:0, 15:0, 17:0, 20:0 |
革兰氏阳性菌 Gram-positive bacteria | 16:0, 18:0, 16:0 2OH, a13:0, a15:0, a17:0, i13:0, i14:0, i15:0, i16:0 | |
放线菌 Actinomycetes | 10Me 16:0, 10Me 17:0,10Me 18:0, i17:0 | |
革兰氏阴性菌 Gram-negative bacteria | 14:1ω5c, 16:1ω7c, 18:1ω7c, 18:1ω9c, cy17:0, 10Me17:1ω7c | |
真菌 Fungi | 常见真菌 Common fungi | 18:1ω9c, 18:2ω6c, 18:3ω3c |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 16:1ω5c |
Table 3 Identifier of phospholipid fatty acids
微生物类群 Microbial type | 磷脂脂肪酸标志物 Phospholipid fatty acid signatures | |
---|---|---|
细菌 Bacteria | 常见细菌 Common bacteria | 12:0, 14:0, 15:0, 17:0, 20:0 |
革兰氏阳性菌 Gram-positive bacteria | 16:0, 18:0, 16:0 2OH, a13:0, a15:0, a17:0, i13:0, i14:0, i15:0, i16:0 | |
放线菌 Actinomycetes | 10Me 16:0, 10Me 17:0,10Me 18:0, i17:0 | |
革兰氏阴性菌 Gram-negative bacteria | 14:1ω5c, 16:1ω7c, 18:1ω7c, 18:1ω9c, cy17:0, 10Me17:1ω7c | |
真菌 Fungi | 常见真菌 Common fungi | 18:1ω9c, 18:2ω6c, 18:3ω3c |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 16:1ω5c |
200 m | 700 m | 1 200 m | |
---|---|---|---|
土壤酸碱度 Soil pH | 5.05 ± 0.16A | 4.86 ± 0.11A | 4.23 ± 0.01B |
土壤有机碳含量 SOC (g·kg−1) | 26.14 ± 1.62B | 50.53 ± 3.25A | 53.31 ± 3.60A |
土壤总氮含量 TN (g·kg−1) | 1.90 ± 0.15B | 3.15 ± 0.17A | 2.62 ± 0.19A |
土壤总磷含量 TP (g·kg−1) | 0.39 ± 0.01A | 0.32 ± 0.01B | 0.28 ± 0.01C |
土壤总碳氮比 C:N | 13.76 ± 0.41C | 16.08 ± 0.39B | 20.35 ± 0.75A |
可溶性有机碳含量 DOC (mg·kg−1) | 87.55 ± 10.10C | 201.28 ± 7.19B | 353.17 ± 28.77A |
可溶性有机氮含量 DON (mg·kg−1) | 4.40 ± 0.64B | 5.98 ± 0.24B | 12.73 ± 1.94A |
矿质氮含量 MN (mg·kg−1) | 28.36 ± 1.07B | 33.25 ± 0.58A | 29.77 ± 1.88AB |
革兰氏阳性菌生物量 GP (nmol·g−1) | 24.09 ± 0.50A | 28.47 ± 2.80A | 22.94 ± 0.93A |
革兰氏阴性菌生物量 GN (nmol·g−1) | 29.55 ± 0.52B | 43.71 ± 4.50A | 33.15 ± 1.90B |
真菌生物量 Fungi biomass (nmol·g−1) | 8.46 ± 0.34B | 12.76 ± 1.07A | 15.25 ± 1.34A |
总微生物生物量 Total PLFAs (nmol·g−1) | 75.25 ± 1.20B | 101.63 ± 8.93A | 84.65 ± 4.17AB |
GP:GN | 0.89 ± 0.01A | 0.71 ± 0.02B | 0.74 ± 0.00B |
F:B | 0.15 ± 0.01B | 0.18 ± 0.02B | 0.27 ± 0.02A |
Table 4 Properties of soil and microbial community at different altitudes (mean ± SE, n = 4)
200 m | 700 m | 1 200 m | |
---|---|---|---|
土壤酸碱度 Soil pH | 5.05 ± 0.16A | 4.86 ± 0.11A | 4.23 ± 0.01B |
土壤有机碳含量 SOC (g·kg−1) | 26.14 ± 1.62B | 50.53 ± 3.25A | 53.31 ± 3.60A |
土壤总氮含量 TN (g·kg−1) | 1.90 ± 0.15B | 3.15 ± 0.17A | 2.62 ± 0.19A |
土壤总磷含量 TP (g·kg−1) | 0.39 ± 0.01A | 0.32 ± 0.01B | 0.28 ± 0.01C |
土壤总碳氮比 C:N | 13.76 ± 0.41C | 16.08 ± 0.39B | 20.35 ± 0.75A |
可溶性有机碳含量 DOC (mg·kg−1) | 87.55 ± 10.10C | 201.28 ± 7.19B | 353.17 ± 28.77A |
可溶性有机氮含量 DON (mg·kg−1) | 4.40 ± 0.64B | 5.98 ± 0.24B | 12.73 ± 1.94A |
矿质氮含量 MN (mg·kg−1) | 28.36 ± 1.07B | 33.25 ± 0.58A | 29.77 ± 1.88AB |
革兰氏阳性菌生物量 GP (nmol·g−1) | 24.09 ± 0.50A | 28.47 ± 2.80A | 22.94 ± 0.93A |
革兰氏阴性菌生物量 GN (nmol·g−1) | 29.55 ± 0.52B | 43.71 ± 4.50A | 33.15 ± 1.90B |
真菌生物量 Fungi biomass (nmol·g−1) | 8.46 ± 0.34B | 12.76 ± 1.07A | 15.25 ± 1.34A |
总微生物生物量 Total PLFAs (nmol·g−1) | 75.25 ± 1.20B | 101.63 ± 8.93A | 84.65 ± 4.17AB |
GP:GN | 0.89 ± 0.01A | 0.71 ± 0.02B | 0.74 ± 0.00B |
F:B | 0.15 ± 0.01B | 0.18 ± 0.02B | 0.27 ± 0.02A |
Fig. 1 Dry mass remaining rate of leaf litter and fine root of Cunninghamia lanceolata at different altitudes in the Wuyi Mountain (mean ± SE, n = 4). L, leaf litter; R, fine root. Different uppercase letters indicate the dry mass remaining rate of the same litter significant differences among different altitudes (p < 0.05); * indicates that the dry mass remaining rate is a significant difference between leaf litter and fine root at the same altitude. *, p < 0.05; **, p < 0.01.
凋落物类型 Litter type | 海拔 Altitude (m) | Olson负指数方程 Olson negative exponential equation | 分解系数 Decomposition coefficient (k) | R2 | 半分解时间 T0.50 (a) | 分解95%时间 T0.95 (a) |
---|---|---|---|---|---|---|
凋落叶 Leaf litter | 200 | y = 103.55e-0.62t | 0.62Aa | 0.98 | 1.11Bb | 4.82Bb |
700 | y = 98.65e-0.41t | 0.41Ba | 0.94 | 1.70Ab | 7.35Ab | |
1 200 | y = 95.04e-0.39t | 0.39Ba | 0.99 | 1.79Ab | 7.72Ab | |
细根 Fine root | 200 | y = 98.74e-0.38t | 0.38Ab | 0.99 | 1.83Ca | 7.92Ca |
700 | y = 95.49e-0.25t | 0.25Bb | 0.98 | 2.83Ba | 12.23Ba | |
1 200 | y = 92.96e-0.20t | 0.20Bb | 0.97 | 3.53Aa | 15.24Aa |
Table 5 Exponential regression equation of dry mass remaining (y, %) as a function of leaf litter of Cunninghamia lanceolata and fine root decomposition to time (t) at different altitudes
凋落物类型 Litter type | 海拔 Altitude (m) | Olson负指数方程 Olson negative exponential equation | 分解系数 Decomposition coefficient (k) | R2 | 半分解时间 T0.50 (a) | 分解95%时间 T0.95 (a) |
---|---|---|---|---|---|---|
凋落叶 Leaf litter | 200 | y = 103.55e-0.62t | 0.62Aa | 0.98 | 1.11Bb | 4.82Bb |
700 | y = 98.65e-0.41t | 0.41Ba | 0.94 | 1.70Ab | 7.35Ab | |
1 200 | y = 95.04e-0.39t | 0.39Ba | 0.99 | 1.79Ab | 7.72Ab | |
细根 Fine root | 200 | y = 98.74e-0.38t | 0.38Ab | 0.99 | 1.83Ca | 7.92Ca |
700 | y = 95.49e-0.25t | 0.25Bb | 0.98 | 2.83Ba | 12.23Ba | |
1 200 | y = 92.96e-0.20t | 0.20Bb | 0.97 | 3.53Aa | 15.24Aa |
Fig. 2 Carbon (C), nitrogen (N) and phosphorus (P) content of leaf litter and fine root of Cunninghamia lanceolata at different altitudes (mean ± SE, n = 4). L, leaf litter; R, fine root. Different uppercase letters indicate the C, N, P content of the same litter significant differences among different altitudes (p < 0.05); * indicates that the C, N, P content are significant differences between leaf litter and fine root at the same altitude. *, p < 0.05; **, p < 0.01; ns, p > 0.05.
Fig. 3 Carbon (C), nitrogen (N) and phosphorus (P) remaining rate of leaf litter and fine root of Cunninghamia lanceolata at different altitudes (mean ± SE, n = 4). L, leaf litter; R, fine root. Different uppercase letters indicate the C, N, P remaining rate of the same litter significant differences among different altitudes (p < 0.05); * indicates that the C, N, P remaining rate are significant differences between leaf litter and fine root at the same altitude. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
Fig. 4 Extractive, cellulose and lignin remaining rate of leaf litter and fine root of Cunninghamia lanceolata at different altitudes (mean ± SE, n = 4). L, leaf litter; R, fine root. Different uppercase letters indicate the extractive, cellulose, lignin remaining rate of the same litter significant differences among different altitudes (p < 0.05); * indicates that the extractive, cellulose, lignin remaining rate are significant differences between leaf litter and fine root at the same altitude. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
Fig. 5 Correlation (r) of dry mass, nitrogen (N), phosphorus (P) and lignin remaining rate of leaf litter and fine root of Cunninghamia lanceolata with environmental factors. C:N, soil total carbon to nitrogen ratio; DOC, dissolved organic carbon content; DON, dissolved organic nitrogen content; Fungi, fungi biomass; F:B, fungi biomass to bacteria biomass ratio; GP:GN, gram positive biomass to gram negative biomass ratio; SM, soil moisture; SOC, soil organic carbon content; T, air temperature; TN, total nitrogen content; TP, total phosphorus content. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 4.
Fig. 6 Variance partitioning analysis of environmental factors and decomposition of litter. A, Leaf litter. B, Fine root. DOC, dissolved organic carbon content; DON, dissolved organic nitrogen content; Fungi, fungi biomass; F:B, fungi biomass to bacteria biomass ratio; GP:GN, gram positive biomass to gram negative biomass ratio; SM, soil moisture; SOC, soil organic carbon content; T, air temperature; TN, total nitrogen content; TP, total phosphorus content.
[1] | Berg B, Lönn M, Ni X, Sun T, Dong L, Gaitnieks T, Virzo de Santo A, Johansson MB (2022). Decomposition rates in late stages of scots pine and Norway spruce needle litter: influence of nutrients and substrate properties over a climate gradient. Forest Ecology and Management, 522, 120452. DOI: 10.1016/j.foreco.2022.120452. |
[2] | Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer, Heidelberg. |
[3] | Berger TW, Duboc O, Djukic I, Tatzber M, Gerzabek MH, Zehetner F (2015). Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: decay and nutrient release. Geoderma, 251, 92-104. |
[4] | Bohara M, Acharya K, Perveen S, Manevski K, Hu C, Yadav RKP, Shrestha K, Li X (2020). In situ litter decomposition and nutrient release from forest trees along an elevation gradient in Central Himalaya. Catena, 194, 104698. DOI: 10.1016/j.catena.2020.104698. |
[5] | Bohara M, Yadav RKP, Dong W, Cao J, Hu C (2019). Nutrient and isotopic dynamics of litter decomposition from different land uses in naturally restoring Taihang Mountain, North China. Sustainability, 11, 1752. DOI: 10.3390/su11061752. |
[6] | Bonanomi G, Cesarano G, Gaglione SA, Ippolito F, Sarker T, Rao MA (2017). Soil fertility promotes decomposition rate of nutrient poor, but not nutrient rich litter through nitrogen transfer. Plant and Soil, 412, 397-411. |
[7] | Bonanomi G, Idbella M, Zotti M, Santorufo L, Motti R, Maisto G, de Marco A (2021). Decomposition and temperature sensitivity of fine root and leaf litter of 43 mediterranean species. Plant and Soil, 464, 453-465. |
[8] | Bradford MA, Veen GFC, Bonis A, Bradford EM, Classen AT, Cornelissen JHC, Crowther TW, de Long JR, Freschet GT, Kardol P, Manrubia-Freixa M, Maynard DS, Newman GS, Logtestijn RSP, Viketoft M, et al. (2017). A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution, 1, 1836-1845. |
[9] |
Cheever BM, Webster JR, Bilger EE, Thomas SA (2013). The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology, 94, 1614-1625.
PMID |
[10] | Chen L, Liu L, Qin S, Yang G, Fang K, Zhu B, Kuzyakov Y, Chen P, Xu Y, Yang Y (2019). Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 10, 5112. DOI: 10.1038/s41467-019-13119-z. |
[11] | Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS (2019). The global soil community and its influence on biogeochemistry. Science, 365, eaav0550. DOI: 10.1126/science.aav0550. |
[12] | Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. |
[13] | Frostegård A, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65. |
[14] | Frostegård Å, Bååth E, Tunlio A (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730. |
[15] | Gavazov K, Mills R, Spiegelberger T, Lenglet J, Buttler A (2014). Biotic and abiotic constraints on the decomposition of Fagus sylvatica leaf litter along an altitudinal gradient in contrasting land-use types. Ecosystems, 17, 1326-1337. |
[16] | Goud JVS, Bindu NSVSSSLH, Samatha B, Prasad MR, Singara Charya MA (2011). Lignolytic enzyme activities of wood decaying fungi from Andhra Pradesh. Journal of the Indian Academy of Wood Science, 8, 26-31. |
[17] | Harrison AF (1982). Labile organic phosphorus mineralization in relationship to soil properties. Soil Biology & Biochemistry, 14, 343-351. |
[18] | Helfenstein J, Tamburini F, von Sperber C, Massey MS, Pistocchi C, Chadwick OA, Vitousek PM, Kretzschmar R, Frossard E (2018). Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications, 9, 3226. DOI: 10.1038/s41467-018-05731-2. |
[19] | Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3, 57-69. |
[20] | Hernández-Cáceres D, Stokes A, Angeles-Alvarez G, Abadie J, Anthelme F, Bounous M, Freschet GT, Roumet C, Weemstra M, Merino-Martín L, Reverchon F (2022). Vegetation creates microenvironments that influence soil microbial activity and functional diversity along an elevation gradient. Soil Biology & Biochemistry, 165, 108485. DOI: 10.1016/j.soilbio.2021.108485. |
[21] | Kramer C, Gleixner G (2006). Variable use of plant-and soil-derived carbon by microorganisms in agricultural soils. Soil Biology & Biochemistry, 38, 3267-3278. |
[22] | Liu G, Wang L, Jiang L, Pan X, Huang Z, Dong M, Cornelissen JHC (2018). Specific leaf area predicts dryland litter decomposition via two mechanisms. Journal of Ecology, 106, 218-229. |
[23] | Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89-106. |
[24] | Meng C, Tian DS, Zeng H, Li ZL, Yi CX, Niu SL (2019). Global soil acidification impacts on belowground processes. Environmental Research Letters, 14, 074003. DOI: 10.1088/1748-9326/ab239c. |
[25] | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 46-62. |
[26] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[27] | Pourhassan N, Bruno S, Jewell MD, Shipley B, Roy S, Bellenger JP (2016). Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada. Geoderma, 273, 25-31. |
[28] | Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME, González-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, et al. (2009). Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 97, 801-811. |
[29] | Ryan MG, Melillo JM, Ricca A (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171. |
[30] | Schuur EAG, Chadwick OA, Matson PA (2001). Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology, 82, 3182-3196. |
[31] | Su JS, Zhao YJ, Bai YF (2023). Asymmetric responses of leaf litter decomposition to precipitation changes in global terrestrial ecosystem. Journal of Cleaner Production, 387, 135898. DOI: 10.1016/j.jclepro.2023.135898. |
[32] | Tu LH, Hu HL, Hu TX, Zhang J, Luo SH, Dai HZ (2012). Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China. Chinese Journal of Plant Ecology, 36, 99-108. |
[涂利华, 胡红玲, 胡庭兴, 张健, 雒守华, 戴洪忠 (2012). 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应. 植物生态学报, 36, 99-108.]
DOI |
|
[33] |
Yang Y, Tian LH, Tian HQ, Sun HE, Zhao JX, Zhou QP (2020). Effect of climate warming on decomposition of plant litter in alpine meadow pastures in Northwestern Sichuan. Acta Prataculturae Sinica, 29(10), 35-46.
DOI |
[杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平 (2020). 增温对川西北高寒草甸草场植物凋落物分解的影响. 草业学报, 29(10), 35-46.]
DOI |
|
[34] | Zhu HJ, Lin ZS, Chen ZG, Tan BH, Guo CD (1982). The vertical zonation and characteristics of soils in Wuyi Mountain. Wuyi Science Journal, 2, 152-164. |
[朱鹤健, 林振盛, 陈珍皋, 谭炳华, 郭成达 (1982). 武夷山土壤垂直分布和特征. 武夷科学, 2, 152-164.] |
[1] | Xin-Yi LI You-Gui WU Jing GUO Rong-Guang LAN Hongfei Lu Ming-Jian YU. The growth characteristics of Abies beshanzuensis seedlings at different altitudes and its influencing factors [J]. Chin J Plant Ecol, 2025, 49(4): 1-0. |
[2] | Li Mengqi lingfeng Miao Li dadong long yifan ye bingbing Fan Yang. Response of mangrove fine root functional traits to soil nutrient changes at different tide levels in Dongzhaigang, Hainan Province [J]. Chin J Plant Ecol, 2025, 49(4): 1-0. |
[3] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[4] | QUAN Xiao-Qiang, WANG Yan-Ru, LI Xiao-Yu, LIANG Hai-Yan, WANG Li-Dong, YAN Xiao-Li. Effects of nitrogen addition level and NH4+-N to NO3--N ratio on photosynthetic characteristics and chlorophyll fluorescence parameters in Cunninghamia lanceolata seedling [J]. Chin J Plant Ecol, 2024, 48(8): 1050-1064. |
[5] | CAI Hui-Ying, LIANG Ya-Tao, LOU Hu, YANG Guang, SUN Long. Changes of fine root functional traits and rhizosphere bacterial community of Betula platyphylla after fire [J]. Chin J Plant Ecol, 2024, 48(7): 828-843. |
[6] | LIU Yao, ZHONG Quan-Lin, XU Chao-Bin, CHENG Dong-Liang, ZHENG Yue-Fang, ZOU Yu-Xing, ZHANG Xue, ZHENG Xin-Jie, ZHOU Yun-Ruo. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(6): 744-759. |
[7] | XU Zi-Yi, JIN Guang-Ze. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaf-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[8] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[9] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[10] | PANG Yu, HE Tong-Xin, SUN Jian-Fei, NING Wen-Cai, PEI Guang-Ting, HU Bao-Qing, Wang Bin. Construction of fine root biomass estimation models of dominant tree species in a north tropic karst forest [J]. Chin J Plant Ecol, 2024, 48(10): 1312-1325. |
[11] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[12] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[13] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[14] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[15] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn