Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (4): 585-595.DOI: 10.17521/cjpe.2024.0140 cstr: 32100.14.cjpe.2024.0140
• Research Articles • Previous Articles Next Articles
DU Ying-Jie, FAN Ai-Lian, WANG Xue, YAN Xiao-Jun, CHEN Ting-Ting, JIA Lin-Qiao, JIANG Qi, CHEN Guang-Shui*()
Received:
2024-05-06
Accepted:
2024-11-12
Online:
2025-04-20
Published:
2025-04-18
Contact:
CHEN Guang-Shui
Supported by:
DU Ying-Jie, FAN Ai-Lian, WANG Xue, YAN Xiao-Jun, CHEN Ting-Ting, JIA Lin-Qiao, JIANG Qi, CHEN Guang-Shui. Coordination and differences in root-leaf functional traits between tree species and understory shrub species in a subtropical natural evergreen broadleaf forest[J]. Chin J Plant Ecol, 2025, 49(4): 585-595.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0140
物种 Species | 科 Family | 生长型 Growth form |
---|---|---|
米槠 Castanopsis carlesii | 壳斗科 Fagaceae | 乔木 Tree |
青冈 Cyclobalanopsis glauca | 壳斗科 Fagaceae | 乔木 Tree |
罗浮锥 Castanopsis faberi | 壳斗科 Fagaceae | 乔木 Tree |
苦槠 Castanopsis sclerophylla | 壳斗科 Fagaceae | 乔木 Tree |
观光木 Michelia odora | 木兰科 Magnoliaceae | 乔木 Tree |
沉水樟 Cinnamomum micranthum | 樟科 Lauraceae | 乔木 Tree |
刨花润楠 Machilus pauhoi | 樟科 Lauraceae | 乔木 Tree |
天竺桂 Cinnamomum japonicum | 樟科 Lauraceae | 乔木 Tree |
细柄蕈树 Altingia gracilipes | 蕈树科 Altingiaceae | 乔木 Tree |
木荷 Schima superba | 山茶科 Theaceae | 乔木 Tree |
杜茎山 Maesa japonica | 报春花科 Primulaceae | 灌木 Shrub |
罗浮冬青 Ilex tutcheri | 冬青科 Aquifoliaceae | 灌木 Shrub |
三花冬青 Ilex triflora | 冬青科 Aquifoliaceae | 灌木 Shrub |
檵木 Loropetalum chinense | 金缕梅科 Hamamelidaceae | 灌木 Shrub |
尖叶假蚊母树 Distyliopsis dunnii | 金缕梅科 Hamamelidaceae | 灌木 Shrub |
狗骨柴 Diplospora dubia | 茜草科 Rubiaceae | 灌木 Shrub |
娥眉鼠刺 Itea omeiensis | 鼠刺科 Iteaceae | 灌木 Shrub |
华幌伞枫 Heteropanax chinensis | 五加科 Araliaceae | 灌木 Shrub |
细枝柃 Eurya loquaiana | 五列木科 Pentaphylacaceae | 灌木 Shrub |
杨桐 Adinandra milletii | 五列木科 Pentaphylacaceae | 灌木 Shrub |
Table 1 Species and family names and growth types studied in Wanmulin Nature Reserve
物种 Species | 科 Family | 生长型 Growth form |
---|---|---|
米槠 Castanopsis carlesii | 壳斗科 Fagaceae | 乔木 Tree |
青冈 Cyclobalanopsis glauca | 壳斗科 Fagaceae | 乔木 Tree |
罗浮锥 Castanopsis faberi | 壳斗科 Fagaceae | 乔木 Tree |
苦槠 Castanopsis sclerophylla | 壳斗科 Fagaceae | 乔木 Tree |
观光木 Michelia odora | 木兰科 Magnoliaceae | 乔木 Tree |
沉水樟 Cinnamomum micranthum | 樟科 Lauraceae | 乔木 Tree |
刨花润楠 Machilus pauhoi | 樟科 Lauraceae | 乔木 Tree |
天竺桂 Cinnamomum japonicum | 樟科 Lauraceae | 乔木 Tree |
细柄蕈树 Altingia gracilipes | 蕈树科 Altingiaceae | 乔木 Tree |
木荷 Schima superba | 山茶科 Theaceae | 乔木 Tree |
杜茎山 Maesa japonica | 报春花科 Primulaceae | 灌木 Shrub |
罗浮冬青 Ilex tutcheri | 冬青科 Aquifoliaceae | 灌木 Shrub |
三花冬青 Ilex triflora | 冬青科 Aquifoliaceae | 灌木 Shrub |
檵木 Loropetalum chinense | 金缕梅科 Hamamelidaceae | 灌木 Shrub |
尖叶假蚊母树 Distyliopsis dunnii | 金缕梅科 Hamamelidaceae | 灌木 Shrub |
狗骨柴 Diplospora dubia | 茜草科 Rubiaceae | 灌木 Shrub |
娥眉鼠刺 Itea omeiensis | 鼠刺科 Iteaceae | 灌木 Shrub |
华幌伞枫 Heteropanax chinensis | 五加科 Araliaceae | 灌木 Shrub |
细枝柃 Eurya loquaiana | 五列木科 Pentaphylacaceae | 灌木 Shrub |
杨桐 Adinandra milletii | 五列木科 Pentaphylacaceae | 灌木 Shrub |
叶性状 Leaf trait | K | λ | 根性状 Root trait | K | λ |
---|---|---|---|---|---|
叶厚度 Leaf thickness | 0.11 | 0.00 | 根直径 Root diameter | 0.69 | 0.93 |
比叶面积 Specific leaf area | 0.14 | 0.00 | 比根长 Specific root length | 0.39 | 0.79 |
叶组织密度 Leaf tissue density | 0.14 | 0.00 | 根组织密度 Root tissue density | 0.39 | 0.20 |
叶碳浓度 Leaf carbon concentration | 0.19 | 0.33 | 根碳浓度 Root carbon concentration | 0.13 | 0.00 |
叶氮浓度 Leaf nitrogen concentration | 0.36 | 0.00 | 根氮浓度 Root nitrogen concentration | 0.83 | 0.92 |
Table 2 Phylogenetic signaling of leaf and first-order root traits of tree and shrub species in a subtropical natural evergreen broadleaf forest
叶性状 Leaf trait | K | λ | 根性状 Root trait | K | λ |
---|---|---|---|---|---|
叶厚度 Leaf thickness | 0.11 | 0.00 | 根直径 Root diameter | 0.69 | 0.93 |
比叶面积 Specific leaf area | 0.14 | 0.00 | 比根长 Specific root length | 0.39 | 0.79 |
叶组织密度 Leaf tissue density | 0.14 | 0.00 | 根组织密度 Root tissue density | 0.39 | 0.20 |
叶碳浓度 Leaf carbon concentration | 0.19 | 0.33 | 根碳浓度 Root carbon concentration | 0.13 | 0.00 |
叶氮浓度 Leaf nitrogen concentration | 0.36 | 0.00 | 根氮浓度 Root nitrogen concentration | 0.83 | 0.92 |
Fig. 1 Correlation networks between leaf and first-order root traits of tree and shrub species in a subtropical natural evergreen broadleaf forest. A, Without removal of phylogenetic signals. B, With removal phylogenetic signals. LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LT, leaf thickness; LTD, leaf tissue density; RCC, root carbon concentration; RD, root diameter; RNC, root nitrogen concentration; RTD, root tissue density; SLA, specific leaf area; SRL, specific root length. Nodes represent plant traits. Numbers in parentheses indicate the total number of associations between the trait and other traits. Blue and red edges indicate positive and negative correlations, respectively (p < 0.05).
Fig. 2 Principal component analysis (PCA) and phylogenetic principal component analysis (pPCA) of leaf and first-order root functional traits of tree and shrub species in a subtropical natural evergreen broadleaf forest. A, PCA of leaf traits. B, PCA of first-order root traits. C, pPCA of leaf traits. D, pPCA of first-order root traits. LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LT, leaf thickness; LTD, leaf tissue density; RCC, root carbon concentration; RD, root diameter; RNC, root nitrogen concentration; RTD, root tissue density; SLA, specific leaf area; SRL, specific root length.
叶PC1 Leaf PC1 | 叶PC2 Leaf PC2 | 叶pPC1 Leaf pPC1 | 叶pPC2 Leaf pPC2 | |
---|---|---|---|---|
根PC1 Root PC1 | -0.342 (0.14) | -0.136 (0.57) | ||
根PC2 Root PC2 | 0.002 (0.99) | 0.437 (0.11) | ||
根pPC1 Root pPC1 | 0.342 (0.14) | 0.134 (0.57) | ||
根pPC2 Root pPC2 | 0.004 (0.99) | 0.438 (0.11) |
Table 3 Correlations between the first two principal components of leaf and first-order root in a subtropical natural evergreen broadleaf forest (p value)
叶PC1 Leaf PC1 | 叶PC2 Leaf PC2 | 叶pPC1 Leaf pPC1 | 叶pPC2 Leaf pPC2 | |
---|---|---|---|---|
根PC1 Root PC1 | -0.342 (0.14) | -0.136 (0.57) | ||
根PC2 Root PC2 | 0.002 (0.99) | 0.437 (0.11) | ||
根pPC1 Root pPC1 | 0.342 (0.14) | 0.134 (0.57) | ||
根pPC2 Root pPC2 | 0.004 (0.99) | 0.438 (0.11) |
主成分分析 PCA | 轴 Axis | F | p | 系统发育主成分分析 pPCA | 轴 Axis | F | p |
---|---|---|---|---|---|---|---|
叶片 Leaf | PC1 | 0.165 | 0.689 | 叶片 Leaf | pPC1 | 0.165 | 0.689 |
PC2 | 1.422 | 0.249 | pPC2 | 1.422 | 0.249 | ||
细根 Fine root | PC1 | 12.545 | 0.002 | 细根 Fine root | pPC1 | 12.485 | 0.002 |
PC2 | 0.795 | 0.384 | pPC2 | 0.824 | 0.376 |
Table 4 Differences in economic axis scores for leaf and first-order root traits between tree and shrub species in a subtropical natural evergreen broadleaf forest
主成分分析 PCA | 轴 Axis | F | p | 系统发育主成分分析 pPCA | 轴 Axis | F | p |
---|---|---|---|---|---|---|---|
叶片 Leaf | PC1 | 0.165 | 0.689 | 叶片 Leaf | pPC1 | 0.165 | 0.689 |
PC2 | 1.422 | 0.249 | pPC2 | 1.422 | 0.249 | ||
细根 Fine root | PC1 | 12.545 | 0.002 | 细根 Fine root | pPC1 | 12.485 | 0.002 |
PC2 | 0.795 | 0.384 | pPC2 | 0.824 | 0.376 |
Fig. 3 Comparison of leaf and first-order root traits of trees and shrubs in a subtropical natural evergreen broadleaf forest. ns, p > 0.1; †, 0.05 < p < 0.1; *, p < 0.05; **, p < 0.01; “—”is median, and “□”indicates mean.
[1] |
Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI PMID |
[2] | Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699. |
[3] | Bergmann J, Weigelt A, van Der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez NR, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, McCormack ML, Meier IC, Rillig MC, Roumet C, et al. (2020). The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6, eaba3756. DOI: 10.1126/sciadv.aba3756. |
[4] |
Blomberg SP, Garland Jr T, Ives AR (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717-745.
DOI PMID |
[5] |
Chen WL, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016). Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 113, 8741-8746.
DOI PMID |
[6] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153. |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[7] | Cheng JH, Chu PF, Chen DM, Bai YF (2016). Functional correlations between specific leaf area and specific root length along a regional environmental gradient in Inner Mongolia grasslands. Functional Ecology, 30, 985-997. |
[8] | Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19. |
[9] | Erktan A, Roumet C, Munoz F (2023). Dissecting fine root diameter distribution at the community level captures root morphological diversity. Oikos, 2023, e08907. DOI: 10.1111/oik.08907. |
[10] | Evans JR, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 755-767. |
[11] | Freschet GT, Cornelissen JHC, Aerts R (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 98, 362-373. |
[12] |
Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018). Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytologist, 219, 1338-1352.
DOI PMID |
[13] |
Geng Y, Wang L, Jin DM, Liu HY, He JS (2014). Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia, 175, 445-455.
DOI PMID |
[14] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI PMID |
[15] | Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011). Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99, 954-963. |
[16] | Hu YK, Pan X, Yang XJ, Liu GF, Liu XY, Song YB, Zhang MY, Cui LJ, Dong M (2019). Is there coordination of leaf and fine root traits at local scales? A test in temperate forest swamps. Ecology and Evolution, 9, 8714-8723. |
[17] | Jin N, Yu XC, Dong JL, Duan MC, Mo YX, Feng LY, Bai R, Zhao JL, Song J, Dossa GGO, Lu HZ (2024). Vertical variation in leaf functional traits of Parashorea chinensis with different canopy layers. Frontiers in Plant Science, 15, 1335524. DOI: 10.3389/fpls.2024.1335524. |
[18] | Joswig JS, Wirth C, Schuman MC, Kattge J, Reu B, Wright IJ, Sippel SD, Rüger N, Richter R, Schaepman ME, van Bodegom PM, Cornelissen JHC, Díaz S, Hattingh WN, Kramer K, et al. (2022). Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology & Evolution, 6, 36-50. |
[19] | Kandlikar GS, Kleinhesselink AR, Kraft NJB (2022). Functional traits predict species responses to environmental variation in a California grassland annual plant community. Journal of Ecology, 110, 833-844. |
[20] |
Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not Lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 186, 708-721.
DOI PMID |
[21] | Kleyer M, Trinogga J, Cebrián-Piqueras MA, Trenkamp A, Fløjgaard C, Ejrnæs R, Bouma TJ, Minden V, Maier M, Mantilla-Contreras J, Albach DC, Blasius B (2019). Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. Journal of Ecology, 107, 829-842. |
[22] |
Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014). Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203, 863-872.
DOI PMID |
[23] | Kong DL, Wang JJ, Kardol P, Wu HF, Zeng H, Deng XB, Deng Y (2016). Economic strategies of plant absorptive roots vary with root diameter. Biogeosciences, 13, 415-424. |
[24] | Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016). Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104, 1299-1310. |
[25] | Li YP, Ni YL, Xu H, Lian JY, Ye WH (2021). Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 29, 1186-1197. |
[李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉 (2021). 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联. 生物多样性, 29, 1186-1197.]
DOI |
|
[26] |
Liu GF, Freschet GT, Pan X, Cornelissen JHC, Li Y, Dong M (2010). Coordinated variation in leaf and root traits across multiple spatial scales in Chinese semi-arid and arid ecosystems. New Phytologist, 188, 543-553.
DOI PMID |
[27] | Luo XZ, Keenan TF, Chen JM, Croft H, Colin Prentice I, Smith NG, Walker AP, Wang H, Wang R, Xu C, Zhang Y (2021). Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nature Communications, 12, 4866. DOI: 10.1038/s41467-021-25163-9. |
[28] | Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO (2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97. |
[29] | Makita N, Hirano Y, Yamanaka T, Yoshimura K, Kosugi Y (2012). Ectomycorrhizal-fungal colonization induces physio-morphological changes in Quercus serrata leaves and roots. Journal of Plant Nutrition and Soil Science, 175, 900-906. |
[30] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, et al. (2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[31] | Niinemets Ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469. |
[32] |
Niinemets Ü, Ellsworth DS, Lukjanova A, Tobias M (2001). Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology, 21, 1231-1244.
PMID |
[33] | Ntawuhiganayo EB, Uwizeye FK, Zibera E, Dusenge ME, Ziegler C, Ntirugulirwa B, Nsabimana D, Wallin G, Uddling J (2020). Traits controlling shade tolerance in tropical montane trees. Tree Physiology, 40, 183-197. |
[34] | Pagel M (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877-884. |
[35] |
Poorter H, Lambers H, Evans JR (2014). Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 201, 378-382.
DOI PMID |
[36] | Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588. |
[37] |
Silva JLA, Souza AF, Caliman A, Voigt EL, Lichston JE (2018). Weak whole-plant trait coordination in a seasonally dry South American stressful environment. Ecology and Evolution, 8, 4-12.
DOI PMID |
[38] | Silvertown J (2004). Plant coexistence and the niche. Trends in Ecology & Evolution, 19, 605-611. |
[39] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
PMID |
[40] |
Valladares F, Martinez-ferri E, Balaguer L, Perez-corona E, Manrique E (2000). Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytologist, 148, 79-91.
DOI PMID |
[41] |
Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017). A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist, 215, 1562-1573.
DOI PMID |
[42] | Valverde-Barrantes OJ, Horning AL, Smemo KA, Blackwood CB (2016). Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant and Soil, 404, 1-12. |
[43] | Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[44] | Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252. |
[45] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[46] |
Wang RL, Wang QF, Zhao N, Yu GR, He NP (2017). Complex trait relationships between leaves and absorptive roots: coordination in tissue N concentration but divergence in morphology. Ecology and Evolution, 7, 2697-2705.
DOI PMID |
[47] | Wang ZY, Chen XP, Cheng Y, Wang MT, Zhong QL, Li M, Cheng DL (2021). Leaf and fine root economics spectrum across 49 woody plant species in Wuyi Mountains. Chinese Journal of Plant Ecology, 45, 242-252. |
[王钊颖, 陈晓萍, 程英, 王满堂, 钟全林, 李曼, 程栋梁 (2021). 武夷山49种木本植物叶片与细根经济谱. 植物生态学报, 45, 242-252.] | |
[48] | Weemstra M, Freschet GT, Stokes A, Roumet C (2020). Patterns in intraspecific variation in root traits are species-specific along an elevation gradient. Functional Ecology, 35, 342-356. |
[49] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI PMID |
[50] |
Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramírez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, et al. (2021). An integrated framework of plant form and function: the belowground perspective. New Phytologist, 232, 42-59.
DOI PMID |
[51] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[52] | Yang YY, Xiao CC, Wu XM, Long WX, Feng G, Liu GY (2021). Differing trade-off patterns of tree vegetative organs in a tropical cloud forest. Frontiers in Plant Science, 12, 680379. DOI: 10.3389/fpls.2021.680379. |
[53] | Zhou T, Cui YC, Ye YY, Zhao WJ, Hou YJ, Wu P, Ding FJ (2022). Leaf functional traits of typical karst forest plants under different niches. Journal of Central South University of Forestry & Technology, 42(10), 129-140. |
[周汀, 崔迎春, 叶雨艳, 赵文君, 侯贻菊, 吴鹏, 丁访军 (2022). 不同小生境下典型喀斯特森林植物叶片功能性状特征. 中南林业科技大学学报, 42(10), 129-140.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn