Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (4): 610-623.DOI: 10.17521/cjpe.2024.0194 cstr: 32100.14.cjpe.2024.0194
• Research Articles • Previous Articles Next Articles
LI Xin-Yi1,2(), ZHANG Li-Fang2,3, WU You-Gui4, GUO Jing5, LAN Rong-Guang4, LÜ Hong-Fei6, YU Ming-Jian1,2,*(
)(
)
Received:
2024-06-12
Accepted:
2024-11-12
Online:
2025-04-20
Published:
2025-04-18
Contact:
YU Ming-Jian
Supported by:
LI Xin-Yi, ZHANG Li-Fang, WU You-Gui, GUO Jing, LAN Rong-Guang, LÜ Hong-Fei, YU Ming-Jian. Growth characteristics of Abies beshanzuensis seedlings at different altitudes and the influencing factors[J]. Chin J Plant Ecol, 2025, 49(4): 610-623.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0194
指标 Indicator | 低海拔实验区 Low-altitude area (m) | 高海拔实验区 High-altitude area (m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
500 | 600 | 700 | 800 | 900 | 1 000 | 1 100 | 1 200 | 1 300 | 1 400 | 1 500 | ||
2022年4月幼苗数量 Number of seedlings in April 2022 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
2023年4月幼苗数量 Number of seedlings in April 2023 | 5 | 9 | 9 | 10 | 9 | 10 | 10 | 9 | 9 | 10 | 10 | |
存活率 Survival rate (%) | 50 | 90 | 90 | 100 | 90 | 100 | 100 | 90 | 90 | 100 | 100 |
Table 1 Survival rate of Abies beshanzuensis seedlings at different altitudes
指标 Indicator | 低海拔实验区 Low-altitude area (m) | 高海拔实验区 High-altitude area (m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
500 | 600 | 700 | 800 | 900 | 1 000 | 1 100 | 1 200 | 1 300 | 1 400 | 1 500 | ||
2022年4月幼苗数量 Number of seedlings in April 2022 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
2023年4月幼苗数量 Number of seedlings in April 2023 | 5 | 9 | 9 | 10 | 9 | 10 | 10 | 9 | 9 | 10 | 10 | |
存活率 Survival rate (%) | 50 | 90 | 90 | 100 | 90 | 100 | 100 | 90 | 90 | 100 | 100 |
Fig. 1 Height (A, B), crown width (C, D), and base diameter (E, F) of Abies beshanzuensis seedlings in different altitudes. *** represents the significance of the difference in seedling growth rate between the two experimental areas (p < 0.001), ns means non-significance (p > 0.05). The white box represents the high-altitude experimental area and the grey box represents the low-altitude experimental area. Identical lowercase letters above the boxes indicate non-significant difference in growth metrics between altitudes, while different lowercase letters indicate significant difference at the 0.05 level.
Fig. 2 Height growth rate (A, B), crown width growth rate (C, D), and base diameter growth rate (E, F) of Abies beshanzuensis seedlings in different altitudes. * represents the significance of the difference in seedling growth between the two experimental areas (**, p < 0.01; ***, p < 0.001). The white box represents the high-altitude experimental area and the grey box represents the low-altitude experimental area. Identical lowercase letters above the boxes indicate non-significant difference in growth metrics between altitudes, while different lowercase letters indicate significant difference at the 0.05 level.
Fig. 3 Chao1 index (A, B), Shannon-Wiener’s diversity index (C, D), and Simpson’s diversity index (E, F) of bacteria and fungi in low- and high-altitude experimental areas. The higher the value of Chao1 index, the higher the richness of species. The higher the value of Shannon-Wiener’s diversity index, the higher the species diversity. The higher the value of Simpson’s diversity index, the lower the species evenness. * represents the significance of the difference in bacterial and fungal α diversity between the two experimental areas (**, p < 0.01; ***, p < 0.001), ns means non-significance (p < 0.05).
Fig. 4 Variation in the Chao1 index (A, B), Shannon-Wiener’s diversity index (C, D), and Simpson’s diversity index (E, F) of bacteria and fungi along the altitude gradient. Identical lowercase letters indicate no significant difference in α diversity indices of microorganisms between the low- and high-altitude experimental areas, while different lowercase letters indicate significant difference at the 0.05 significance level, and ns indicates non-significant difference (p < 0.05).
Fig. 5 Variation in abiotic factors (A-N) along the altitude. AP, available phosphorus content in soil; C:N, carbon-to-nitrogen ratio in soil; MWRC, maximum water retaining capacity of soil; NH4+-N, ammonium nitrogen content in soil; NO- 3-N, nitrate nitrogen content in soil; N:P, nitrogen-to-phosphorus ratio in soil; pH, soil acidity; TC, total carbon content in soil; TN, total nitrogen content in soil; TP, total phosphorus content in soil. The vertical axis represents Z-score standardized values. Blue dashed lines indicate non-significant regression results (p > 0.05), while red solid lines indicate significant results (p < 0.05). Gray shaded area represents the 95% confidence interval.
Fig. 6 Correlation analysis of environmental factors and seedling growth of Abies beshanzuensis. Blue represents the negative correlation, red represents the positive correlation; the darker the color, the greater the correlation. * represents the significance level (*, p < 0.05; **, p < 0.01; ***, p < 0.001). AP, available phosphorus content in soil; Chao1 16S, the bacterial Chao1 index; Chao1 ITS, the fungal Chao1 index; C:N, carbon-to-nitrogen ratio in soil; DGR, the growth rate of seedling base diameter; HGR, the growth rate of seedling height; MWRC, maximum water retaining capacity of soil; NH4+-N, ammonium nitrogen content in soil; NO- 3-N, nitrate nitrogen content in soil; N:P, nitrogen-to-phosphorus ratio in soil; pH, soil acidity; Shannon 16S, the bacterial Shannon-Wiener’s diversity index; Shannon ITS, the fungal Shannon-Wiener’s diversity index; Simpson 16S, the bacterial Simpson’s diversity index; Simpson ITS, the fungal Simpson’s diversity index; TC, total carbon content in soil; TN, total nitrogen content in soil; TP, total phosphorus content in soil; WGR, the growth rate of seedling crown width.
Fig. 7 Regression slopes of height (A), crown width (B), base diameter (C), height growth rate (D), crown width growth rate (E), and base diameter growth rate (F) of Abies beshanzuensis seedlings against the environmental factors of Simpson 16S, simpson ITS, PC1, or PC2 (mean ± SE). * represents the significance level (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The abbreviation for the microbial diversity index is consistent with those used in Fig. 6. PC, principal component.
[1] |
Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003). Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiology, 23, 33-41.
PMID |
[2] | Chandanie WA, Kubota M, Hyakumachi M (2005). Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and growth promotion of cucumber (Cucumis sativus L.). Mycoscience, 46, 201-204. |
[3] | Chen YK, Yang XB, Yang Q, Li DH, Long WX, Luo WQ (2014). Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. PLoS ONE, 9, e97751. DOI: 10.1371/journal.pone.0097751. |
[4] | Cheng QB, Wu MX, Chen HT (1996). Comprehensive observations report on Fengyangshan-Baishanzu Nature Reserve of Zhejiang. Journal of Zhejiang Forestry Science and Technology, 16(6), 1-7. |
[程秋波, 吴鸣翔, 陈豪庭 (1996). 浙江凤阳山-百山祖自然保护区综合考察报告. 浙江林业科技, 16(6), 1-7.] | |
[5] | Ding XN, Shi T, Yang LF, Yang H, Wang KX, Guo XF, Shi GA (2019). Correlation between seed quality and meteorological factors of oil tree peony Fengdan at different altitudes. Journal of Henan Agricultural Sciences, 48(11), 120-126. |
[丁熙柠, 史田, 杨林菲, 杨辉, 王凯轩, 郭香凤, 史国安 (2019). 不同海拔高度油用牡丹凤丹籽粒品质与气象因子的相关性研究. 河南农业科学, 48(11), 120-126.] | |
[6] | Gan YT, Stobbe EH, Njue C (1996). Evaluation of selected nonlinear regression models in quantifying seedling emergence rate of spring wheat. Crop Science, 36, 165-168. |
[7] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI PMID |
[8] | Herbert DA, Williams M, Rastetter EB (2003). A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150. |
[9] | Högberg P, Näsholm T, Franklin O, Högberg MN (2017). Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management, 403, 161-185. |
[10] | Huang J, Mo JM (2016). The effect of simulated nitrogen deposition on the emission of carbonyl compounds from Ormosia pinnata and Cinnamomum burmannii. Expert Opinion on Environmental Biology, s1, 2016. DOI: 10.4172/2325-9655.S1-004. |
[11] |
Huang YX, Xu X, Zhang LX, Song Y, Luo ZR (2016). Ten-years period of grass and small woody plant dynamics in a 5-ha evergreen forest plot in Baishanzu, Zhejiang Province. Biodiversity Science, 24, 1353-1363.
DOI |
[黄云霞, 徐萱, 张莉芗, 宋玥, 骆争荣 (2016). 百山祖常绿阔叶林灌草层物种组成和分布的10年动态. 生物多样性, 24, 1353-1363.]
DOI |
|
[12] | International Union for Conservation of Nature and Natural Resources (IUCN) (1987). The most endangered twelve animals and twelve plants. Species: Newsletter of the SSC, 8, 21-24. |
[13] | International Union for Conservation of Nature and Natural Resources (IUCN)(2021). The IUCN Red List of Threatened Species 2021. [2024-6-11]. https://www.iucnredlist.org/species/32318/150298372. |
[14] | Jiang Y, Zhuang QL, Liang WJ (2007). Soil organic carbon pool and its affecting factors in farmland ecosystem. Chinese Journal of Ecology, 26, 278-285. |
[姜勇, 庄秋丽, 梁文举 (2007). 农田生态系统土壤有机碳库及其影响因子. 生态学杂志, 26, 278-285.] | |
[15] | Li JX, Kong FC (2000). Introduction and cultivation of Primula vialii. Yunnan Agricultural Science and Technology, (3), 28-29. |
[李景秀, 孔繁才 (2000). 高穗报春的引种栽培. 云南农业科技, (3), 28-29.] | |
[16] | Li XX, Tao C, Wang QC, Cui GF (2012). Characteristics of geographic distribution of four critically endangered species of Abies in subtropical China and its relationship with climate. Chinese Journal of Plant Ecology, 36, 1154-1164. |
[李晓笑, 陶翠, 王清春, 崔国发 (2012). 中国亚热带地区4种极危冷杉属植物的地理分布特征及其与气候的关系. 植物生态学报, 36, 1154-1164.]
DOI |
|
[17] | Lin X (1999). The world’s most endangered plant—Abies beshanzuensis. Man and the Biosphere, (3), 48. |
[林协 (1999). 世界最濒危植物——百山祖冷杉. 中国生物圈保护区, (3), 48.] | |
[18] | Liu BY, Tang H, Wang ML, Liang HL, Wen XY, Deng CH (2021). Seed germination and seedling growth and development characteristics of Illicicum difengpi, an endemic plant of karst region. Seed, 40(1), 63-68. |
[刘宝玉, 唐辉, 王满莲, 梁惠凌, 文香英, 邓成华 (2021). 喀斯特特有植物地枫皮种子萌发及幼苗生长发育特性研究. 种子, 40(1), 63-68.] | |
[19] | Liu C, Tian T, Li S, Wang F, Liang Y (2018). Growth response of Chinese woody plant seedlings to different light intensities. Acta Ecologica Sinica, 38, 518-527. |
[刘从, 田甜, 李珊, 王芳, 梁宇 (2018). 中国木本植物幼苗生长对光照强度的响应. 生态学报, 38, 518-527.] | |
[20] | Liu M, Li ZP, Zhang TL, Jiang CY, Che YP (2011). Discrepancy in response of rice yield and soil fertility to long-term chemical fertilization and organic amendments in paddy soils cultivated from infertile upland in subtropical China. Agricultural Sciences in China, 10, 259-266. |
[21] | Liu YH, Zhou RZ, Zeng QW (1997). Ex situ conservation of Magnoliaceae including its rare and endangered species. Journal of Tropical and Subtropical Botany, 5(2), 1-12. |
[刘玉壶, 周仁章, 曾庆文 (1997). 木兰科植物及其珍稀濒危种类的迁地保护. 热带亚热带植物学报, 5(2), 1-12.] | |
[22] | Ma JP, Pang DB, Chen L, Wan HY, Chen GL, Li XB (2022). Characteristics of soil microbial community structure under vegetation at different altitudes in Helan Mountains. Acta Ecologica Sinica, 42, 667-676. |
[马进鹏, 庞丹波, 陈林, 万红云, 陈高路, 李学斌 (2022). 贺兰山不同海拔植被下土壤微生物群落结构特征. 生态学报, 42, 667-676.] | |
[23] | Maeda SI, Konishi M, Yanagisawa S, Omata T (2014). Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant & Cell Physiology, 55, 1311-1324. |
[24] | National Forestry and Grassland Administration, Ministry of Agriculture and Rural Affairs (2021). List of National Key Protected Wild Plants.[2024-6-11]. https://www.forestry.gov.cn/c/www/lczc/10746.jhtml. |
[ 国家林业和草原局, 农业农村部 (2021). 国家重点保护野生植物名录.[2024-6-11]. https://www.forestry.gov.cn/c/www/lczc/10746.jhtml. | |
[25] | Newton LA, Runkle ES (2009). High-temperature inhibition of flowering of Phalaenopsis and doritaenopsis orchids. HortScience, 44, 1271-1276. |
[26] | Pan HL, Li MH, Cai XH, Wu J, Du Z, Liu XL (2009). Responses of growth and ecophsiology of plants to altitude. Ecology and Environmental Sciences, 18, 722-730. |
[潘红丽, 李迈和, 蔡小虎, 吴杰, 杜忠, 刘兴良 (2009). 海拔梯度上的植物生长与生理生态特性. 生态环境学报, 18, 722-730.]
DOI |
|
[27] | Pang Z (2023). Physiological Response and Transcriptome Analysis of Abies beshanzunesis M. H. Wu Seedlings to Different Altitudes and High Temperature Stress. Master degree dissertation, Zhejiang Sci-Tech University, Hangzhou. |
[庞振 (2023). 百山祖冷杉苗木对不同海拔高度和高温胁迫的生理响应及转录组分析. 硕士学位论文, 浙江理工大学, 杭州.] | |
[28] |
Qiu ZW, Jiang HE, Ding LL, Shang X (2020). Late Pleistocene-Holocene vegetation history and anthropogenic activities deduced from pollen spectra and archaeological data at Guxu Lake, Eastern China. Scientific Reports, 10, 9306. DOI: 10.1038/s41598-020-65834-z.
PMID |
[29] | Russell MB, Weiskittel AR (2011). Maximum and largest crown width equations for 15 tree species in Maine. Northern Journal of Applied Forestry, 28, 84-91. |
[30] | Shao YZ, Zhang XC, Phan LK, Xiang QP (2017). Elevation shift in Abies Mill. (Pinaceae) of subtropical and temperate China and Vietnam-corroborative evidence from cytoplasmic DNA and ecological niche modeling. Frontiers in Plant Science, 8, 578. DOI: 10.3389/fpls.2017.00578. |
[31] | Song C, Zeng FJ, Liu B, Zhang LG, Luo WC, Peng SL, Stefan KA (2012). Influence of water condition on morphological characteristics and biomass of Calligonum caput-medusae Schrenk seedlings. Chinese Journal of Ecology, 31, 2225-2233. |
[宋聪, 曾凡江, 刘波, 张利刚, 罗维成, 彭守兰, Stefan KA (2012). 不同水分条件对头状沙拐枣幼苗形态特征及生物量的影响. 生态学杂志, 31, 2225-2233.] | |
[32] | Sui YY, Zhang XY, Jiao XG, Wang QC, Zhao J (2005). Effect of long-term different fertilizer applications on organic matter and nitrogen of black farmland. Journal of Soil Water Conservation, 19(6), 192-194. |
[隋跃宇, 张兴义, 焦晓光, 王其存, 赵军 (2005). 长期不同施肥制度对农田黑土有机质和氮素的影响. 水土保持学报, 19(6), 192-194.] | |
[33] | Tang H, Li TT, Shen CH, Hu YY, Wu JS (2014). Effects of nitrogen forms on foliar photosynthesis, nutrient status and nitrogen metabolism of Torreya grandis seedlings. Scientia Silvae Sinicae, 50(10), 158-163. |
[唐辉, 李婷婷, 沈朝华, 胡渊渊, 吴家胜 (2014). 氮素形态对香榧苗期光合作用、主要元素吸收及氮代谢的影响. 林业科学, 50(10), 158-163.] | |
[34] | Tao S, Hua XY, Wang YN, Guo N, Yan XF, Lin JX (2017). Research advance in effects of different nitrogen forms on growth and physiology of plants. Guizhou Agricultural Sciences, 45(12), 64-68. |
[陶爽, 华晓雨, 王英男, 郭娜, 阎秀峰, 蔺吉祥 (2017). 不同氮素形态对植物生长与生理影响的研究进展. 贵州农业科学, 45(12), 64-68.] | |
[35] |
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406-1423.
DOI PMID |
[36] | Wang GH, Jin J, Xu MN, Liu XB (2006). Effects of plant, soil and soil management on soil microbial community diversity. Chinese Journal of Ecology, 25, 550-556. |
[王光华, 金剑, 徐美娜, 刘晓冰 (2006). 植物、土壤及土壤管理对土壤微生物群落结构的影响. 生态学杂志, 25, 550-556.] | |
[37] | Wu MX (1976). Abies beshanzuensis M. H. Wu—A new species of Abies from Chekiang. Journal of Systematics and Evolution, 14(2), 15-21. |
[吴鸣翔 (1976). 百山祖冷杉——一种新的冷杉的发现. 植物分类学报, 14(2), 15-21.] | |
[38] | Wu YG (2019). Save critically endangered plants and protect Abies beshanzuensis in all aspects. Zhejiang Forestry, (9), 36-37. |
[吴友贵 (2019). 拯救极度濒危植物——全方位保护百山祖冷杉. 浙江林业, (9), 36-37.] | |
[39] | Wu YG, Rao LB, Chen DL, Zhou RF, Ye ZL (2010). Artificial seedling-raising of Abies beshanzuensis seed. Journal of Anhui Agricultural Sciences, 38, 12038-12039. |
[吴友贵, 饶龙兵, 陈德良, 周荣飞, 叶珍林 (2010). 百山祖冷杉种子的人工育苗试验. 安徽农业科学, 38, 12038-12039.] | |
[40] | Wu YG, Zhu ZC, Wu QQ, Cai HM, Chen DY (2023). The seed rain of critically endangered plant Abies beshanzuensis. Bulletin of Botanical Research, 43, 711-719. |
[吴友贵, 朱志成, 吴倩倩, 蔡焕满, 陈定云 (2023). 极危植物百山祖冷杉的种子雨. 植物研究, 43, 711-719.]
DOI |
|
[41] | Xiang QP (2001). A preliminary survey on the distribution of rare and endangered plants of Abies in China. Guihaia, 21(2), 113-117. |
[向巧萍 (2001). 中国的几种珍稀濒危冷杉属植物及其地理分布成因的探讨. 广西植物, 21(2), 113-117.] | |
[42] | Xiang XG, Cao M, Zhou ZK (2006). Fossil history and modern distribution of the genus Abies (Pinaceae). Acta Botanica Yunnanica, 28, 439-452. |
[向小果, 曹明, 周浙昆 (2006). 松科冷杉属植物的化石历史和现代分布. 云南植物研究, 28, 439-452.] | |
[43] |
Xing Y, Ma XH (2015). Research progress on effect of nitrogen form on plant growth. Journal of Agricultural Science and Technology, 17(2), 109-117.
DOI |
[邢瑶, 马兴华 (2015). 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 17(2), 109-117.] | |
[44] | Zhu YG, Miller RM (2003). Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends in Plant Science, 8, 407-409. |
[1] | ZHU Rui-De, YANG Jun-Wei, LIU Xiao-Han, CHEN Bing-Rui, CHI Xiu-Lian, TIAN Di, YANG Guang, Cheng Meng, DAI Ya-feng, WANG Shi-wen, CHEN Zhong. Nutrient regulation of plant-microbial association in Dendrobium huoshanense facilities and understory cultivation patterns [J]. , 2025, 49(地上地下生态过程关联): 0-. |
[2] | long MA Wang YuQing 瑜 Hao YuHao 继超 Duan JichaoDuan 霏霏 Liu FeifeiLiu 琳乔 Xi LinqiaoXi Lu HAN. Effects of altitude gradient on the community composition and diversity of steppe plant and soil microorganisms in the northern slope of Kunlun Mountains, Xinjiang [J]. Chin J Plant Ecol, 2025, 49(5): 732-747. |
[3] | Yao-Yao SHANGGUAN Xue-dan Gu Zhang zhengzhong hu zhao Jian-fang YAN xingyu wei. Response of Reaumuria songorica seedlings to photoperiod and light quality ratio [J]. Chin J Plant Ecol, 2025, 49(5): 788-800. |
[4] | OUYANG Zi-Long, JIA Xiang-Lu, SHI Jing-Zhong, TENG Wei-Chao, LIU Xiu. Effects of growth regulators on photosynthetic characteristics of Rhizophora stylosa seedlings under low temperature stress and re-warming [J]. Chin J Plant Ecol, 2025, 49(4): 638-652. |
[5] | GE Xiao-Cai, LI Jing-Long, SUN Jun, WU Pan-Pan, HU Dan-Dan, CHENG Dong-Liang, ZHONG Quan-Lin. Characteristics of soil respiration components and influencing factors in the subalpine meadows of Wuyi Mountain [J]. Chin J Plant Ecol, 2025, 49(3): 502-512. |
[6] | ZHENG Lin-Min, XIONG Xiao-Ling, JIANG Yong-Meng, WANG Man, ZHANG Jin-Xiu, ZENG Zhi-Wei, LYU Mao-Kui, XIE Jin-Sheng. Decomposition regularities of leaf litter and fine roots of Cunninghamia lanceolata and their divergent drivers at different altitudes in the Wuyi Mountain [J]. Chin J Plant Ecol, 2025, 49(2): 244-255. |
[7] | MA Lu-Hua, MENG Xian-Chao, WANG Gui-Qiang, MA Zi-Feng, LI Yi-Kang, LI Yue-Mei, ZHOU Hua-Kun, ZHANG Fa-Wei, LIN Li. Effects of moss crust inoculation on soil properties and microbial communities in alpine meadow in Sanjiangyuan, China [J]. Chin J Plant Ecol, 2025, 49(1): 173-188. |
[8] | QIAN Ni-Peng, GAO Hao-Xin, SONG Chao-Jie, DONG Chun-Chao, LIU Qi-Jing. Seasonal dynamics of radial growth of Betula platyphylla and its response to environmental factors in Changbai Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 1001-1010. |
[9] | LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect [J]. Chin J Plant Ecol, 2024, 48(7): 817-827. |
[10] | XU Zi-Yi, JIN Guang-Ze. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaf-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[11] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[12] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[13] | ZHAO Chang-Ti, XIA Qing-Lin, TIAN Di, CHEN Bing-Rui, ZHU Rui-De, LIU Xiao-Han, YU Guo, JI Cheng-Jun. Effects of long-term nitrogen addition on leaf secondary metabolites of the dominant plant species in a temperate deciduous broad-leaved forest [J]. Chin J Plant Ecol, 2024, 48(12): 1576-1588. |
[14] | TAO Qiong, MIAO Ning, YUE Xi-Ming, LUO Jian-Qiong, XUE Pan-Pan, WANG Hui. Influencing factors of biomass accumulation and allocation of Abies fargesii var. faxoniana seedlings in the subalpine region of western Sichuan, China [J]. Chin J Plant Ecol, 2024, 48(11): 1459-1470. |
[15] | WANG Yan-Ling, ZHAO Li-Jun, ZHU Li-Qiong, MO Ruo-Guo, LIN Ting, ZHAO Xiao-Yu. Seedling quantitative characteristics and dynamics of Syzygium hancei populations in Guangxi, China [J]. Chin J Plant Ecol, 2023, 47(9): 1278-1286. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 313
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn