Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (6): 939-951.DOI: 10.17521/cjpe.2023.0325 cstr: 32100.14.cjpe.2023.0325
• Research Articles • Previous Articles Next Articles
LIU Xin-Yue1, WANG Li-Ping2, LIU Chun-He2, SUN Yan-Li3, LIU Peng1, TIAN Yun1, JIA Xin1, ZHA Tian-Shan1,*(), QIAN Duo4
Received:
2023-11-07
Accepted:
2024-05-06
Online:
2025-06-20
Published:
2024-05-07
Contact:
ZHA Tian-Shan
Supported by:
LIU Xin-Yue, WANG Li-Ping, LIU Chun-He, SUN Yan-Li, LIU Peng, TIAN Yun, JIA Xin, ZHA Tian-Shan, QIAN Duo. Spatial pattern of biomass and its influencing factors for plantations with different stand ages in Beijing[J]. Chin J Plant Ecol, 2025, 49(6): 939-951.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0325
数据类别 Data type | 数据名称 Data | 数据来源 Data source |
---|---|---|
森林清查数据 Forest inventory data | 林分蓄积 Stand volume | 2014年北京市森林清查数据 Forest inventory data of Beijing in 2014 |
林分面积 Stand area | ||
林龄 Stand age | ||
优势树种 Dominate tree species | ||
气候因子 Climatic factor | 气温 Air temperature | 国家科技基础条件平台-国家地球系统科学数据中心 National Earth System Science Data Center ( |
降水 Precipitation | ||
日照时数 Sunshine duration | ||
植被因子 Vegetation factor | 归一化植被指数 Normalized difference vegetation index (NDVI) | NASA MODIS归一化植被指数产品 The NASA Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset (MOD13Q1 V006) ( |
地形因子 Topographical factor | 高程 Elevation | 空间分辨率12.5 m的ALOS高程数据 Elevation of ALOS with 12.5 m spatial resolution ( |
坡度 Slope | 基于数字高程模型 Based on digital elevation model (DEM) | |
坡向 Aspect | ||
人为因子 Anthropogenic factor | 夜间灯光指数 Nighttime lights index | 地球观测组年度夜间灯光指数 Earth Observation Group annual nighttime lights index ( |
国内生产总值 Gross domestic product | 国家科技基础条件平台-国家地球系统科学数据中心 National Earth System Science Data Center ( | |
人口密度 Population density |
Table 1 Description and resource of the data of plantations in Beijing
数据类别 Data type | 数据名称 Data | 数据来源 Data source |
---|---|---|
森林清查数据 Forest inventory data | 林分蓄积 Stand volume | 2014年北京市森林清查数据 Forest inventory data of Beijing in 2014 |
林分面积 Stand area | ||
林龄 Stand age | ||
优势树种 Dominate tree species | ||
气候因子 Climatic factor | 气温 Air temperature | 国家科技基础条件平台-国家地球系统科学数据中心 National Earth System Science Data Center ( |
降水 Precipitation | ||
日照时数 Sunshine duration | ||
植被因子 Vegetation factor | 归一化植被指数 Normalized difference vegetation index (NDVI) | NASA MODIS归一化植被指数产品 The NASA Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset (MOD13Q1 V006) ( |
地形因子 Topographical factor | 高程 Elevation | 空间分辨率12.5 m的ALOS高程数据 Elevation of ALOS with 12.5 m spatial resolution ( |
坡度 Slope | 基于数字高程模型 Based on digital elevation model (DEM) | |
坡向 Aspect | ||
人为因子 Anthropogenic factor | 夜间灯光指数 Nighttime lights index | 地球观测组年度夜间灯光指数 Earth Observation Group annual nighttime lights index ( |
国内生产总值 Gross domestic product | 国家科技基础条件平台-国家地球系统科学数据中心 National Earth System Science Data Center ( | |
人口密度 Population density |
树种 Species | a | b | 参考文献 Reference |
---|---|---|---|
白桦 Betula platyphylla | 1.069 | 10.237 | Yang et al., |
白皮松 Pinus bungeana | 0.529 | 25.087 | Yang et al., |
侧柏 Platycladus orientalis | 0.490 | 30.427 | Zhang et al., |
胡桃楸 Juglans mandshurica | 1.039 | 2.373 | Zhang et al., |
华山松 Pinus armandi | 0.458 | 32.666 | Yang et al., |
栎属 Quercus | 0.785 | 16.715 | Zhang et al., |
垂柳 Salix babylonica | 0.892 | 28.441 | Zhang et al., |
栾树 Koelreuteria paniculata | 0.892 | 28.441 | Zhang et al., |
落叶松 Larix gmelinii | 0.610 | 33.806 | Yang et al., |
五角槭 Acer pictum subsp. mono | 0.892 | 28.441 | Zhang et al., |
杨属 Populus | 0.497 | 26.973 | Yang et al., |
银杏 Ginkgo biloba | 0.892 | 28.441 | Zhang et al., |
油松 Pinus tabuliformis | 0.869 | 9.121 | Yang et al., |
硬木类、软木类 Hardwoods, softwoods | 0.892 | 28.441 | Zhang et al., |
阔叶混交林 Mixed broadleaf forest | 0.739 | 43.210 | Zhang et al., |
Table 2 Parameters used for calculating biomass of plantations in Beijing
树种 Species | a | b | 参考文献 Reference |
---|---|---|---|
白桦 Betula platyphylla | 1.069 | 10.237 | Yang et al., |
白皮松 Pinus bungeana | 0.529 | 25.087 | Yang et al., |
侧柏 Platycladus orientalis | 0.490 | 30.427 | Zhang et al., |
胡桃楸 Juglans mandshurica | 1.039 | 2.373 | Zhang et al., |
华山松 Pinus armandi | 0.458 | 32.666 | Yang et al., |
栎属 Quercus | 0.785 | 16.715 | Zhang et al., |
垂柳 Salix babylonica | 0.892 | 28.441 | Zhang et al., |
栾树 Koelreuteria paniculata | 0.892 | 28.441 | Zhang et al., |
落叶松 Larix gmelinii | 0.610 | 33.806 | Yang et al., |
五角槭 Acer pictum subsp. mono | 0.892 | 28.441 | Zhang et al., |
杨属 Populus | 0.497 | 26.973 | Yang et al., |
银杏 Ginkgo biloba | 0.892 | 28.441 | Zhang et al., |
油松 Pinus tabuliformis | 0.869 | 9.121 | Yang et al., |
硬木类、软木类 Hardwoods, softwoods | 0.892 | 28.441 | Zhang et al., |
阔叶混交林 Mixed broadleaf forest | 0.739 | 43.210 | Zhang et al., |
Fig. 2 Spatial distribution of vegetation (A), climatic (B-D), topographical (E-G) and anthropogenic (H-J) factors of plantation in Beijing. GDP, gross domestics product; NDVI, normalized difference vegetation index.
判断依据 Criterion | 交互结果 Interaction result |
---|---|
q(X1∩X2) < min[q(X1), q(X2)] | 非线性减弱 Weaken, nonlinear |
min[q(X1), q(X2)] < q(X1∩X2) < max[q(X1), q(X2)] | 单因子非线性减弱 Weaken, univariate |
q(X1∩X2) > max(q(X1), q(X2)) | 双因子增强 Enhance, bivariate |
q(X1∩X2) = q(X1) + q(X2) | 独立 Independent |
q(X1∩X2) > q(X1) + q(X2) | 非线性增强 Enhance, nonlinear |
Table 3 Types of interaction between two influencing factors and the biomass of plantation in Beijing
判断依据 Criterion | 交互结果 Interaction result |
---|---|
q(X1∩X2) < min[q(X1), q(X2)] | 非线性减弱 Weaken, nonlinear |
min[q(X1), q(X2)] < q(X1∩X2) < max[q(X1), q(X2)] | 单因子非线性减弱 Weaken, univariate |
q(X1∩X2) > max(q(X1), q(X2)) | 双因子增强 Enhance, bivariate |
q(X1∩X2) = q(X1) + q(X2) | 独立 Independent |
q(X1∩X2) > q(X1) + q(X2) | 非线性增强 Enhance, nonlinear |
Fig. 4 Relationships between plantation biomass and climatic (A-C), geographical (D-F), anthropogenic (G-I) and vegetation (J) factors in Beijing. NDVI, normalized difference vegetation index.
Fig. 6 Results of analyzing the factors of driving spatial variation of biomass (A) and their interactions (B). Ele, elevation; GDP, gross domestic product; NDVI, normalized difference vegetation index; NL, nighttime lights index; PI, population density; Pre, precipitation; SA, stand age; SD, sunshine duration; Tem, air temperature.
Fig. 7 Relationships between biomass and classification grades of different factors. NDVI, normalized difference vegetation index. The classes of factor category were shown in Table 4.
[1] | Bao ZX, Zhang JY, Wang GQ, Guan TS, Jin JL, Liu YL, Li M, Ma T (2021). The sensitivity of vegetation cover to climate change in multiple climatic zones using machine learning algorithms. Ecological Indicators, 124, 107443. DOI: 10.1016/j.ecolind.2021.107443. |
[2] | Baraloto C, Rabaud S, Molto Q, Blanc L, Fortunel C, Hérault B, Dávila N, Mesones I, Rios M, Valderrama E, Fine PVA (2011). Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Global Change Biology, 17, 2677-2688. |
[3] |
Berthrong ST, Jobbágy EG, Jackson RB (2009). A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications, 19, 2228-2241.
PMID |
[4] | Besnard S, Carvalhais N, Arain MA, Black A, de Bruin S, Buchmann N, Cescatti A, Chen JQ, Clevers JGPW, Desai AR, Gough CM, Havrankova K, Herold M, Hörtnagl L, Jung M, et al.(2018). Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters, 13, 124018. DOI: 10.1088/1748-9326/aaeaeb. |
[5] | Chen Z, Yu GR, Wang QF (2020). Effects of climate and forest age on the ecosystem carbon exchange of afforestation. Journal of Forestry Research, 31, 365-374. |
[6] | Claus A, George E (2005). Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research, 35, 1617-1625. |
[7] |
Collalti A, Ibrom A, Stockmarr A, Cescatti A, Alkama R, Fernández-Martínez M, Matteucci G, Sitch S, Friedlingstein P, Ciais P, Goll DS, Nabel JEMS, Pongratz J, Arneth A, Haverd V, Prentice IC (2020). Forest production efficiency increases with growth temperature. Nature Communications, 11, 5322. DOI: 10.1038/s41467-020-19187-w.
PMID |
[8] | Du Z, Yu L, Yang J, Xu Y, Chen B, Peng S, Zhang T, Fu H, Harris N, Gong P (2022). A global map of planting years of plantations. Scientific Data, 9, 141. DOI: 10.1038/s41597-022-01260-2. |
[9] | Duan J, Ma LY, Jia LM, Xu CY, Jia ZK, Che WR (2010). The density effect of Platycladus orientalis plantation in Beijing area. Acta Ecologica Sinica, 30, 3206-3214. |
[段劼, 马履一, 贾黎明, 徐程扬, 贾忠奎, 车文瑞 (2010). 北京地区侧柏人工林密度效应. 生态学报, 30, 3206-3214.] | |
[10] | Elvidge CD, Zhizhin M, Ghosh T, Hsu FC, Taneja J (2021). Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sensing, 13, 922. DOI: 10.3390/rs13050922. |
[11] |
Fang JY, Chen AP, Peng CG, Zhao SQ, Ci L (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
DOI PMID |
[12] | FAO (2020). Global Forest Resources Assessment 2020 (FRA 2020).[2023-04-16]. https://www.fao.org/forest-resources-assessment/2020/zh . |
[13] | Feng Q, Ma H, Jiang XM, Wang X, Cao SX (2015). What has caused desertification in China? Scientific Reports, 5, 15998. DOI: 10.1038/srep15998. |
[14] | Gao LH, Zhang XL (2021). Above-ground biomass estimation of plantation with complex forest stand structure using multiple features from airborne laser scanning point cloud data. Forests, 12, 1713. DOI: 10.3390/f12121713. |
[15] | Hernández-Stefanoni JL, Dupuy JM, Tun-Dzul F, May-Pat F (2011). Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landscape Ecology, 26, 355-370. |
[16] | Hua WJ, Chen HS, Zhou LM, Xie ZH, Qin MH, Li X, Ma HD, Huang QH, Sun SL (2017). Observational quantification of climatic and human influences on vegetation greening in China. Remote Sensing, 9, 425. DOI: 10.3390/rs9050425. |
[17] | Huang J, Tardif JC, Bergeron Y, Denneler B, Berninger F, Girardin MP (2010). Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Global Change Biology, 16, 711-731. |
[18] | Huo H, Sun CP (2021). Spatiotemporal variation and influencing factors of vegetation dynamics based on Geodetector: a case study of the northwestern Yunnan Plateau, China. Ecological Indicators, 130, 108005. DOI: 10.1016/j.ecolind.2021.108005. |
[19] | Jiang MC, Tian SF, Zheng ZJ, Zhan Q, He YX (2017). Human activity influences on vegetation cover changes in Beijing, China, from 2000 to 2015. Remote Sensing, 9, 271. DOI: 10.3390/rs9030271. |
[20] |
Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, Phillips OL, Qie L, Coomes DA (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21, 989-1000.
DOI PMID |
[21] | Lamsal S, Rizzo DM, Meentemeyer RK (2012). Spatial variation and prediction of forest biomass in a heterogeneous landscape. Journal of Forestry Research, 23, 13-22. |
[22] | Lie Z, Xue L, Jacobs DF (2018). Allocation of forest biomass across broad precipitation gradients in China’s forests. Scientific Reports, 8, 10536. DOI: 10.1038/s41598-018-28899-5. |
[23] | Liu YC, Gao XL, Fu C, Yu GR, Liu ZY (2019). Estimation of carbon sequestration potential of forest biomass in China based on National Forest Resources Inventory. Acta Ecologica Sinica, 39, 4002-4010. |
[刘迎春, 高显连, 付超, 于贵瑞, 刘兆英 (2019). 基于森林资源清查数据估算中国森林生物量固碳潜力. 生态学报, 39, 4002-4010.] | |
[24] | Liu YC, Yu GR, Wang QF, Zhang YJ (2014). How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Global Ecology and Biogeography, 23, 323-333. |
[25] | National Forestry and Grassland Administration (2019). China Forest Resources Report·2014·2018. China Forestry Publishing House, Beijing. |
[国家林业和草原局(2019). 中国森林资源报告·2014·2018. 中国林业出版社, 北京.] | |
[26] | Ni YY, Jian ZJ, Zeng LX, Liu JF, Lei L, Zhu JH, Xu J, Xiao WF (2022). Climate, soil nutrients, and stand characteristics jointly determine large-scale patterns of biomass growth rates and allocation in Pinus massoniana plantations. Forest Ecology and Management, 504, 119839. DOI: 10.1016/j.foreco.2021.119839. |
[27] | Peichl M, Arain MA (2007). Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management, 253, 68-80. |
[28] | Peng SZ, Ding YX, Liu WZ, Li Z (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931-1946. |
[29] | Piao S, Yin G, Tan J, Cheng L, Huang M, Li Y, Liu R, Mao J, Myneni RB, Peng S, Poulter B, Shi X, Xiao Z, Zeng N, Zeng ZZ, Wang Y (2015). Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biology, 21, 1601-1609. |
[30] | Schwaab J, Davin EL, Bebi P, Duguay-Tetzlaff A, Waser LT, Haeni M, Meier R (2020). Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Scientific Reports, 10, 14153. DOI: 10.1038/s41598-020-71055-1. |
[31] | Shen AH (2017). A Study on the Spatial and Temporal Character and Remote Sensing Estimation of Public Welfare Forest Biomass in Zhejiang Province Based on Multi-source Data. PhD dissertation, Zhejiang University, Hangzhou. |
[沈爱华 (2017). 基于多源数据的浙江省公益林生物量时空特征分析与遥感估算方法研究. 博士学位论文, 浙江大学, 杭州.] | |
[32] | Song YZ, Wang JF, Ge Y, Xu CD (2020). An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data. GIScience & Remote Sensing, 57, 593-610. |
[33] | Vitasse Y, Baumgarten F, Zohner CM, Rutishauser T, Pietragalla B, Gehrig R, Dai J, Wang H, Aono Y, Sparks TH (2022). The great acceleration of plant phenological shifts. Nature Climate Change, 12, 300-302. |
[34] | Wang JF, Hu Y (2012). Environmental health risk detection with GeogDetector. Environmental Modelling & Software, 33, 114-115. |
[35] |
Wang JF, Xu CD (2017). Geodetector: principle and prospective. Acta Geographica Sinica, 72, 116-134.
DOI |
[王劲峰, 徐成东 (2017). 地理探测器: 原理与展望. 地理学报, 72, 116-134.]
DOI |
|
[36] | Wang X, Hu HB, Zhang SH, Lu HL (2019). Underground biomass and carbon storage for Quercus acutissima forests of different ages. Acta Ecologica Sinica, 39, 8556-8564. |
[王霞, 胡海波, 张世豪, 卢洪霖 (2019). 不同林龄麻栎林地下部分生物量与碳储量研究. 生态学报, 39, 8556-8564.] | |
[37] | Xiang W, Li L, Ouyang S, Xiao W, Zeng L, Chen L, Lei P, Deng X, Zeng Y, Fang J, Forrester DI (2021). Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. European Journal of Forest Research, 140, 317-332. |
[38] | Xu MJ, Ji HB, Zhuang SY (2018). Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China. PLoS ONE, 13, e0193024. DOI: 10.1371/journal.pone.0193024. |
[39] | Xu Y, Dai QY, Zou B, Xu M, Feng YX (2023). Tracing climatic and human disturbance in diverse vegetation zones in China: over 20 years of NDVI observations. Ecological Indicators, 156, 111170. DOI: 10.1016/j.ecolind.2023.111170. |
[40] | Xu YQ, Xiao FJ, Yu L (2020). Review of spatio-temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China. Acta Ecologica Sinica, 40, 4710-4723. |
[徐雨晴, 肖风劲, 於琍 (2020). 中国森林生态系统净初级生产力时空分布及其对气候变化的响应研究综述. 生态学报, 40, 4710-4723.] | |
[41] | Yang C, Shi Y, Sun WJ, Zhu JL, Ji CJ, Feng YH, Ma SH, Guo ZD, Fang JY (2022). Updated estimation of forest biomass carbon pools in China, 1977-2018. Biogeosciences, 19, 2989-2999. |
[42] | Yu D, Wang X, Yin Y, Zhan J, Lewis BJ, Tian J, Bao Y, Zhou W, Zhou L, Dai L (2014). Estimates of forest biomass carbon storage in Liaoning Province of Northeast China: a review and assessment. PLoS ONE, 9, e89572. DOI: 10.1371/journal.pone.0089572. |
[43] | Zhang CH, Ju WM, Chen JM, Zan M, Li DQ, Zhou YL, Wang XQ (2013). China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Climatic Change, 118, 933-948. |
[44] | Zhao D, Wang ZW, Wu XJ, Qiu T (2023). Response of vegetation dynamics in environmentally sensitive and fragile areas to natural and anthropogenic factors: a case study in Inner Mongolia Autonomous Region, China. Anthropocene, 44, 100414. DOI: 10.1016/j.ancene.2023.100414. |
[45] | Zhao X, Liu JJ, Hao HK, Yang YZ (2020). Quantifying the spatial heterogeneity and driving factors of aboveground forest biomass in the urban area of Xi’an, China. ISPRS International Journal of Geo-Information, 9, 744. DOI: 10.3390/ijgi9120744. |
[46] |
Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, Cao C, Cheng L, Kato E, Koven C, Li Y, et al.(2016). Greening of the Earth and its drivers. Nature Climate Change, 6, 791-795.
DOI |
[47] | Zuo YF, Li YH, He KN, Wen YS (2022). Temporal and spatial variation characteristics of vegetation coverage and quantitative analysis of its potential driving forces in the Qilian Mountains, China, 2000-2020. Ecological Indicators, 143, 109429. DOI: 10.1016/j.ecolind.2022.109429. |
[1] | LI Xiao-Hua, LIU Jie, Li Dan-Dan, ZHANG Le-Hua. Population structure and dynamic characteristics of the endangered plant Rhododendron xiaoxidongense [J]. Chin J Plant Ecol, 2025, 49(预发表): 1-. |
[2] | Jing Zhang Li JunPan Han XU Yi-De LI Hai ShengHe. Comparison of plant biomass in conifer and broadleaved mixed artificial forests in south subtropical area and analyses of the influential factors [J]. Chin J Plant Ecol, 2025, 49(化学计量与功能性状): 0-0. |
[3] | Ding Jianlin, Li Xiao-ming, He Qi-hua. A dataset on plant species composition and community characteristics in a long-term biological monitoring plot of montane coniferous plantations in southwest China from 2005 to 2010 [J]. Chin J Plant Ecol, 2025, 49(典型生态系统数据集): 1-. |
[4] | 兴权 饶 Yongbiao Lin. A dataset of species composition and community characteristics of long-term monitoring plot in Acacia mangium plantation in Heshan Station from 2005 to 2010. [J]. Chin J Plant Ecol, 2025, 49(典型生态系统数据集): 1-0. |
[5] | LING FAN YUE, ZHENG DE JIANG, JIASHU YE, LICHEN ZHENG, XIN CHEN. Data set on harvest-time traits and yield dynamics of major crops in long-term observation samples on farmland in the Lower Liaohe Plain, 2005-2015 [J]. Chin J Plant Ecol, 2025, 49(典型生态系统数据集): 1-. |
[6] | ZHU Rui-De, YANG Jun-Wei, LIU Xiao-Han, CHEN Bing-Rui, CHI Xiu-Lian, TIAN Di, YANG Guang, Cheng Meng, DAI Ya-feng, WANG Shi-wen, CHEN Zhong. Nutrient regulation of plant-microbial association in Dendrobium huoshanense facilities and understory cultivation patterns [J]. , 2025, 49(地上地下生态过程关联): 0-. |
[7] | MA Teng-Fei, HAO Jie, DIAO Hua-Jie, NING Ya-Nan, $\boxed{\hbox{WANG Chang-Hui}}$ , DONG Kuan-Hu. Seasonal variations of soil inorganic nitrogen contents and their responses to changing grazing intensity in grasslands of an agro-pastoral ecotone in northern Shanxi, China [J]. Chin J Plant Ecol, 2025, 49(6): 965-974. |
[8] | LI Bo-Wen, ZHOU Yang, LÜ Jing-Ya, A Wang, CHEN Lan-Ying, LIU Shi-Zhang, WU Jing, LÜ Wang-Wang, SUN Jian-Ping, JIA Yue-Feng, ZHAO Kuang, WANG Shi-Ping. Underestimation of mountain species richness on the Qingzang Plateau when using base zone surveys: a case study of mountain vertical vegetation spectrum in the Rongbu River watershed of Mount Qomolangma [J]. Chin J Plant Ecol, 2025, 49(3): 404-414. |
[9] | CHEN Wen-Yi, WANG Zhi-Yong, ZHOU Meng-Yan, MA Wen-Jun, WANG Jun-Hui, LUO Zhi-Bin, ZHOU Jing. Biomass allocation and allometric growth model of young Catalpa bungei [J]. Chin J Plant Ecol, 2025, 49(2): 356-366. |
[10] | WANG Kun-Ying, QIU Gui-Fu, LIU Zi-He, MENG Jun, LIU Yu-Xuan, JIA Guo-Dong. Climate change regulate tree growth and intrinsic water use efficiency of Populus simonii at different levels of degradation [J]. Chin J Plant Ecol, 2025, 49(2): 343-355. |
[11] | SUN Jia-Mei, AN Bing-Er, LIU Wei, WANG Jing, PAN Qing-Min. Propagule regulation technique in grasslands: cultivation and transplantation of “propagule island” [J]. Chin J Plant Ecol, 2025, 49(1): 129-137. |
[12] | HAO Yi-Qing, LIU Wei, YANG Yang, AN Bing-Er, FAN Bing, LI Chao, CUI Jiu-Hui, CHENG Yan-Bin, SUN Jia-Mei, PAN Qing-Min. Effects of organic and inorganic fertilizers on density and individual biomass of Leymus chinensis in degraded grasslands [J]. Chin J Plant Ecol, 2025, 49(1): 148-158. |
[13] | TONG Yu-Qiang, WU Meng-Ge, WANG Ling, ZHAO Shi, HAN Xu, ZHANG Tong, LIU Jing, QIN Sheng-Jin, DONG Ying-Hao, WEI Ya-Wei, ZHOU Yong-Bin. Transpiration estimates in Pinus sylvestris var. mongolica plantation based on the radial pattern of sap flow and its influencing factors [J]. Chin J Plant Ecol, 2024, 48(9): 1118-1127. |
[14] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[15] | CHEN Xuan-Zheng, ZHU Yao-Jun, GAO Ju-Juan, LIU Yi-Fan, WANG Rong, FANG Tao, LUO Fang-Li, XUE Wei, YU Fei-Hai. Research progress on spatial-temporal variation of plant-soil feedback [J]. Chin J Plant Ecol, 2024, 48(8): 955-966. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn