Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (6): 952-964.DOI: 10.17521/cjpe.2024.0258 cstr: 32100.14.cjpe.2024.0258
• Research Articles • Previous Articles Next Articles
YAN Xiao-Hong, HU Wen-Hai*()(
)
Received:
2024-08-05
Accepted:
2024-12-10
Online:
2025-06-20
Published:
2025-01-20
Contact:
HU Wen-Hai
Supported by:
YAN Xiao-Hong, HU Wen-Hai. Differences in photoprotective mechanisms during winter in three evergreen broadleaf species in subtropical region[J]. Chin J Plant Ecol, 2025, 49(6): 952-964.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0258
Fig. 1 Changes in daily maximum and minimum air temperature during experimental period. The black boxes pointed by the arrow indicate the time of measurement.
Fig. 2 Changes in the maximum quantum yield of photosystem II (Fv/Fm) and the maximum fluorescence signal of the P700 reaction center (Pm) in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). The bars with different lowercase letters indicate significant difference between treatments (p < 0.05).
Fig. 3 Rapid light curves of electron transport rate (ETR) of photosystem II and photosystem I in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). PAR, photosynthetically active radiation; SH, shade-leaf; SU, sun-leaf.
参数 Parameter | 种类 Species | 阴生叶 Shade-leaf | 阳生叶 Sun-leaf | ||||
---|---|---|---|---|---|---|---|
秋季 Autumn | 冬季 Winter | 春季 Spring | 秋季 Autumn | 冬季 Winter | 春季 Spring | ||
Jmax-ETR(II) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 46.6 ± 6.7Ac | 36.6 ± 5.7Acd | 38.0 ± 2.4Acd | 64.9 ± 3.4Ab | 27.6 ± 1.0Ad | 98.8 ± 3.6Aa |
荷花木兰 M. grandiflora | 40.4 ± 4.0Aa | 25.7 ± 3.9ABb | 11.7 ± 1.0Cc | 38.7 ± 2.0Ba | 10.9 ± 2.9Bc | 7.3 ± 0.8Cc | |
雅榕 F. concinna | 26.4 ± 2.7Bb | 18.3 ± 1.5Bc | 21.4 ± 1.1Bbc | 43.0 ± 2.1Ba | 3.2 ± 0.9Cd | 18.8 ± 2.1Bc | |
Jmax-ETR(I) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 77.5 ± 7.9Ac | 57.1 ± 6.3Ad | 63.1 ± 3.1Acd | 107.6 ± 6.2Ab | 48.4 ± 1.3Ad | 177.4 ± 6.1Aa |
荷花木兰 M. grandiflora | 73.3 ± 6.9Aa | 44.2 ± 5.1ABb | 23.9 ± 1.4Cc | 73.6 ± 4.6Ba | 27.3 ± 4.0Bc | 19.1 ± 2.2Cc | |
雅榕 F. concinna | 48.7 ± 2.1Bbc | 41.3 ± 2.2Bbc | 50.1 ± 3.0Bb | 82.3 ± 3.9Ba | 25.5 ± 2.5Bd | 39.7 ± 5.1Bc | |
PARmax-ETR(II) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 703 ± 53Acd | 750 ± 83Abc | 648 ± 41Acd | 871 ± 26Ab | 577 ± 15Ad | 1 343 ± 47Aa |
荷花木兰 M. grandiflora | 646 ± 57Aa | 473 ± 30Bb | 263 ± 16Bc | 672 ± 62Aa | 390 ± 49Bbc | 265 ± 39Cc | |
雅榕 F. concinna | 576 ± 20Ab | 542 ± 21Bb | 706 ± 122Aab | 866 ± 138Aa | 237 ± 21Cc | 599 ± 124Bab | |
PARmax-ETR(I) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 1 030 ± 8Abc | 857 ± 68Acd | 1 200 ± 147Aab | 1 037 ± 57Ab | 696 ± 32Ad | 1 290 ± 35Aa |
荷花木兰 M. grandiflora | 1 083 ± 47Aa | 731 ± 80Ac | 344 ± 26Bde | 891 ± 43Ab | 417 ± 34Bd | 241 ± 42Ce | |
雅榕 F. concinna | 787 ± 54Bb | 675 ± 38Ab | 1 118 ± 178Aa | 906 ± 52Aab | 299 ± 35Cc | 493 ± 28Bc |
Table 1 The maximum photosynthetic electron flow (Jmax) and saturated irradiance (PARsat) of photosystem II and photosystem I in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5)
参数 Parameter | 种类 Species | 阴生叶 Shade-leaf | 阳生叶 Sun-leaf | ||||
---|---|---|---|---|---|---|---|
秋季 Autumn | 冬季 Winter | 春季 Spring | 秋季 Autumn | 冬季 Winter | 春季 Spring | ||
Jmax-ETR(II) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 46.6 ± 6.7Ac | 36.6 ± 5.7Acd | 38.0 ± 2.4Acd | 64.9 ± 3.4Ab | 27.6 ± 1.0Ad | 98.8 ± 3.6Aa |
荷花木兰 M. grandiflora | 40.4 ± 4.0Aa | 25.7 ± 3.9ABb | 11.7 ± 1.0Cc | 38.7 ± 2.0Ba | 10.9 ± 2.9Bc | 7.3 ± 0.8Cc | |
雅榕 F. concinna | 26.4 ± 2.7Bb | 18.3 ± 1.5Bc | 21.4 ± 1.1Bbc | 43.0 ± 2.1Ba | 3.2 ± 0.9Cd | 18.8 ± 2.1Bc | |
Jmax-ETR(I) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 77.5 ± 7.9Ac | 57.1 ± 6.3Ad | 63.1 ± 3.1Acd | 107.6 ± 6.2Ab | 48.4 ± 1.3Ad | 177.4 ± 6.1Aa |
荷花木兰 M. grandiflora | 73.3 ± 6.9Aa | 44.2 ± 5.1ABb | 23.9 ± 1.4Cc | 73.6 ± 4.6Ba | 27.3 ± 4.0Bc | 19.1 ± 2.2Cc | |
雅榕 F. concinna | 48.7 ± 2.1Bbc | 41.3 ± 2.2Bbc | 50.1 ± 3.0Bb | 82.3 ± 3.9Ba | 25.5 ± 2.5Bd | 39.7 ± 5.1Bc | |
PARmax-ETR(II) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 703 ± 53Acd | 750 ± 83Abc | 648 ± 41Acd | 871 ± 26Ab | 577 ± 15Ad | 1 343 ± 47Aa |
荷花木兰 M. grandiflora | 646 ± 57Aa | 473 ± 30Bb | 263 ± 16Bc | 672 ± 62Aa | 390 ± 49Bbc | 265 ± 39Cc | |
雅榕 F. concinna | 576 ± 20Ab | 542 ± 21Bb | 706 ± 122Aab | 866 ± 138Aa | 237 ± 21Cc | 599 ± 124Bab | |
PARmax-ETR(I) (μmol·m-2·s-1) | 红叶石楠 P. × fraseri | 1 030 ± 8Abc | 857 ± 68Acd | 1 200 ± 147Aab | 1 037 ± 57Ab | 696 ± 32Ad | 1 290 ± 35Aa |
荷花木兰 M. grandiflora | 1 083 ± 47Aa | 731 ± 80Ac | 344 ± 26Bde | 891 ± 43Ab | 417 ± 34Bd | 241 ± 42Ce | |
雅榕 F. concinna | 787 ± 54Bb | 675 ± 38Ab | 1 118 ± 178Aa | 906 ± 52Aab | 299 ± 35Cc | 493 ± 28Bc |
参数 Parameters | F | ||
---|---|---|---|
光环境 Light (L) | 季节 Season (S) | 光环境×季节 L × S | |
红叶石楠 Photinia × fraseri | |||
Jmax-ETR(II) | 45.552*** | 37.758*** | 34.486*** |
PARsat-ETR(II) | 32.514*** | 23.160*** | 39.240*** |
Jmax-ETR(I) | 97.833*** | 73.389*** | 62.978*** |
PARsat-ETR(I) | 0.131 | 20.772*** | 1.546 |
荷花木兰 Magnolia grandiflora | |||
Jmax-ETR(II) | 9.766** | 63.541*** | 3.157 |
PARsat-ETR(II) | 0.248 | 38.768*** | 0.821 |
Jmax-ETR(I) | 3.890 | 73.700*** | 2.000 |
PARsat-ETR(I) | 26.515*** | 104.589*** | 2.386 |
雅榕 Ficus concinna | |||
Jmax-ETR(II) | 0.067 | 87.579*** | 38.051*** |
PARsat-ETR(II) | 0.301 | 7.249** | 5.450* |
Jmax-ETR(I) | 0.855 | 48.547*** | 33.699*** |
PARsat-ETR(I) | 18.953*** | 11.339*** | 10.526*** |
Table 2 Influences of light environment and season variation on the maximum photosynthetic electron flow (Jmax) and saturated irradiance (PARsat) of three evergreen broadleaf plants
参数 Parameters | F | ||
---|---|---|---|
光环境 Light (L) | 季节 Season (S) | 光环境×季节 L × S | |
红叶石楠 Photinia × fraseri | |||
Jmax-ETR(II) | 45.552*** | 37.758*** | 34.486*** |
PARsat-ETR(II) | 32.514*** | 23.160*** | 39.240*** |
Jmax-ETR(I) | 97.833*** | 73.389*** | 62.978*** |
PARsat-ETR(I) | 0.131 | 20.772*** | 1.546 |
荷花木兰 Magnolia grandiflora | |||
Jmax-ETR(II) | 9.766** | 63.541*** | 3.157 |
PARsat-ETR(II) | 0.248 | 38.768*** | 0.821 |
Jmax-ETR(I) | 3.890 | 73.700*** | 2.000 |
PARsat-ETR(I) | 26.515*** | 104.589*** | 2.386 |
雅榕 Ficus concinna | |||
Jmax-ETR(II) | 0.067 | 87.579*** | 38.051*** |
PARsat-ETR(II) | 0.301 | 7.249** | 5.450* |
Jmax-ETR(I) | 0.855 | 48.547*** | 33.699*** |
PARsat-ETR(I) | 18.953*** | 11.339*** | 10.526*** |
Fig. 4 Changes in the photochemical quenching (qP), non-photochemical quenching (NPQ), and the cyclic electron flow around photosystem I (CEF-PSI) in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). The bars with different lowercase letters indicate significant difference between treatments (p < 0.05).
Fig. 5 Changes in the energy partitioning of photosystem II (PSII) in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). Y(II), effective PSII quantum; Y(NO), quantum yield of nonregulation energy dissipation; Y(NPQ), quantum yield of regulated energy dissipation. The bars with different lowercase letters indicate significant difference between treatments (p < 0.05).
Fig. 6 Changes in the energy partitioning of photosystem I (PSI) in the three evergreen broadleaf species during overwintering (mean ± SE, n = 5). Y(I), effective quantum yield of PSI; Y(NA), quantum yield of PSI non-photochemical energy dissipation due to acceptor; Y(ND), heat dissipation efficiency at the donors quantum yield of PSI. The bars with different lowercase letters indicate significant difference between treatments (p < 0.05).
[1] | Adams III WW, Zarter CR, Ebbert V, Demmig-Adams B (2004). Photoprotective strategies of overwintering evergreens. BioScience, 54, 41-49. |
[2] | Arora R, Krebs SL, Wisniewski ME (2021). The relationship of cold acclimation and extracellular ice formation to winter thermonasty in two Rhododendron species and their F1 hybrid. American Journal of Botany, 108, 1946-1956. |
[3] | Barth C, Krause GH (1999). Inhibition of photosystems I and II in chilling-sensitive and chilling-tolerant plants under light and low-temperature stress. Zeitschrift Für Naturforschung C, 54, 645-657. |
[4] |
Chen XP, Li JL, Peñuelas J, Li XQ, Hu DD, Wang MT, Zhong QL, Cheng DL (2024). Temperature dependence of carbon metabolism in the leaves in sun and shade in a subtropical forest. Oecologia, 204, 59-69.
DOI PMID |
[5] | Demmig-Adams B, Adams III WW (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599-626. |
[6] | Grebe S, Trotta A, Bajwa AA, Mancini I, Bag P, Jansson S, Tikkanen M, Aro EM (2020). Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce (Picea abies) photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 117, 17499-17509. |
[7] |
Harbinson J, Genty B, Baker NR (1989). Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiology, 90, 1029-1034.
DOI PMID |
[8] |
Havaux M, Davaud A (1994). Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem-II activity—Preferential inactivation of photosystem I. Photosynthesis Research, 40, 75-92.
DOI PMID |
[9] |
Hendrickson L, Furbank RT, Chow WS (2004). A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82, 73-81.
DOI PMID |
[10] | Hu WH, Xiao YA, Yan XH, Ye ZP, Zeng JJ, Li XH (2021). Photoprotective mechanisms under low temperature and high light stress of Photinia × fraseri and Osmanthus fragrans during overwintering. Bulletin of Botanical Research, 41, 938-946. |
[胡文海, 肖宜安, 闫小红, 叶子飘, 曾建军, 李晓红 (2021). 越冬期红叶石楠和桂花防御低温强光伤害的光保护机制. 植物研究, 41, 938-946.]
DOI |
|
[11] |
Hu XH, Liu NN, Tao HM, Peng KJ, Xia XJ, Hu WH (2022). Effects of chilling on chlorophyll fluorescence imaging characteristics of leaves with different leaf ages in tomato seedlings. Scientia Agricultura Sinica, 55, 4969-4980.
DOI |
[胡雪华, 刘宁宁, 陶慧敏, 彭可佳, 夏晓剑, 胡文海 (2022). 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响. 中国农业科学, 55, 4969-4980.]
DOI |
|
[12] | Hu XH, Yuan QY, Zhan MY, Zhou SY, Hu WH (2023). Effects of low temperature in winter on photoinhibition of sun leaves and shade leaves in three evergreen broad-leaved plants. Journal of Plant Resources and Environment, 32(2), 65-72. |
[胡雪华, 袁晴雨, 詹明悦, 周水云, 胡文海 (2023). 冬季低温对3种常绿阔叶植物阳生叶和阴生叶光抑制的影响. 植物资源与环境学报, 32(2), 65-72.] | |
[13] |
Huang W, Hu H, Zhang SB (2016). Photosynthesis and photosynthetic electron flow in the alpine evergreen species Quercus guyavifolia in winter. Frontiers in Plant Science, 7, 1511. DOI: 10.3389/fpls.2016.01511.
PMID |
[14] | Huang W, Zhang SB, Cao KF (2012). Physiological role of cyclic electron flow in higher plants. Plant Science Journal, 30(1), 100-106. |
[黄伟, 张石宝, 曹坤芳 (2012). 高等植物环式电子传递的生理作用. 植物科学学报, 30(1), 100-106.] | |
[15] |
Ivanov AG, Sane PV, Zeinalov Y, Malmberg G, Gardestrom P, Huner NPA, Öquist G (2001). Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L.). Planta, 213, 575-585.
PMID |
[16] | Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016). Where, why and how? Explaining the low-temperature range limits of temperate tree species. Journal of Ecology, 104, 1076-1088. |
[17] | Liu B, Wang XY, Cao Y, Arora R, Zhou H, Xia YP (2020). Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens. The Plant Journal, 103, 2279-2300. |
[18] | Liu YM, Liu YX, Zeng GX, Huang XG (2015). Climatic regionalization of Jinggang pomelo planting in Ji’an area based on GIS. Acta Agriculturae Jiangxi, 27(6), 130-133. |
[刘云萌, 刘云霞, 曾广旭, 黄祥光 (2015). 基于GIS的吉安地区井冈蜜柚特色果业种植气候区划. 江西农业学报, 27(6), 130-133.] | |
[19] | Míguez F, Fernández-Marín B, Becerril JM, García-Plazaola JI (2015). Activation of photoprotective winter photoinhibition in plants from different environments: a literature compilation and meta-analysis. Physiologia Plantarum, 155, 414-423. |
[20] |
Niinemets Ü, Keenan TF, Hallik L (2015). A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist, 205, 973-993.
DOI PMID |
[21] |
Öquist G, Huner NPA (2003). Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology, 54, 329-355.
PMID |
[22] | Peng JG, Jiang XR, Jia MX, Guo L, Gao RF, Liu Y (2016). Contrasting patterns of sun-red and shade-green leaves of Buxus microphylla in response to gradients of excess light during winter acclimation. Acta Physiologiae Plantarum, 38, 254. |
[23] |
Porcar-Castell A, Juurola E, Ensminger I, Berninger F, Hari P, Nikinmaa E (2008). Seasonal acclimation of photosystem II in Pinus sylvestris. II. Using the rate constants of sustained thermal energy dissipation and photochemistry to study the effect of the light environment. Tree Physiology, 28, 1483-1491.
PMID |
[24] | Ren LL, Gao HY (2007). Effects of chilling stress under weak light on functions of photosystems in leaves of wild soybean and cultivator soybean. Journal of Plant Physiology and Molecular Biology, 33, 333-340. |
[任丽丽, 高辉远 (2007). 低温弱光胁迫对野生大豆和大豆栽培种光系统功能的影响. 植物生理与分子生物学学报, 33, 333-340.] | |
[25] | Shi SB, Zhou DW, Li TC, De KJ, Gao XZ, Ma JL, Sun T, Wang FL (2023). Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau. Chinese Journal of Plant Ecology, 47, 361-373. |
[师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳 (2023). 青藏高原高山嵩草光合功能对模拟夜间低温的响应. 植物生态学报, 47, 361-373.]
DOI |
|
[26] | Short AW, Sebastian JS, Huang J, Wang GN, Dassanayake M, Finnegan PM, Parker JD, Cao KF, Wee AKS (2024). Comparative transcriptomics of the chilling stress response in two Asian mangrove species Bruguiera gymnorhiza and Rhizophora apiculate. Tree Physiology, 44, tpae019. DOI: 10.1093/treephys/tpae019/7608779. |
[27] | Sonoike K (1999). The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II. Journal of Photochemistry and Photobiology B: Biology, 48, 136-141. |
[28] | Sperlich D, Chang CT, Peñuelas J, Gracia C, Sabaté S (2014). Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain). Biogeosciences, 11, 5657-5674. |
[29] |
Takahashi S, Badger MR (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 16, 53-60.
DOI PMID |
[30] |
Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009). How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiology, 149, 1560-1567.
DOI PMID |
[31] | Tang Y, Wang CK (2011). A feasible method for measuring photosynthesis in vitro for major tree species in northeastern China. Chinese Journal of Plant Ecology, 35, 452-462. |
[唐艳, 王传宽 (2011). 东北主要树种光合作用可行的离体测定方法. 植物生态学报, 35, 452-462.]
DOI |
|
[32] | Terashima I, Funayama S, Sonoike K (1994). The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 193, 300-306. |
[33] | Verhoeven A (2014). Sustained energy dissipation in winter evergreens. New Phytologist, 201, 57-65. |
[34] | Walter-McNeill A, Garcia MA, Logan BA, Bombard DM, Reblin JS, Lopez S, Southwick CD, Sparrow EL, Bowling DR (2021). Wide variation of winter-induced sustained thermal energy dissipation in conifers: a common-garden study. Oecologia, 197, 589-598. |
[35] |
Xiao F, Yang YL, Wang YT, Ma H, Zhang WF (2017). Effects of low temperature on PSI and PSII photoinhibition in cotton leaf at boll stage. Acta Agronomica Sinica, 43, 1401-1409.
DOI |
[肖飞, 杨延龙, 王娅婷, 马慧, 张旺锋 (2017). 棉花花铃期低温对叶片PSI和PSII光抑制的影响. 作物学报, 43, 1401-1409.]
DOI |
|
[36] | Yan XH, Fu YJ, Hu WH (2025). Responses of photosystem II function of three evergreen broadleaf species to transient warming at winter in subtropical region. Chinese Journal of Plant Ecology, 49, 331-342. |
[闫小红, 傅英健, 胡文海 (2025). 亚热带地区3种常绿阔叶植物光系统II功能对冬季短暂升温的响应. 植物生态学报, 49, 331-342.]
DOI |
|
[37] | Ye ZP, Robakowski P, Suggett DJ (2013). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. Planta, 237, 837-847. |
[38] | Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW (2011). Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 234, 883-889. |
[39] | Zhang ZS, Yang C, Gao HY (2013). Chilling photoinhibition of photosystem I and its recovery after photoinhibition. Plant Physiology Journal, 49, 301-308. |
[张子山, 杨程, 高辉远 (2013). 植物光系统I的低温光抑制及恢复. 植物生理学报, 49, 301-308.] | |
[40] | Zhang ZS, Zhang LT, Gao HY, Jia YJ, Bu JW, Meng QW (2009). Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Scientia Agricultura Sinica, 42, 4288-4293. |
[张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟 (2009). 不同光强与低温交叉胁迫下黄瓜PSI与PSII的光抑制研究. 中国农业科学, 42, 4288-4293.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn