Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (4): 596-609.DOI: 10.17521/cjpe.2024.0049 cstr: 32100.14.cjpe.2024.0049
• Research Articles • Previous Articles Next Articles
WANG Juan1, ZHANG Deng-Shan2, XIAO Yuan-Ming3,4, PEI Quan-Bang5, WANG Bo3,6, FAN Bo3, ZHOU Guo-Ying3,4,*()(
)
Received:
2024-02-18
Accepted:
2024-06-20
Online:
2025-04-20
Published:
2025-04-18
Contact:
ZHOU Guo-Ying
Supported by:
WANG Juan, ZHANG Deng-Shan, XIAO Yuan-Ming, PEI Quan-Bang, WANG Bo, FAN Bo, ZHOU Guo-Ying. Relationships between the characteristics of root exudate and environmental factors in the alpine steppe following long-term grazing exclusion[J]. Chin J Plant Ecol, 2025, 49(4): 596-609.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0049
土壤因子 Soil factor | 放牧 Grazing | 围封 Fencing | p |
---|---|---|---|
SWC (%) | 18.38 ± 0.40 | 21.17 ± 0.58 | 0.005 3 |
pH | 8.10 ± 0.05 | 8.03 ± 0.03 | 0.337 7 |
NH4+-N (mg·kg-1) | 8.59 ± 0.61 | 12.61 ± 1.12 | 0.018 6 |
NO3--N (mg·kg-1) | 7.94 ± 0.42 | 7.20 ± 0.77 | 0.430 9 |
AP (mg·kg-1) | 8.90 ± 0.64 | 9.71 ± 0.48 | 0.339 4 |
SOC (g·kg-1) | 30.17 ± 1.47 | 29.96 ± 1.14 | 0.913 2 |
TC (g·kg-1) | 47.15 ± 3.28 | 64.70 ± 6.68 | 0.028 9 |
TN (g·kg-1) | 3.34 ± 0.17 | 6.38 ± 0.44 | 0.000 6 |
TP (g·kg-1) | 0.18 ± 0.01 | 0.16 ± 0.02 | 0.425 9 |
Clay (%) | 13.70 ± 0.64 | 13.46 ± 0.60 | 0.788 0 |
Silt (%) | 32.18 ± 0.99 | 34.21 ± 1.01 | 0.189 9 |
Sand (%) | 51.53 ± 1.42 | 48.89 ± 1.16 | 0.397 3 |
Table 1 Differences of soil factors between grazing and fencing treatments in the alpine steppe (mean ± SE)
土壤因子 Soil factor | 放牧 Grazing | 围封 Fencing | p |
---|---|---|---|
SWC (%) | 18.38 ± 0.40 | 21.17 ± 0.58 | 0.005 3 |
pH | 8.10 ± 0.05 | 8.03 ± 0.03 | 0.337 7 |
NH4+-N (mg·kg-1) | 8.59 ± 0.61 | 12.61 ± 1.12 | 0.018 6 |
NO3--N (mg·kg-1) | 7.94 ± 0.42 | 7.20 ± 0.77 | 0.430 9 |
AP (mg·kg-1) | 8.90 ± 0.64 | 9.71 ± 0.48 | 0.339 4 |
SOC (g·kg-1) | 30.17 ± 1.47 | 29.96 ± 1.14 | 0.913 2 |
TC (g·kg-1) | 47.15 ± 3.28 | 64.70 ± 6.68 | 0.028 9 |
TN (g·kg-1) | 3.34 ± 0.17 | 6.38 ± 0.44 | 0.000 6 |
TP (g·kg-1) | 0.18 ± 0.01 | 0.16 ± 0.02 | 0.425 9 |
Clay (%) | 13.70 ± 0.64 | 13.46 ± 0.60 | 0.788 0 |
Silt (%) | 32.18 ± 0.99 | 34.21 ± 1.01 | 0.189 9 |
Sand (%) | 51.53 ± 1.42 | 48.89 ± 1.16 | 0.397 3 |
功能群 Functional group | 物种名 Species name | 放牧 Grazing | 重要值 IV (%) | 围封 Fencing | 重要值 IV (%) |
---|---|---|---|---|---|
禾草 Grass (6) | 紫花针茅 Stipa purpurea | √ | 10.61 | √ | 11.60 |
草地早熟禾 Poa pratensis | √ | 7.55 | √ | 8.22 | |
赖草 Leymus secalinus | √ | 7.08 | √ | 47.18 | |
![]() | √ | 5.14 | √ | 3.01 | |
冰草 Agropyron cristatum | √ | 5.02 | √ | 3.16 | |
垂穗披碱草 Elymus nutans | √ | 4.33 | - | - | |
豆科 Legume (3) | 披针叶黄华 Thermopsis lanceolata | √ | 1.93 | √ | 1.55 |
甘肃棘豆 Oxytropis kansuensis | √ | 0.63 | - | - | |
多枝黄耆 Astragalus polycladus | √ | 1.81 | - | - | |
莎草 Sedge (2) | 无穗柄薹草 Carex ivanoviae | √ | 4.82 | √ | 5.79 |
矮生嵩草 Kobresia humilis | √ | 2.50 | - | - | |
杂类草 Forb (13) | 马蔺 Iris lactea | √ | 4.64 | - | - |
阿尔泰狗娃花 Aster altaicus | √ | 4.51 | √ | 3.31 | |
三辐柴胡 Bupleurum triradiatum | √ | 3.15 | √ | 0.90 | |
蒲公英 Taraxacum mongolicum | √ | 2.45 | - | - | |
葵花大蓟 Cirsium souliei | √ | 1.56 | - | - | |
白花枝子花 Dracocephalum heterophyllum | √ | 1.48 | √ | 1.78 | |
猪毛蒿 Artemisia scoparia | √ | 1.29 | - | - | |
蕨麻 Argentina anserina | √ | 1.16 | √ | 4.64 | |
狼毒 Stellera chamaejasme | √ | 0.82 | - | - | |
楔叶委陵菜 Potentilla cuneata | √ | 0.77 | - | - | |
乳白香青 Anaphalis lactea | √ | 0.68 | - | - | |
甘肃马先蒿 Pedicularis kansuensis | √ | 0.66 | - | - | |
达乌里秦艽 Gentiana dahurica | √ | 0.21 | - | - |
Table 2 Species composition of plant community between grazing and fencing treatments in the alpine steppe
功能群 Functional group | 物种名 Species name | 放牧 Grazing | 重要值 IV (%) | 围封 Fencing | 重要值 IV (%) |
---|---|---|---|---|---|
禾草 Grass (6) | 紫花针茅 Stipa purpurea | √ | 10.61 | √ | 11.60 |
草地早熟禾 Poa pratensis | √ | 7.55 | √ | 8.22 | |
赖草 Leymus secalinus | √ | 7.08 | √ | 47.18 | |
![]() | √ | 5.14 | √ | 3.01 | |
冰草 Agropyron cristatum | √ | 5.02 | √ | 3.16 | |
垂穗披碱草 Elymus nutans | √ | 4.33 | - | - | |
豆科 Legume (3) | 披针叶黄华 Thermopsis lanceolata | √ | 1.93 | √ | 1.55 |
甘肃棘豆 Oxytropis kansuensis | √ | 0.63 | - | - | |
多枝黄耆 Astragalus polycladus | √ | 1.81 | - | - | |
莎草 Sedge (2) | 无穗柄薹草 Carex ivanoviae | √ | 4.82 | √ | 5.79 |
矮生嵩草 Kobresia humilis | √ | 2.50 | - | - | |
杂类草 Forb (13) | 马蔺 Iris lactea | √ | 4.64 | - | - |
阿尔泰狗娃花 Aster altaicus | √ | 4.51 | √ | 3.31 | |
三辐柴胡 Bupleurum triradiatum | √ | 3.15 | √ | 0.90 | |
蒲公英 Taraxacum mongolicum | √ | 2.45 | - | - | |
葵花大蓟 Cirsium souliei | √ | 1.56 | - | - | |
白花枝子花 Dracocephalum heterophyllum | √ | 1.48 | √ | 1.78 | |
猪毛蒿 Artemisia scoparia | √ | 1.29 | - | - | |
蕨麻 Argentina anserina | √ | 1.16 | √ | 4.64 | |
狼毒 Stellera chamaejasme | √ | 0.82 | - | - | |
楔叶委陵菜 Potentilla cuneata | √ | 0.77 | - | - | |
乳白香青 Anaphalis lactea | √ | 0.68 | - | - | |
甘肃马先蒿 Pedicularis kansuensis | √ | 0.66 | - | - | |
达乌里秦艽 Gentiana dahurica | √ | 0.21 | - | - |
Fig. 2 Differences of root exudates characteristics at plant community level under grazing and fencing treatment in the alpine steppe (mean ± SE). C, carbon; N, nitrogen; P, phosphorus.
Fig. 3 Differences of root exudates characteristics at species level under grazing and fencing treatment in the alpine steppe (mean ± SE). Multiple comparison results of root exudates characteristics at species level within a treatment are presented with letters, in which different lowercase letters indicate significant differences in root exudation characteristics between species under grazing treatment (p < 0.05), and different uppercase letters indicate significant differences in root exudation characteristics between species under enclosure treatment (p < 0.01). C, carbon; N, nitrogen; P, phosphorus.
Fig. 4 Relationships between root exudates characteristics at plant community level and environmental factors. *, p < 0.05; **, p < 0.01; ***, p < 0.001. NMDS, non-metric multidimensional scaling. C, carbon; N, nitrogen; P, phosphorus.
[1] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[2] | Cai G, Shahbaz M, Ge T, Hu Y, Li B, Yuan H, Wang Y, Liu Y, Liu Q, Shibistova O, Sauheitl L, Wu J, Guggenberger G, Zhu Z (2022). Root exudates with low C/N ratios accelerate CO2 emissions from paddy soil. Land Degradation & Development, 33, 1193-1203. |
[3] | Chari NR, Taylor BN (2022). Soil organic matter formation and loss are mediated by root exudates in a temperate forest. Nature Geoscience, 15, 1011-1016. |
[4] | Chen H, Tang HY, Guo JH, Pang C, Wang YH, Wu YH, She YC (2023). Root exudates’ roles and analytical techniques progress. Soils, 55, 225-233. |
[陈虹, 唐昊冶, 郭家欢, 潘畅, 王如海, 吴永红, 余元春 (2023). 根系分泌物主要作用及解析技术进展. 土壤, 55, 225-233.] | |
[5] | Coban O, de Deyn GB, van der Ploeg M (2022). Soil microbiota as game-changers in restoration of degraded lands. Science, 375, abe0725. DOI: 10.1126/science.abe0725. |
[6] | Craine JM, Jackson RD (2010). Plant nitrogen and phosphorus limitation in 98 North American grassland soils. Plant and Soil, 334, 73-84. |
[7] |
Dietz S, Herz K, Döll S, Haider S, Jandt U, Bruelheide H, Scheel D (2019). Semi-polar root exudates in natural grassland communities. Ecology and Evolution, 9, 5526-5541.
DOI |
[8] | Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D (2020). Root exudate composition of grass and forb species in natural grasslands. Scientific Reports, 10, 10691. DOI: 10.1038/s41598-019-54309-5. |
[9] | Dong SK (2023). Revitalizing the grassland on the Qinghai-Tibetan Plateau. Grassland Research, 2, 241-250. |
[10] | Du CJ, Jing J, Shen Y, Liu HX, Gao YH (2020). Short-term grazing exclusion improved topsoil conditions and plant characteristics in degraded alpine grasslands. Ecological Indicators, 108, 105680. DOI: 10.1016/j.ecolind.2019.105680. |
[11] | Fang HT, Weng BS, Chang WJ, Yang YH, Gong XY (2022). Characteristics of root distribution in alpine meadows and the relationship with soil temperature and moisture. Acta Agrestia Sinica, 30, 612-621. |
[房昊天, 翁白莎, 常文娟, 杨裕恒, 宫晓艳 (2022). 高寒草甸根系分布特征及与土壤温湿度关系的研究. 草地学报, 30, 612-621.]
DOI |
|
[12] | Feng H, Fu R, Luo J, Hou X, Gao K, Su L, Xu Y, Miao Y, Liu Y, Xu Z, Zhang N, Shen Q, Xun W, Zhang R (2023). Listening to plant’s esperanto via root exudates: reprogramming the functional expression of plant growth- promoting rhizobacteria. New Phytologist, 239, 2307-2319. |
[13] | Guo WJ, Zhang ZL, Liu Q, Yin HJ (2019). Research progress of root exudates collection technology. Chinese Journal of Applied Ecology, 30, 3951-3962. |
[郭婉玑, 张子良, 刘庆, 尹华军 (2019). 根系分泌物收集技术研究进展. 应用生态学报, 30, 3951-3962.]
DOI |
|
[14] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[15] | He HL, Qi YB, Lv JL, Peng PP, Yan ZR, Tang ZQ, Cui K, Zhang KY (2023). Development and revision of the Chinese soil texture classification system. Journal of Agricultural Resources and Environment, 40, 501-510. |
[何海龙, 齐雁冰, 吕家珑, 彭佩佩, 晏梓然, 唐子茜, 崔珂, 张恺玥 (2023). 中国土壤质地分类系统的发展与建议修订方案. 农业资源与环境学报, 40, 501-510.] | |
[16] | He JS, Liu ZP, Yao T, Sun SC, Lü Z, Hu XW, Cao GM, Wu XW, Li L, Bu HY, Zhu JX (2020). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38(17), 66-80. |
[贺金生, 刘志鹏, 姚拓, 孙书存, 吕植, 胡小文, 曹广民, 吴新卫, 李黎, 卜海燕, 朱剑霄 (2020). 青藏高原退化草地恢复的制约因子及修复技术. 科技导报, 38(17), 66-80.]
DOI |
|
[17] | He W, Yuan Y, Zhang Z, Xiao J, Liu Q, Laiho R, Yin H (2021). Effect of N addition on root exudation and associated microbial N transformation under Sibiraea angustata in an alpine shrubland. Plant and Soil, 460, 469-481. |
[18] | Jiao S, Lu YH, Wei GH (2022). Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology, 28, 140-153. |
[19] | Jing ZB, Cheng JM, Su JS, Bai Y, Jin JW (2014). Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland. Ecological Engineering, 64, 171-178. |
[20] | Kong CH, Zhang SZ, Li YH, Xia ZC, Yang XF, Meiners SJ, Wang P (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications, 9, 3867. DOI: 10.1038/s41467-018-06429-1. |
[21] | Kuzyakov Y, Domanski G (2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431. |
[22] | Li C, Liu L, Zheng L, Yu Y, Mushinski RM, Zhou Y, Xiao C (2021a). Greater soil water and nitrogen availability increase C:N ratios of root exudates in a temperate steppe. Soil Biology & Biochemistry, 161, 108384. DOI: 10.1016/j.soilbio.2021.108384. |
[23] | Li J, Li WL, Xu XL (2021b). Root exudates induce rhizosphere effect benefits for plant N use efficiency and fitness of relatives for Glycine max. Plant and Soil, 469, 243-258. |
[24] |
Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
PMID |
[25] | Liao L, Wang J, Dijkstra FA, Lei S, Zhang L, Wang X, Liu G, Zhang C (2024). Nitrogen enrichment stimulates rhizosphere multi-element cycling genes via mediating plant biomass and root exudates. Soil Biology & Biochemistry, 190, 109306. DOI: 10.1016/j.soilbio.2023.109306. |
[26] | Liao Q, Liu H, Lu C, Liu J, Waigi MG, Ling W (2021). Root exudates enhance the PAH degradation and degrading gene abundance in soils. Science of the Total Environment, 764, 144436. DOI: 10.1016/j.scitotenv.2020.144436. |
[27] | Liu Y, Shahbaz M, Ge T, Zhu Z, Liu S, Chen L, Wu X, Deng Y, Lu S, Wu J (2020). Effects of root exudate stoichiometry on CO2 emission from paddy soil. European Journal of Soil Biology, 101, 103247. DOI: 10.1016/j.ejsobi.2020.103247. |
[28] |
Liu ZJ, Yang J, Long YP, Zhang C, Wang DP, Zhang XW, Dong WT, Zhao L, Liu CW, Zhai JX, Wang ET (2023). Single-nucleus transcriptomes reveal spatiotemporal symbiotic perception and early response in Medicago. Nature Plants, 9, 1734-1748.
DOI PMID |
[29] | Luo YQ, Zhao XY, Li MX (2012). Ecological effect of plant root exudates and related affecting factors: a review. Chinese Journal of Applied Ecology, 23, 3496-3504. |
[罗永清, 赵学勇, 李美霞 (2012). 植物根系分泌物生态效应及其影响因素研究综述. 应用生态学报, 23, 3496-3504.] | |
[30] | Panchal P, Preece C, Peñuelas J, Giri J (2022). Soil carbon sequestration by root exudates. Trends in Plant Science, 27, 749-757. |
[31] | Shen X, Yang F, Xiao CW, Zhou Y (2020). Increased contribution of root exudates to soil carbon input during grassland degradation. Soil Biology & Biochemistry, 146, 107817. DOI: 10.1016/j.soilbio.2020.107817. |
[32] |
Sun J, Liang E, Barrio IC, Chen J, Wang J, Fu B (2021). Fences undermine biodiversity targets. Science, 374, 269-269.
DOI PMID |
[33] |
Walker TS, Bais HP, Grotewold E, Vivanco JM (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44-51.
DOI PMID |
[34] | Wang J, Liao LR, Wang GL, Liu HF, Wu Y, Liu GB, Zhang C (2022). N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence. Science of the Total Environment, 804, 150148. DOI: 10.1016/j.scitotenv.2021.150148. |
[35] | Wang J, Wang XT, Liu GB, Wang GL, Wu Y, Zhang C (2020). Fencing as an effective approach for restoration of alpine meadows: evidence from nutrient limitation of soil microbes. Geoderma, 363, 114148. DOI: 10.1016/j.geoderma.2019.114148. |
[36] | Wang J, Xiao YM, Wang B, Fan B, Zhang DS, Zhou GY (2023). Different effects of long-term grazing exclusion and growth stages on soil fungi and bacteria in an alpine steppe on the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 47, e02641. DOI: 10.1016/j.gecco.2023.e02641. |
[37] | Wang J, Zhang DS, Xiao YM, Wang B, Zhou GY (2023). Diversity of species and functional traits drive jointly responses of aboveground biomass to long-term grazing exclusion at alpine steppe. Acta Ecologica Sinica, 43, 2465-2475. |
[王娟, 张登山, 肖元明, 王博, 周国英 (2023). 物种多样性和功能性状驱动高寒草原地上生物量对长期禁牧的响应. 生态学报, 43, 2465-2475.] | |
[38] | Wang XF, Ma HB, Liu J, Miao HT, Shen Y, Zhou Y, Ma JL (2022). Research advances on the effects of grazing on plant functional traits in grassland. Chinese Journal of Applied Ecology, 33, 569-576. |
[王晓芳, 马红彬, 刘杰, 苗海涛, 沈艳, 周瑶, 马静利 (2022). 放牧对草原植物功能性状影响研究进展. 应用生态学报, 33, 569-576.]
DOI |
|
[39] | Wen T, Yu GH, Hong WD, Yuan J, Niu GQ, Xie PH, Sun FS, Guo LD, Kuzyakov Y, Shen QR (2022a). Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundamental Research, 2, 697-707. |
[40] | Wen Z, White PJ, Shen J, Lambers H (2022b). Linking root exudation to belowground economic traits for resource acquisition. New Phytologist, 233, 1620-1635. |
[41] | Williams A, Langridge H, Straathof AL, Fox G, Muhammadali H, Hollywood KA, Xu Y, Goodacre R, de Vries FT (2021). Comparing root exudate collection techniques: an improved hybrid method. Soil Biology & Biochemistry, 161, 108391. DOI: 10.1016/j.soilbio.2021.108391. |
[42] | Williams A, Langridge H, Straathof AL, Muhamadali H, Hollywood KA, Goodacre R, de Vries FT (2022). Root functional traits explain root exudation rate and composition across a range of grassland species. Journal of Ecology, 110, 21-33. |
[43] |
Wu LK, Lin XM, Lin WX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310.
DOI |
[吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI |
|
[44] | Wu QY, Lin YL, Sun YH, Wei QH, Liu JT, Li XF, Cui GW (2021). Research progress on effects of root exudates on plant growth and soil nutrient uptake. Chinese Journal of Grassland, 43(11), 97-104. |
[吴清莹, 林宇龙, 孙一航, 魏千皓, 刘婧婷, 李雪峰, 崔国文 (2021). 根系分泌物对植物生长和土壤养分吸收的影响研究进展. 中国草地学报, 43(11), 97-104.] | |
[45] | Wu TN, Wu GL, Wang D, Shi ZH (2014). Soil-hydrological properties response to grazing exclusion in a steppe grassland of the Loess Plateau. Environmental Earth Sciences, 71, 745-752. |
[46] | Wu XW, Wang YC, Sun SC (2021). Long-term fencing decreases plant diversity and soil organic carbon concentration of the Zoige alpine meadows on the eastern Tibetan Plateau. Plant and Soil, 458, 191-200. |
[47] | Xiao YM, Li CB, Yang Y, Peng YF, Yang YH, Zhou GY (2020). Soil fungal community composition, not assembly process, was altered by nitrogen addition and precipitation changes at an alpine steppe. Frontiers in Microbiology, 11, 579072. DOI: 10.3389/fmicb.2020.579072. |
[48] | Yan S, Yin L, Dijkstra FA, Wang P, Cheng W (2023). Priming effect on soil carbon decomposition by root exudate surrogates: a meta-analysis. Soil Biology & Biochemistry, 178, 108955. DOI: 10.1016/j.soilbio.2023.108955. |
[49] | Yu HW, He YY, Zhang W, Chen L, Zhang JL, Zhang XB, Dawson W, Ding JQ (2022). Greater chemical signaling in root exudates enhances soil mutualistic associations in invasive plants compared to natives. New Phytologist, 236, 1140-1153. |
[50] | Yu Y, Zhou Y, Janssens IA, Deng Y, He X, Liu L, Yi Y, Xiao N, Wang X, Li C, Xiao C (2024). Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. Global Change Biology, 30, e17111. DOI: 10.1111/gcb.17111. |
[51] | Zhang BB, Liu F, Ding JZ, Fang K, Yang GB, Liu L, Chen YL, Li F, Yang YH (2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: an updated evaluation using deep cores. Chinese Journal of Plant Ecology, 40, 93-101. |
[张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合 (2016). 青藏高原高寒草地3米深度土壤无机碳库及分布特征. 植物生态学报, 40, 93-101.]
DOI |
|
[52] | Zhang F, Hou Y, Zed R, Mauchline TH, Shen J, Zhang F, Jin K (2023a). Root exudation of organic acid anions and recruitment of beneficial actinobacteria facilitate phosphorus uptake by maize in compacted silt loam soil. Soil Biology & Biochemistry, 109074. DOI: 10.1016/j.soilbio.2023.109074. |
[53] | Zhang XB, Pei GT, Sun JF, Huang YX, Huang QQ, Xie HX, Mo JY, Zhao MJ, Hu BQ (2023b). Responses of soil nitrogen cycling to changes in aboveground plant litter inputs: a meta-analysis. Geoderma, 439, 116678. DOI: 10.1016/j.geoderma.2023.116678. |
[54] | Zhao M, Zhao J, Yuan J, Hale L, Wen T, Huang Q, Vivanco J, Zhou J, Kowalchuk GA, Shen Q (2021). Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell & Environment, 44, 613-628. |
[55] | Zheng D, Zhao DS (2017). Characteristics of natural environment of the Tibetan Plateau. Science & Technology Review, 35(6), 13-22. |
[郑度, 赵东升 (2017). 青藏高原的自然环境特征. 科技导报, 35(6), 13-22.]
DOI |
|
[56] |
Zhou M, Guo YM, Sheng J, Yuan YJ, Zhang WH, Bai WM (2022). Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytologist, 234, 422-434.
DOI PMID |
[57] | Zhou S, Lin JJ, Wang P, Zhu P, Zhu B (2023b). Resistant soil organic carbon is more vulnerable to priming by root exudate fractions than relatively active soil organic carbon. Plant and Soil, 488, 71-82. |
[58] | Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z, Wu F, Dini-Andreote F (2023a). Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant, 16, 849-864. |
[59] | Zhu GD, Guo N, Lü GY, Wang CJ (2020). Effects of enclosure on soil physiochemical properties and stable carbon and nitrogen isotopes in Inner Mongolia Desert Steppe. Soils, 52, 840-845. |
[朱国栋, 郭娜, 吕广一, 王成杰 (2020). 围封对内蒙古荒漠草原土壤理化性质及稳定碳氮同位素的影响. 土壤, 52, 840-845.] |
[1] | ZHANG Hui, ZHAO Yun-Peng, LIU Xiao-Chen, GUO Zeng-Peng, HU Guo-Rui, FENG Yan-Hao, MA Miao-Jun. Dynamics of soil seed bank and its role in plant community regeneration during alpine meadow degradation [J]. Chin J Plant Ecol, 2025, 49(1): 74-82. |
[2] | WANG Wen-Ying, XIAO Yuan-Ming, WANG Xiao-Yun, XU Jia-Xin, MA Yu-Hua, LI Qiang-Feng, ZHOU Guo-Ying. Relationship between plant diversity and ecosystem multifunctionality in degraded alpine meadows under multifunctional group species combination models [J]. Chin J Plant Ecol, 2025, 49(1): 103-117. |
[3] | WANG Lin, LI Xue, WANG Yu, WANG Xin, HU Xiao-Wen, YANG Mei, ZHU Jian-Xiao. Effects of different coating agents on seed growth and planting of native grasses in alpine grassland [J]. Chin J Plant Ecol, 2025, 49(1): 118-128. |
[4] | WANG Yi-Tong, Yeerjiang BAIKETUERHAN, LIAO Dan, WANG Juan. Correlation between elemental biometric characteristics and sexual dimorphism in leaves of dioecious Acer barbinerve at different growth stages [J]. Chin J Plant Ecol, 2024, 48(6): 760-769. |
[5] | LI Yun-Yi, ZHENG Jin, YAN Xiao-Yan, LI Shuang, LUO Lin, TONG Jin, ZHAO Chun-Zhang. Effects of warming on phyllosphere and rhizosphere bacterial communities in Picea asperata and Fargesia nitida [J]. Chin J Plant Ecol, 2024, 48(12): 1692-1707. |
[6] | LI Lin, SUN Yi, YANG Xiao-Qiong, FANG Hai-Dong, YAN Bang-Guo. Response of endophytes in root nodules of Arachis hypogaea ‘Qicai’ to nitrogen addition and its relationship with plant stoichiometry characteristics [J]. Chin J Plant Ecol, 2024, 48(10): 1374-1384. |
[7] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[8] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[9] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[10] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[11] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[12] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[13] | JIN Yi-Li, WANG Hao-Yan, WEI Lin-Feng, HOU Ying, HU Jing, WU Kai, XIA Hao-Jun, XIA Jie, ZHOU Bo-Rui, LI Kai, NI Jian. A plot-based dataset of plant community on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(7): 846-854. |
[14] | LU Jing, MA Zong-Qi, GAO Peng-Fei, FAN Bao-Li, SUN Kun. Changes in the Hippophae tibetana population structure and dynamics, a pioneer species of succession, to altitudinal gradients in the Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(5): 569-579. |
[15] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn