Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (6): 922-938.DOI: 10.17521/cjpe.2024.0160 cstr: 32100.14.cjpe.2024.0160
• Research Articles • Previous Articles Next Articles
DUAN Jun-Cheng, WANG Zhi-Yong*(), GAO Wei-Cong, ZHANG Cheng-Kai, GAO Chang-Hong, LIU Xiao-Tong, LI Zhen-Jin
Received:
2024-05-16
Accepted:
2024-09-28
Online:
2025-06-20
Published:
2024-09-29
Contact:
WANG Zhi-Yong
Supported by:
DUAN Jun-Cheng, WANG Zhi-Yong, GAO Wei-Cong, ZHANG Cheng-Kai, GAO Chang-Hong, LIU Xiao-Tong, LI Zhen-Jin. Spatiotemporal evolution and landscape pattern analysis of the invasive species Spartina alterniflora in the Yellow River Delta wetland[J]. Chin J Plant Ecol, 2025, 49(6): 922-938.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0160
Fig. 2 Location of the study area of Spartina alterniflora in the Yellow River Delta wetland. Right figure based on Landsat7-ETM+ remote sensing images in 2020.
Fig. 3 Distribution of training samples applied to classification (A) and the distribution of test samples applied to accuracy verification (B) (Based on Landsat remote sensing images in the Yellow River Delta wetland in 2021).
年份 Year | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 总体精度 Overall accuracy (%) | Kappa系数 Kappa coefficient |
---|---|---|---|---|
2000 | - | - | 92.84 | 0.92 |
2001 | - | - | 93.20 | 0.91 |
2002 | 80.79 | 98.33 | 95.23 | 0.94 |
2003 | 94.26 | 94.74 | 91.12 | 0.90 |
2004 | 91.16 | 93.56 | 93.38 | 0.92 |
2005 | 95.57 | 92.41 | 92.96 | 0.89 |
2006 | 83.74 | 93.58 | 93.09 | 0.92 |
2007 | 91.02 | 91.03 | 92.29 | 0.90 |
2008 | 93.11 | 87.38 | 93.78 | 0.92 |
2009 | 95.48 | 92.41 | 89.16 | 0.86 |
2010 | 87.96 | 89.18 | 89.31 | 0.86 |
2011 | 87.64 | 85.89 | 80.35 | 0.78 |
2012 | 92.44 | 86.17 | 86.22 | 0.82 |
2013 | 92.88 | 89.08 | 88.36 | 0.85 |
2014 | 84.48 | 86.91 | 93.18 | 0.91 |
2015 | 79.13 | 87.16 | 85.88 | 0.79 |
2016 | 81.17 | 91.61 | 81.89 | 0.77 |
2017 | 81.46 | 89.43 | 84.05 | 0.80 |
2018 | 81.85 | 84.43 | 84.67 | 0.80 |
2019 | 92.06 | 88.36 | 88.84 | 0.86 |
2020 | 83.38 | 85.80 | 85.87 | 0.82 |
2021 | 85.74 | 80.25 | 81.25 | 0.77 |
2022 | 91.57 | 82.99 | 89.76 | 0.87 |
平均 Mean | 87.95 | 89.08 | 88.60 | 0.85 |
Table 1 Accuracy verification results of Yellow River Delta Nature Reserve wetland classification
年份 Year | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 总体精度 Overall accuracy (%) | Kappa系数 Kappa coefficient |
---|---|---|---|---|
2000 | - | - | 92.84 | 0.92 |
2001 | - | - | 93.20 | 0.91 |
2002 | 80.79 | 98.33 | 95.23 | 0.94 |
2003 | 94.26 | 94.74 | 91.12 | 0.90 |
2004 | 91.16 | 93.56 | 93.38 | 0.92 |
2005 | 95.57 | 92.41 | 92.96 | 0.89 |
2006 | 83.74 | 93.58 | 93.09 | 0.92 |
2007 | 91.02 | 91.03 | 92.29 | 0.90 |
2008 | 93.11 | 87.38 | 93.78 | 0.92 |
2009 | 95.48 | 92.41 | 89.16 | 0.86 |
2010 | 87.96 | 89.18 | 89.31 | 0.86 |
2011 | 87.64 | 85.89 | 80.35 | 0.78 |
2012 | 92.44 | 86.17 | 86.22 | 0.82 |
2013 | 92.88 | 89.08 | 88.36 | 0.85 |
2014 | 84.48 | 86.91 | 93.18 | 0.91 |
2015 | 79.13 | 87.16 | 85.88 | 0.79 |
2016 | 81.17 | 91.61 | 81.89 | 0.77 |
2017 | 81.46 | 89.43 | 84.05 | 0.80 |
2018 | 81.85 | 84.43 | 84.67 | 0.80 |
2019 | 92.06 | 88.36 | 88.84 | 0.86 |
2020 | 83.38 | 85.80 | 85.87 | 0.82 |
2021 | 85.74 | 80.25 | 81.25 | 0.77 |
2022 | 91.57 | 82.99 | 89.76 | 0.87 |
平均 Mean | 87.95 | 89.08 | 88.60 | 0.85 |
Fig. 6 Classification results from different classification methods in the Yellow River Delta wetland. A, Minimum Distance method. B, Maximum Likelihood method. C, Neural Network method. D, Random Forest method. E, Support Vector Machine method.
分类方法 Classification method | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 总体精度 Overall accuracy (%) | Kappa系数 Kappa coefficient |
---|---|---|---|---|
最大似然法 Maximum Likelihood | 81.63 | 78.07 | 81.96 | 0.77 |
最小距离法 Minimum Distance | 59.16 | 62.10 | 72.19 | 0.69 |
神经网络 Neural Network | 71.14 | 95.31 | 85.89 | 0.82 |
随机森林 Random Forest | 75.54 | 82.88 | 84.25 | 0.81 |
支持向量机 Support Vector Machine | 92.06 | 88.36 | 88.84 | 0.86 |
Table 2 Comparison of classification accuracy in the Yellow River Delta wetland using different classification methods
分类方法 Classification method | 生产者精度 Producer accuracy (%) | 用户精度 User accuracy (%) | 总体精度 Overall accuracy (%) | Kappa系数 Kappa coefficient |
---|---|---|---|---|
最大似然法 Maximum Likelihood | 81.63 | 78.07 | 81.96 | 0.77 |
最小距离法 Minimum Distance | 59.16 | 62.10 | 72.19 | 0.69 |
神经网络 Neural Network | 71.14 | 95.31 | 85.89 | 0.82 |
随机森林 Random Forest | 75.54 | 82.88 | 84.25 | 0.81 |
支持向量机 Support Vector Machine | 92.06 | 88.36 | 88.84 | 0.86 |
2012 | ||||||||
---|---|---|---|---|---|---|---|---|
互花米草 Spartina alterniflora | 水体 Water | 芦苇 Phragmites australis | 柽柳 Tamarix chinensis | 裸滩 Nude beach | 碱蓬 Suaeda salsa | 总和 Summation | ||
2002 | 互花米草 Spartina alterniflora | 0.04 | 0.15 | 0.38 | 0.11 | 0.01 | 0.05 | 0.74 |
水体 Water | 16.40 | 410.22 | 3.80 | 4.19 | 31.83 | 4.56 | 470.98 | |
芦苇 Phragmites australis | 0.37 | 3.46 | 39.84 | 7.09 | 2.59 | 0.88 | 54.22 | |
柽柳 Tamarix chinensis | 0.61 | 5.78 | 14.59 | 19.32 | 5.40 | 1.69 | 47.39 | |
裸滩 Nude beach | 4.60 | 50.73 | 6.52 | 8.79 | 176.82 | 13.59 | 261.05 | |
碱蓬 Suaeda salsa | 0.62 | 22.43 | 8.06 | 5.10 | 19.77 | 5.67 | 61.65 | |
总和 Summation | 22.63 | 492.76 | 73.19 | 44.60 | 236.42 | 26.44 | 896.04 |
Table 3 Transfer matrix of surface feature types in the Yellow River Delta from 2002 to 2012 (unit: km2)
2012 | ||||||||
---|---|---|---|---|---|---|---|---|
互花米草 Spartina alterniflora | 水体 Water | 芦苇 Phragmites australis | 柽柳 Tamarix chinensis | 裸滩 Nude beach | 碱蓬 Suaeda salsa | 总和 Summation | ||
2002 | 互花米草 Spartina alterniflora | 0.04 | 0.15 | 0.38 | 0.11 | 0.01 | 0.05 | 0.74 |
水体 Water | 16.40 | 410.22 | 3.80 | 4.19 | 31.83 | 4.56 | 470.98 | |
芦苇 Phragmites australis | 0.37 | 3.46 | 39.84 | 7.09 | 2.59 | 0.88 | 54.22 | |
柽柳 Tamarix chinensis | 0.61 | 5.78 | 14.59 | 19.32 | 5.40 | 1.69 | 47.39 | |
裸滩 Nude beach | 4.60 | 50.73 | 6.52 | 8.79 | 176.82 | 13.59 | 261.05 | |
碱蓬 Suaeda salsa | 0.62 | 22.43 | 8.06 | 5.10 | 19.77 | 5.67 | 61.65 | |
总和 Summation | 22.63 | 492.76 | 73.19 | 44.60 | 236.42 | 26.44 | 896.04 |
2022 | ||||||||
---|---|---|---|---|---|---|---|---|
互花米草 Spartina alterniflora | 水体 Water | 芦苇 Phragmites australis | 柽柳 Tamarix chinensis | 裸滩 Nude beach | 碱蓬 Suaeda salsa | 总和 Summation | ||
2012 | 互花米草 Spartina alterniflora | 13.45 | 5.59 | 1.08 | 0.76 | 0.84 | 0.91 | 22.63 |
水体 Water | 10.73 | 440.09 | 8.95 | 1.56 | 28.44 | 3.00 | 492.76 | |
芦苇 Phragmites australis | 1.15 | 13.31 | 42.89 | 10.94 | 1.79 | 3.11 | 73.19 | |
柽柳 Tamarix chinensis | 1.28 | 4.10 | 5.83 | 24.25 | 4.66 | 4.47 | 44.60 | |
裸滩 Nude beach | 14.59 | 83.46 | 8.28 | 6.73 | 118.20 | 5.16 | 236.42 | |
碱蓬 Suaeda salsa | 3.32 | 2.46 | 2.49 | 3.84 | 9.20 | 5.12 | 26.44 | |
总和 Summation | 44.52 | 549.01 | 69.52 | 48.09 | 163.13 | 21.77 | 896.04 |
Table 4 Transfer matrix of surface feature types in the Yellow River Delta from 2012 to 2022 (unit: km2)
2022 | ||||||||
---|---|---|---|---|---|---|---|---|
互花米草 Spartina alterniflora | 水体 Water | 芦苇 Phragmites australis | 柽柳 Tamarix chinensis | 裸滩 Nude beach | 碱蓬 Suaeda salsa | 总和 Summation | ||
2012 | 互花米草 Spartina alterniflora | 13.45 | 5.59 | 1.08 | 0.76 | 0.84 | 0.91 | 22.63 |
水体 Water | 10.73 | 440.09 | 8.95 | 1.56 | 28.44 | 3.00 | 492.76 | |
芦苇 Phragmites australis | 1.15 | 13.31 | 42.89 | 10.94 | 1.79 | 3.11 | 73.19 | |
柽柳 Tamarix chinensis | 1.28 | 4.10 | 5.83 | 24.25 | 4.66 | 4.47 | 44.60 | |
裸滩 Nude beach | 14.59 | 83.46 | 8.28 | 6.73 | 118.20 | 5.16 | 236.42 | |
碱蓬 Suaeda salsa | 3.32 | 2.46 | 2.49 | 3.84 | 9.20 | 5.12 | 26.44 | |
总和 Summation | 44.52 | 549.01 | 69.52 | 48.09 | 163.13 | 21.77 | 896.04 |
Fig. 10 Landscape pattern index map of Spartina alterniflora in the Yellow River Delta wetland from 2002 to 2022. A, Annual variation of percentage of landscape (PLAND) and largest patch index (LPI). B, Interannual variation of landscape shape index (LSI), interspersion and juxtaposition index (IJI) and aggregation index (AI). C, Interannual variation of splitting index (SPLIT). D, Annual variation of perimeter-area fractal dimension (PAFRAC) and shannon’s diversity index (SHDI).
因素 Factor | 温度 Temperature (℃) | 降水量 Precipitation (mm) | 日照时间 Sunshine duration (h) | 距海岸线距离 Distance from shoreline (m) | 海拔 Altitude (m) | 坡度 Gradient (°) | 黄河年输沙量 Annual sediment discharge (108 t) |
---|---|---|---|---|---|---|---|
相关系数 Correlation coefficient | 0.346* | 0.667* | 0.760** | 0.986** | -0.964* | -0.720* | 0.433* |
Table 5 Relevance calculation between various natural factors and the NDVI of Spartina alterniflora
因素 Factor | 温度 Temperature (℃) | 降水量 Precipitation (mm) | 日照时间 Sunshine duration (h) | 距海岸线距离 Distance from shoreline (m) | 海拔 Altitude (m) | 坡度 Gradient (°) | 黄河年输沙量 Annual sediment discharge (108 t) |
---|---|---|---|---|---|---|---|
相关系数 Correlation coefficient | 0.346* | 0.667* | 0.760** | 0.986** | -0.964* | -0.720* | 0.433* |
[1] | Abubakar GA, Wang K, Koko AF, Husseini MI, Shuka KAM, Deng J, Gan M (2023). Mapping maize cropland and land cover in semi-arid region in northern Nigeria using machine learning and Google Earth Engine. Remote Sensing, 15, 2835. DOI: 10.3390/rs15112835. |
[2] | Biçe K, Schalles J, Sheldon JE, Alber M, Meile C (2023). Temporal patterns and causal drivers of aboveground plant biomass in a coastal wetland: insights from time-series analyses. Frontiers in Marine Science, 10, 1130958. DOI: 10.3389/fmars.2023.1130958. |
[3] | Chang D, Wang ZY, Ning XG, Li ZJ, Zhang L, Liu XT (2022). Vegetation changes in Yellow River Delta wetlands from 2018 to 2020 using PIE-Engine and short time series Sentinel-2 images. Frontiers in Marine Science, 9, 977050. DOI: 10.3389/fmars.2022.977050. |
[4] | Chen XP, Zhao XY, Zhang J, Wang RX, Lu JN (2023). Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China. Chinese Journal of Plant Ecology, 47, 1082-1093. |
[陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男 (2023). 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素. 植物生态学报, 47, 1082-1093.]
DOI |
|
[5] | Congalton RG, Green K (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. 3rd ed. CRC Press, Boca Raton. |
[6] | Cui BS, Yang QC, Yang ZF, Zhang KJ (2009). Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering, 35, 1090-1103. |
[7] | de Luca G, Silva JMN, Cerasoli S, Araújo J, Campos J, Di Fazio S, Modica G (2019). Object-based land cover classification of cork oak woodlands using UAV imagery and Orfeo ToolBox. Remote Sensing, 11, 1238. DOI: 10.3390/rs11101238. |
[8] |
Hao Q, Huang C (2023). A review of forest aboveground biomass estimation based on remote sensing data. Chinese Journal of Plant Ecology, 47, 1356-1374.
DOI |
[郝晴, 黄昌 (2023). 森林地上生物量遥感估算研究综述. 植物生态学报, 47, 1356-1374.]
DOI |
|
[9] | Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998). Support vector machines. IEEE Intelligent Systems and Their Applications, 13, 18-28. |
[10] | Huang S, Tang L, Hupy JP, Wang Y, Shao G (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32, 1-6. |
[11] | Hung HY, Hsu CR, Shao BH, Lo NC, Huang KY (2023). In-depth mining spatial pattern of invasive alien species by deep learning from phenological-based drone images// IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, USA. 6208-6211. |
[12] | Jiang FG, Deng ML, Long Y, Sun H (2022). Spatial pattern and dynamic change of vegetation greenness from 2001 to 2020 in Tibet, China. Frontiers in Plant Science, 13, 892625. DOI: 10.3389/fpls.2022.892625. |
[13] |
Li ST, Wu Q, Kang XD (2023). Hyperspectral remote sensing image intrinsic information decomposition: advances and challenges. Acta Geodaetica et Cartographica Sinica, 52, 1059-1073.
DOI |
[李树涛, 吴琼, 康旭东 (2023). 高光谱遥感图像本征信息分解前沿与挑战. 测绘学报, 52, 1059-1073.]
DOI |
|
[14] | Li ZJ, Wang ZY, Liu XT, Zhu YD, Wang K, Zhang TG (2022). Classification and evolutionary analysis of Yellow River Delta wetlands using decision tree based on time series SAR backscattering coefficient and coherence. Frontiers in Marine Science, 9, 940342. DOI: 10.3389/fmars.2022.940342. |
[15] | Lin XF, Cheng YW, Chen G, Chen WJ, Chen R, Gao DM, Zhang YL, Wu YB (2023). Semantic segmentation of China’s coastal wetlands based on Sentinel-2 and SegFormer. Remote Sensing, 15, 3714. DOI: 10.3390/rs15153714. |
[16] | Liu MY, Li HY, Li L, Man WD, Jia MM, Wang ZM, Lu CY (2017). Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sensing, 9, 539. DOI: 10.3390/rs9060539. |
[17] | Liu MY, Mao DH, Wang ZM, Li L, Man WD, Jia MM, Ren CY, Zhang YZ (2018). Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images. Remote Sensing, 10, 1933. DOI: 10.3390/rs10121933. |
[18] | Liu XT, Zheng XW, Wang ZY, Li ZJ, Wang K, Zhang HY, Duan JC (2024). Monitoring wetland changes and analyzing the Spartina alterniflora invasion in the Yellow River Delta over the past 30 years based on Google Earth Engine. IEEE Geoscience and Remote Sensing Letters, 21, 5003005. DOI: 10.1109/LGRS.2024.3400027. |
[19] | Liu YF, Ma J, Wang XX, Zhong QY, Zong JM, Wu WB, Wang Q, Zhao B (2020). Joint effect of Spartina alterniflora invasion and reclamation on the spatial and temporal dynamics of tidal flats in Yangtze River Estuary. Remote Sensing, 12, 1725. DOI: 10.3390/rs12111725. |
[20] | Long XR, Lin H, An XX, Chen SD, Qi SY, Zhang M (2022). Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecological Indicators, 136, 108619. DOI: 10.1016/j.ecolind.2022.108619. |
[21] | Mao DH, Liu MY, Wang ZM, Li L, Man WD, Jia MM, Zhang YZ (2019). Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: spatiotemporal patterns and human prevention. Sensors, 19, 2308. DOI: 10.3390/s19102308. |
[22] | McNairn H, Shang J (2016). A review of multitemporal synthetic aperture radar (SAR) for crop monitoring//Ban Y. Multitemporal Remote Sensing. Remote Sensing and Digital Image Processing: Vol 20. Springer, Cham. 317-340. |
[23] | Mohajane M, Costache R, Karimi F, Pham QB, Essahlaoui A, Nguyen H, Laneve G, Oudija F (2021). Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecological Indicators, 129, 107869. DOI: 10.1016/j.ecolind.2021.107869. |
[24] | O’Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne BT, Turner MG, Zygmunt B, Christensen SW, Dale VH, Graham RL (1988). Indices of landscape pattern. Landscape Ecology, 1, 153-162. |
[25] | Passeri DL, Hagen SC, Medeiros SC, Bilskie MV, Alizad K, Wang D (2015). The dynamic effects of sea level rise on low-gradient coastal landscapes: a review. Earth’s Future, 3, 159-181. |
[26] | Qiu ZQ, Mao DH, Feng KD, Wang M, Xiang HX, Wang ZM (2022). High-resolution mapping changes in the invasion of Spartina alterniflora in the Yellow River Delta. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 6445-6455. |
[27] | Ren GB, Zhao YJ, Wang JB, Wu PQ, Ma Y (2021). Ecological effects analysis of Spartina alterniflora invasion within Yellow River delta using long time series remote sensing imagery. Estuarine, Coastal and Shelf Science, 249, 107111. DOI: 10.1016/j.ecss.2020.107111. |
[28] | Richards IV DF, Milewski AM, Becker S, Donaldson Y, Davidson LJ, Zowam FJ, Mrazek J, Durham M (2024). Evaluation and analysis of remote sensing-based approach for salt marsh monitoring. Remote Sensing, 16, 2. DOI: 10.3390/rs16010002. |
[29] | Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P, Homayouni S (2020). Support vector machine versus random forest for remote sensing image classification: a meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308-6325. |
[30] | Sun WW, Du Q (2019). Hyperspectral band selection: a review. IEEE Geoscience and Remote Sensing Magazine, 7, 118-139. |
[31] | Tian YL, Jia MM, Wang ZM, Mao DH, Du BJ, Wang C (2020). Monitoring invasion process of Spartina alterniflora by seasonal Sentinel-2 imagery and an object-based random forest classification. Remote Sensing, 12, 1383. DOI: 10.3390/rs12091383. |
[32] |
Vapnik VN (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988-999.
DOI PMID |
[33] | Wang Q, An SQ, Ma Z, Zhao B, Chen JK, Li B (2006). Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559-588. |
[34] | Wang X, Xiao X, Zou Z, Chen B, Ma J, Dong J, Doughty RB, Zhong Q, Qin Y, Dai S, LI X, Zhao B, Li B (2020). Tracking annual changes of coastal tidal flats in China during 1986-2016 through analyses of Landsat images with Google Earth Engine. Remote Sensing of Environment, 238, 110987. DOI: 10.1016/j.rse.2018.11.030. |
[35] | Wei CX, Guo B, Lu M, Zang WQ, Yang F, Liu C, Wang BY, Huang XZ, Liu YF, Yu Y, Li JL, Xu M (2023). The changes in dominant driving factors in the evolution process of wetland in the Yellow River Delta during 2015-2022. Remote Sensing, 15, 2858. DOI: 10.3390/rs15112858. |
[36] | Wu W, Grimes E, Suir G (2023). Impact of freshwater diversions on vegetation in coastal wetlands based on remote sensing derived vegetation index. Frontiers in Marine Science, 10, 1202300. DOI: 10.3389/fmars.2023.1202300. |
[37] | Xie CH, Zhang SY, Cui LZ, An WT, Tang JK (2022). Progress and trend of remote sensing classification of land cover in the Yellow River Delta. Science Technology and Engineering, 22, 14571-14583. |
[谢春华, 张帅影, 崔丽珍, 安文韬, 唐家奎 (2022). 黄河三角洲地物遥感分类研究进展与趋势. 科学技术与工程, 22, 14571-14583.] | |
[38] | Xie T, Wang Q, Ning ZH, Chen C, Cui BS, Bai JH, Shi W, Pang B (2021). Artificial modification on lateral hydrological connectivity promotes range expansion of invasive Spartina alterniflora in salt marshes of the Yellow River delta, China. Science of the Total Environment, 769, 144476. DOI: 10.1016/j.scitotenv.2020.144476. |
[39] | Yu JB, Zhan C, Li YZ, Zhou D, Fu YQ, Chu XJ, Xing QH, Han GX, Wang GM, Guan B, Wang Q (2016). Distribution of carbon, nitrogen and phosphorus in coastal wetland soil related land use in the Modern Yellow River Delta. Scientific Reports, 6, 37940. DOI: 10.1038/srep37940. |
[40] | Zhang CY, Chen SL, Li P, Liu QL (2022). Spatiotemporal dynamic remote sensing monitoring of typical wetland vegetation in the Current Huanghe River Estuary Reserve. Haiyang Xuebao, 44(1), 125-136. |
[张晨宇, 陈沈良, 李鹏, 刘清兰 (2022). 现行黄河口保护区典型湿地植被时空动态遥感监测. 海洋学报, 44(1), 125-136.] | |
[41] | Zhang JM, Chu L, Zhang ZX, Zhu B, Liu XY, Yang Q (2023). Evolution of small and micro wetlands and their driving factors in the Yangtze River Delta—A case study of Wuxi area. Remote Sensing, 15, 1152. DOI: 10.3390/rs15041152. |
[42] | Zhang X, Xiao XM, Wang XX, Xu X, Chen BQ, Wang J, Ma J, Zhao B, Li B (2020). Quantifying expansion and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during 1995-2018. Remote Sensing of Environment, 247, 111916. DOI: 10.1016/j.rse.2020.111916. |
[43] | Zhu X, Meng L, Zhang Y, Weng Q, Morris J (2019). Tidal and meteorological influences on the growth of invasive Spartina alterniflora: evidence from UAV remote sensing. Remote Sensing, 11, 1208. DOI: 10.3390/rs11101208. |
[1] | WANG Xiao-Ying, SUN Zhi-Gao, CHEN Bing-Bing, WU Hui-Hui, ZHANG Dang-Yu. Ex situ decomposition and phosphorus release characteristics of Spartina alterniflora litter in Minjiang estuary [J]. Chin J Plant Ecol, 2024, 48(7): 844-857. |
[2] | LI Xue, DONG Jie, HAN Guang-Xuan, ZHANG Qi-Qi, XIE Bao-Hua, LI Pei-Guang, ZHAO Ming-Liang, CHEN Ke-Long, SONG Wei-Min. Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta [J]. Chin J Plant Ecol, 2023, 47(3): 434-446. |
[3] | SHI Huan-Huan, XUE Qiong, YU Zhen-Lin, WANG Cheng-Huan. Effects of density and species proportion on intraspecific and interspecific interactions between salt marsh plants during seed germination [J]. Chin J Plant Ecol, 2023, 47(1): 77-87. |
[4] | SUN Hui-Min, JIANG Jiang, CUI Li-Na, ZHANG Shui-Feng, ZHANG Jin-Chi. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River Estuary [J]. Chin J Plant Ecol, 2018, 42(7): 774-784. |
[5] | Quan CHEN, Ke-Ming MA. Effects of Spartina alterniflora invasion on enrichment of sedimental heavy metals in a mangrove wetland and the underlying mechanisms [J]. Chin J Plant Ecol, 2017, 41(4): 409-417. |
[6] | Qing-Xian KONG, Jiang-Bao XIA, Zi-Guo ZHAO, Fan-Zhu QU. Effects of groundwater salinity on the characteristics of leaf photosynthesis and stem sap flow in Tamarix chinensis [J]. Chin J Plan Ecolo, 2016, 40(12): 1298-1309. |
[7] | Bao-Yu SUN, Guang-Xuan HAN, Liang CHEN, Xiao-Jing CHU, Qing-Hui XING, Li-Xin WU, Shu-Yu ZHU. Effects of elevated temperature on soil respiration in a coastal wetland during the non- growing season in the Yellow River Delta, China [J]. Chin J Plant Ecol, 2016, 40(11): 1111-1123. |
[8] | HU Chu-Qi,LIU Jin-Ke,WANG Tian-Hong,WANG Wen-Lin,LU Shan,ZHOU Chang-Fang. Influence of three types of salt stress on photosynthesis in Spartina alterniflora and Phragmites australis [J]. Chin J Plan Ecolo, 2015, 39(1): 92-103. |
[9] | XIA Jiang-Bao, ZHANG Shu-Yong, ZHAO Zi-Guo, ZHAO Yan-Yun, Gao Yuan, GU Guang-Yi, SUN Jing-Kuan. Critical effect of photosynthetic efficiency in Salix matsudana to soil moisture and its thres- hold grade in shell ridge island [J]. Chin J Plant Ecol, 2013, 37(9): 851-860. |
[10] | ZHU Min,ZHANG Zhen-Hua,YU Jun-Bao,WU Li-Xin,HAN Guang-Xuan,YANG Li-Qiong,XING Qing-Hui,XIE Bao-Hua,MAO Pei-Li,WANG Guang-Mei. Effect of nitrogen deposition on soil respiration in Phragmites australis wetland in the Yellow River Delta, China [J]. Chin J Plant Ecol, 2013, 37(6): 517-529. |
[11] | YANG Li-Qiong,HAN Guang-Xuan,YU Jun-Bao,WU Li-Xin,ZHU Min,XING Qing-Hui,WANG Guang-Mei,MAO Pei-Li. Effects of reclamation on net ecosystem CO2 exchange in wetland in the Yellow River Delta, China [J]. Chin J Plant Ecol, 2013, 37(6): 503-516. |
[12] | WU Da-Qian, LIU Jian, WANG Wei, DING Wen-Juan, WANG Ren-Qing. MUTISCALE ANALYSIS OF VEGETATION INDEX AND TOPOGRAPHIC VARIABLES IN THE YELLOW RIVER DELTA OF CHINA [J]. Chin J Plant Ecol, 2009, 33(2): 237-245. |
[13] | ZHAO Cong-Jiao, DENG Zi-Fa, ZHOU Chang-Fang, GUAN Bao-Hua, AN Shu-Qing, CHEN Lin, LU Xia-Mei. EFFECTS OF NITROGEN AVAILABILITY AND COMPETITION ON LEAF CHARACTERISTICS OF SPARTINA ALTERNIFLORA AND PHRAGMITES AUSTRALIS [J]. Chin J Plant Ecol, 2008, 32(2): 392-401. |
[14] | CHEN Lin, DENG Zi-Fa, AN Shu-Qing, ZHAO Cong-Jiao, ZHOU Chang-Fang, ZHI Ying-Biao. ALTERNATE IRRIGATION OF FRESH AND SALT WATER RESTRAINS CLONAL GROWTH AND REPRODUCTION OF SPARTINA ALTERNIFLORA [J]. Chin J Plant Ecol, 2007, 31(4): 645-651. |
[15] | HUANG Hua-Mei, ZHANG Li-Quan. REMOTE SENSING ANALYSIS OF RANGE EXPANSION OF SPARTINA ALTERNIFLORA AT JIUDUANSHA SHOALS IN SHANGHAI, CHINA [J]. Chin J Plant Ecol, 2007, 31(1): 75-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn