Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (4): 624-637.DOI: 10.17521/cjpe.2024.0379 cstr: 32100.14.cjpe.2024.0379
• Research Articles • Previous Articles Next Articles
YAN Xiao-Li1, LIU Gui-Mei1, LI Xiao-Yu1, JIANG Yu-Xiang1, QUAN Xiao-Qiang1, WANG Yan-Ru1, QU Lu-Ping2, TANG Xing-Hao1,3,*()
Received:
2024-10-23
Accepted:
2024-12-09
Online:
2025-04-20
Published:
2025-04-18
Contact:
TANG Xing-Hao
Supported by:
YAN Xiao-Li, LIU Gui-Mei, LI Xiao-Yu, JIANG Yu-Xiang, QUAN Xiao-Qiang, WANG Yan-Ru, QU Lu-Ping, TANG Xing-Hao. Photosynthetic characteristics and chlorophyll fluorescence parameters in Schima superba seedlings under different level of nitrogen addition and NH4+-N to NO3--N ratio[J]. Chin J Plant Ecol, 2025, 49(4): 624-637.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0379
参数和公式 Parameter and formula | 生物学意义 Biological meaning |
---|---|
ABS/CSm = Fm | 单位面积吸收的光能 Light energy absorbed per unit area |
TRo/CSm = φPo (ABS/CSm) | 单位面积捕获的光能 Light energy captured per unit area |
ETo/CSm = φEo (ABS/CSm) | 单位面积电子传递的量子产额 Quantum yield of electron transport per unit area |
DIo/CSm = (ABS/CSm) - (TRo/CSm) | 单位面积的热耗散 Heat dissipation per unit area |
ABS/RC = Mo × (1/Vj) × (1/φPo) | 单位反应中心吸收的光能 Unit of light energy absorbed by the reaction center |
TRo/RC = Mo × (1/Vj) | 单位反应中心捕获的用于初级电子受体(QA)的能量 Unit of energy captured by the reaction center for primary electron acceptor (QA) |
ETo/RC = Mo × (1/Vj) × ψo | 单位反应中心捕获的用于电子传递的能量 A unit of energy captured by a reaction center for electron transport |
DIo/RC = ABS/RC - TRo/RC | 单位反应中心耗散掉的能量 Unit of energy dissipated from the reaction center |
PIabs = (RC/ABS)[φPo/(1 − φPo)][ψo/(1 − ψo)] | 以吸收光能为基础的性能指数 Performance index based on absorption of light energy |
Table 1 Formulas and terms used in OJIP curve analysis
参数和公式 Parameter and formula | 生物学意义 Biological meaning |
---|---|
ABS/CSm = Fm | 单位面积吸收的光能 Light energy absorbed per unit area |
TRo/CSm = φPo (ABS/CSm) | 单位面积捕获的光能 Light energy captured per unit area |
ETo/CSm = φEo (ABS/CSm) | 单位面积电子传递的量子产额 Quantum yield of electron transport per unit area |
DIo/CSm = (ABS/CSm) - (TRo/CSm) | 单位面积的热耗散 Heat dissipation per unit area |
ABS/RC = Mo × (1/Vj) × (1/φPo) | 单位反应中心吸收的光能 Unit of light energy absorbed by the reaction center |
TRo/RC = Mo × (1/Vj) | 单位反应中心捕获的用于初级电子受体(QA)的能量 Unit of energy captured by the reaction center for primary electron acceptor (QA) |
ETo/RC = Mo × (1/Vj) × ψo | 单位反应中心捕获的用于电子传递的能量 A unit of energy captured by a reaction center for electron transport |
DIo/RC = ABS/RC - TRo/RC | 单位反应中心耗散掉的能量 Unit of energy dissipated from the reaction center |
PIabs = (RC/ABS)[φPo/(1 − φPo)][ψo/(1 − ψo)] | 以吸收光能为基础的性能指数 Performance index based on absorption of light energy |
Fig. 1 Photosynthetic characteristics parameters of Schima superba seedlings under different nitrogen addition levels (x) and NH4+-N to NO3--N ratios (y) (mean ± SE). Different lowercase letters indicate significant differences between varying nitrogen addition levels and NH4+-N to NO3--N ratios (p < 0.05). LN, MN and HN simplified as nitrogen addition level of 0.5, 1.0 and 2.0 mmol·L-1, respectively. **, p < 0.01; ***, p < 0.001.
Fig. 2 Chlorophyll (Chl) content of Schima superba seedlings under varying nitrogen addition levels (x) and NH4+-N to NO3--N ratios (y) (mean ± SE). Different lowercase letters indicate significant differences between different nitrogen addition levels and NH4+-N to NO3--N ratios (p < 0.05). LN, MN and HN simplified as nitrogen addition level 0.5, 1.0 and 2.0 mmol·L-1, respectively. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 3 Chlorophyll fluorescence kinetic curves of Schima superba seedlings under varying nitrogen addition levels and NH4+-N to NO3--N ratios. LN, MN and HN simplified as nitrogen addition level 0.5, 1.0 and 2.0 mmol·L-1, respectively. Vt, relatively variable fluorescence; ΔVt, differences in relative variable fluorescence.
Fig. 4 Comparative radar map of chlorophyll fluorescence parameters in Schima superba seedlings under varying nitrogen addition levels and NH4+-N to NO3--N ratios. LN, MN and HN simplified as nitrogen addition level 0.5, 1.0 and 2.0 mmol·L-1, respectively. Parameters see Table 1.
Fig. 5 Biomass of Schima superba seedlings under varying nitrogen addition levels (x) and NH4+-N to NO3--N ratios (y) (mean ± SE). Different lowercase letters indicate significant differences between different nitrogen addition levels and NH4+-N to NO3--N ratio (p < 0.05). LN, MN and HN simplified as nitrogen addition level 0.5, 1.0 and 2.0 mmol·L-1, respectively. **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
[1] |
Bauer GA, Berntson GM (2001). Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture. Tree Physiology, 21, 137-144.
PMID |
[2] | Britto DT, Kronzucker HJ (2005). Plant nitrogen transport and its regulation in changing soil environments. Journal of Crop Improvement, 15, 1-23. |
[3] | Cai DS, Chen QQ, Pei XX, Zhang J, Gong SF (2023). Effects of different nitrogen forms on leaf anatomical structure and photosynthetic characteristics of Camellia oleifera seedlings. Journal of Forest and Environment, 43, 194-200. |
[蔡东升, 陈情情, 裴欣睲, 张健, 龚守富 (2023). 不同氮素形态对油茶苗叶片解剖结构与光合特性的影响. 森林与环境学报, 43, 194-200.] | |
[4] | Carvalho PA, Oliveira LE, Sodek L, Carvalho JND (2015). Nitrogen metabolism in the roots of rubber tree (Hevea brasiliensis) plants supplied with nitrate or ammonium as nitrogen source during hypoxia. Australian Journal of Crop Science, 9, 1278-1285. |
[5] | Chen C, He XD, Qin JZ, Liu GH (2013). Comparison of chlorophyll fluorescence Fv/Fm characteristics of four Michelia trees. Journal of Anhui Agricultural University, 40(1), 32-37. |
[陈辰, 何小定, 秦金舟, 刘桂华 (2013). 4种含笑叶片叶绿素荧光参数Fv/Fm特性的比较. 安徽农业大学学报, 40(1), 32-37.] | |
[6] | Dąbrowski P, Baczewska AH, Pawluśkiewicz B, Paunov M, Alexantrov V, Goltsev V, Kalaji MH (2016). Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. Journal of Photochemistry and Photobiology B: Biology, 157, 22-31. |
[7] | Du XL, Yu H, Gao YL, Liu XF, Huang JX, Xiong DC (2023). Effects of nitrogen deposition on biomass and biomass allocation in Chinese fir saplings. Journal of Forest and Environment, 43, 523-529. |
[杜旭龙, 余恒, 高艳丽, 刘小飞, 黄锦学, 熊德成 (2023). 氮沉降对杉木幼树生物量及其分配的影响. 森林与环境学报, 43, 523-529.] | |
[8] | Du YD, Yuan XY, Feng ZZ (2023). Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar. Chinese Journal of Plant Ecology, 47, 348-360. |
[杜英东, 袁相洋, 冯兆忠 (2023). 不同形态氮对杨树光合特性及生长的影响. 植物生态学报, 47, 348-360.]
DOI |
|
[9] |
Feng HL, Guo JH, Peng CH, Kneeshaw D, Roberge G, Pan C, Ma XH, Zhou D, Wang WF (2023). Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: a global meta-analysis. Global Change Biology, 29, 3970-3989.
DOI PMID |
[10] | Feng YX, Shang H, Cao JX, Ni XY, Chen Z (2022). Interactive effects of elevated CO2and nitrogen fertilization on physiological characteristics of Schima superba seedings. Ecology and Environmental Sciences, 31, 1773-1782. |
[冯永霞, 尚鹤, 曹吉鑫, 倪秀雅, 陈展 (2022). CO2升高和施氮互作对木荷幼苗生理特性的影响. 生态环境学报, 31, 1773-1782.]
DOI |
|
[11] | Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW, Neitlich P (2003). Ecological effects of nitrogen deposition in the western United States. BioScience, 53, 404-420. |
[12] | Gao JF, Han F, Zhang JY, Xia L, Ji H, Li HB, Liu BT (2022). The covariation and plasticity of root traits drive different rice genotypes to adapt to the nitrogen environment. Journal of Plant Nutrition and Fertilizers, 28, 611-621. |
[高剑飞, 韩飞, 张家铱, 夏蕾, 吉卉, 李洪波, 刘碧桃 (2022). 根性状的共变性和可塑性驱动不同水稻基因型对氮环境的适应性. 植物营养与肥料学报, 28, 611-621.] | |
[13] | Gao Y, Liu W, Wang X, Yang L, Han S, Chen S, Strasser RJ, Valverde BE, Qiang S (2018). Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii. Plant Physiology and Biochemistry, 128, 1-12. |
[14] | Guo SL, Yan XF, Bai B, Yu S (2005). Effects of nitrogen supply on photosynthesis in larch seedlings. Acta Ecologica Sinica, 25, 1291-1298. |
[郭盛磊, 阎秀峰, 白冰, 于爽 (2005). 供氮水平对落叶松幼苗光合作用的影响. 生态学报, 25, 1291-1298.] | |
[15] | Huang JL, Wang Y (2015). Effects of soil water stress on fast chlorophyll fluorescence induction of Pistacia weinmannifolia. Acta Botanica Boreali-Occidentalia Sinica, 35, 2505-2512. |
[黄俊玲, 王妍 (2015). 干热河谷乡土树种叶绿素荧光特征对水分胁迫的响应. 西北植物学报, 35, 2505-2512.] | |
[16] | Huang XH, Feng DL, Liu Y, Zhu HX, Chen DJ, Geng YH (2016). Growth and chlorophyll fluorescence characteristics of mulberry trees in simulated environment of heterogeneous habitats of a rocky desertification area. Journal of Beijing Forestry University, 38(10), 50-58. |
[黄小辉, 冯大兰, 刘芸, 朱恒星, 陈道静, 耿养会 (2016). 模拟石漠化异质生境中桑树的生长和叶绿素荧光特性. 北京林业大学学报, 38(10), 50-58.] | |
[17] | Li HX, Li ZH, Xing YJ, Bai H (2020). Effects of different levels of nitrogen supply on biomass and photosynthetic characteristics of Quercus mongolica seedlings. Journal of Northwest Forestry University, 35(6), 116-120. |
[李海霞, 李正华, 邢亚娟, 白卉 (2020). 不同供氮水平对蒙古栎幼苗生物量与光合特性的影响. 西北林学院学报, 35(6), 116-120.] | |
[18] | Li MY, Wang J, Wang ZX, Wu XY, Huang RZ, Zhu JM (2013). Photosynthetic characteristics, biomass allocation, C, N and P distribution of Schima superba seedlings in response to simulated nitrogen deposition. Acta Ecologica Sinica, 33, 1569-1577. |
[李明月, 王健, 王振兴, 吴晓燕, 黄儒珠, 朱锦懋 (2013). 模拟氮沉降条件下木荷幼苗光合特性、生物量与C、N、P分配格局. 生态学报, 33, 1569-1577.] | |
[19] | Li TT, Yang L, Li XX, Wang YS, Wang XW (2023). Different nitrogen forms on the photosynthetic characteristics and growth of Fraxinus mandshurica and Quercus mongolica. Bulletin of Botanical Research, 43, 207-217. |
[李婷婷, 杨柳, 李晓霞, 王奕淞, 王秀伟 (2023). 水曲柳和蒙古栎光合特性和生长对不同氮素形态的响应. 植物研究, 43, 207-217.]
DOI |
|
[20] | Li YP, Gu XB, Li YN, Fang H, Chen PP (2023). Ridge-furrow mulching combined with appropriate nitrogen rate for enhancing photosynthetic efficiency, yield and water use efficiency of summer maize in a semi-arid region of China. Agricultural Water Management, 287, 108450. DOI: 10.1016/j.agwat.2023.108450. |
[21] | Lin YC, Tsay YF (2023). Study of vacuole glycerate transporter NPF8.4 reveals a new role of photorespiration in C/N balance. Nature Plants, 9, 803-816. |
[22] | Liu QQ, Ma XQ, Huang ZJ, Li YJ, Zhuang Z, Zhu CX, Liu B (2018). Effects of light quality on leaf chlorophyll fluorescence parameters and antioxidant enzyme activities of Schima superba and Cunninghamia lanceolata seedlings. Chinese Journal of Ecology, 37, 869-876. |
[刘青青, 马祥庆, 黄智军, 李艳娟, 庄正, 朱晨曦, 刘博 (2018). 不同光质对木荷、杉木幼苗叶片叶绿素荧光参数和抗氧化酶活性的影响. 生态学杂志, 37, 869-876.] | |
[23] | Liu QY, Wang HM, Xu XL (2020). Root nitrogen acquisition strategy of trees and understory species in a subtropical pine plantation in Southern China. European Journal of Forest Research, 139, 791-804. |
[24] | Liu ZJ, Lin WS, Yang ZR, Lin YW, Liu XF, Chen YM, Yang YS (2017). Effects of soil warming and nitrogen deposition on available nitrogen in a young Cunninghamia lanceolata stand in mid-subtropical China. Acta Ecologica Sinica, 37, 44-53. |
[刘志江, 林伟盛, 杨舟然, 林廷武, 刘小飞, 陈岳民, 杨玉盛 (2017). 模拟增温和氮沉降对中亚热带杉木幼林土壤有效氮的影响. 生态学报, 37, 44-53.] | |
[25] | Luo XH, Zou BX, Wu JQ, Yang LP (2011). Effects of different nitrogen levels and NH4+/NO3- ratios on the growth, nitrogen metabolism and photosynthesis of anther-derived somatic seedlings of Hevea brasiliensis . Journal of Plant Nutrition and Fertilizers, 17, 693-701. |
[罗雪华, 邹碧霞, 吴菊群, 杨俐苹 (2011). 氮水平和形态配比对巴西橡胶树幼苗生长及氮代谢、光合作用的影响. 植物营养与肥料学报, 17, 693-701.] | |
[26] | Maeda SI, Konishi M, Yanagisawa S, Omata T (2014). Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant and Cell Physiology, 55, 1311-1324. |
[27] | Quan XQ, Wang YR, Li XY, Liang HY, Wang LD, Yan XL (2024). Effects of nitrogen addition level and NH4+-N to NO3--N ratio on photosynthetic characteristics and chlorophyll fluorescence parameters in Cunninghamia lanceolata seedling. Chinese Journal of Plant Ecology, 48, 1050-1064. |
[全小强, 王燕茹, 李小玉, 梁海燕, 王立冬, 闫小莉 (2024). 氮添加和铵硝态氮配比对杉木幼苗光合特性及叶绿素荧光参数的影响. 植物生态学报, 48, 1050-1064.]
DOI |
|
[28] | Schansker G, Tóth SZ, Strasser RJ (2005). Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta Bioenergetics, 1706, 250-261. |
[29] | Wang B, Wang YF, Jiang Y, Wei J, Liang JY (2023). Effects of different cultivation modes on photosynthetic and chlorophyll fluorescence characteristics of Korla fragrant pear with branch blight. Northern Horticulture, (8), 32-37. |
[王斌, 王亚菲, 蒋媛, 位杰, 梁继业 (2023). 不同栽培模式对患枝枯病库尔勒香梨树光合及叶绿素荧光特征的影响. 北方园艺, (8), 32-37.] | |
[30] | Wang GL, Liu F, Xue S (2017). Nitrogen addition enhanced water uptake by affecting fine root morphology and coarse root anatomy of Chinese pine seedlings. Plant and Soil, 418, 177-189. |
[31] | Wang H, Gao X, Chen L, Wang SF, Liu RL (2011). The mechanisms underlying plant lateral root development in response to nitrate. Journal of Plant Nutrition and Fertilizers, 17, 1005-1011. |
[汪洪, 高翔, 陈磊, 王盛锋, 刘荣乐 (2011). 硝态氮供应下植物侧根生长发育的响应机制. 植物营养与肥料学报, 17, 1005-1011.] | |
[32] | Wang J, Bian YY, Zhu YL, Yang QP, Fang X (2024). Effects of nitrogen addition and drought on sapling growth of four subtropical tree species. Journal of Tropical and Subtropical Botany, 32, 475-482. |
[王涓, 边妍妍, 朱玉璘, 杨清培, 方熊 (2024). 氮添加和干旱对亚热带4种幼树生长的影响. 热带亚热带植物学报, 32, 475-482.] | |
[33] | Wang LD, Liang HY, Wang YR, Quan XQ, Li XY, Yan XL (2023). Effects of different nitrogen forms and ratios on photosynthetic characteristics and growth in Cunninghamia lanceolata and Schima superba seedlings. Journal of Sichuan Agricultural University, 41, 217-224. |
[王立冬, 梁海燕, 王燕茹, 全小强, 李小玉, 闫小莉 (2023). 不同氮素形态与配比对杉木和木荷幼苗光合特性及生长的影响. 四川农业大学学报, 41, 217-224.] | |
[34] | Wang SF, Chen L, Jiang HB, Gao LL, Yi Y, Wang H (2024). Effects of calcium on root growth of wheat under different nitrate levels. Journal of Triticeae Crops, 44, 1041-1047. |
[王盛锋, 陈磊, 江华波, 高丽丽, 乙引, 汪洪 (2024). 不同硝态氮水平下钙对小麦根系发育的影响. 麦类作物学报, 44, 1041-1047.] | |
[35] | Wang TM, Hui ZM (2014). Effect of different nitrogen form on photosynthetic pigment and carbohydrate content in Vitis vinifera cv. ‘Cabernet Sauvignon’ leaves. Northern Horticulture, (22), 18-23. |
[王添民, 惠竹梅 (2014). 不同形态氮素配比对“赤霞珠”幼苗叶片光合色素与碳水化合物含量的影响. 北方园艺, (22), 18-23.] | |
[36] | Wang Y, Yao RL (2021). Effects of different nitrogen forms and ratios on growth of tissue cultured seedlings in Pinus massoniana. Journal of Central South University of Forestry and Technology, 41(3), 18-24. |
[王胤, 姚瑞玲 (2021). 不同形态氮素配比对马尾松组培苗生长的影响. 中南林业科技大学学报, 41(3), 18-24.] | |
[37] |
Xing Y, Ma XH (2015). Research progress on effect of nitrogen form on plant growth. Journal of Agricultural Science and Technology, 17, 109-117.
DOI |
[邢瑶, 马兴华 (2015). 氮素形态对植物生长影响的研究进展. 中国农业科技导报, 17, 109-117.] | |
[38] | Yan XL, Ma XQ (2021). Responses of root morphology and seedling growth in three tree species to heterogeneous supplies of ammonium and nitrate. Forest Ecology and Management, 479, 118538. DOI: 10.1016/j.foreco.2020.118538. |
[39] | Yang XQ, Zhang SQ, Liang ZS, Shan Y (2004). Effects of water stress on chlorophyll fluorescence parameters of different drought resistance winter wheat cultivars seedlings. Acta Botanica Boreali-Occidentalia Sinica, 24, 812-816. |
[杨晓青, 张岁岐, 梁宗锁, 山颖 (2004). 水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响. 西北植物学报, 24, 812-816.] | |
[40] | Yang Y, Zheng QL, Pei CG, Zhai H (2010). Effects of NO3--N/NH4+-N ratios on chardonnay grape seedling growth and nitrogen nutrition. Journal of Plant Nutrition and Fertilizers, 16, 370-375. |
[杨阳, 郑秋玲, 裴成国, 翟衡(2010). 不同硝铵比对霞多丽葡萄幼苗生长和氮素营养的影响. 植物营养与肥料学报, 16, 370-375.] | |
[41] | Yao JB, Zhou ZC, Chu XL, Xu HB, Tong JS (2018). Effect of neighborhood competition on dry matter accumulation, nitrogen and phosphorus efficiency of three provenances of Schima superba in a heterogeneous nutrient environment. Acta Ecologica Sinica, 38, 1780-1788. |
[姚甲宝, 周志春, 楚秀丽, 徐红兵, 童建设 (2018). 异质养分环境下邻株竞争对3个木荷种源干物质积累及氮磷效率的影响. 生态学报, 38, 1780-1788.] | |
[42] |
Yıldırım K, Yağcı A, Sucu S, Tunç S (2018). Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiology and Biochemistry, 127, 256-268.
DOI PMID |
[43] | Zhang JJ, Xu SS, Cao GQ, Lin SZ, Pan YM, Ye YQ (2020). Effects of nitrogen forms on the chlorophyll fluorescence parameters and chloroplast ultra-structure of Cunninghamia lanceolata. Journal of Northwest Forestry University, 35(2), 24-31. |
[张家君, 许珊珊, 曹光球, 林思祖, 潘彦名, 叶义全 (2020). 不同氮形态对杉木叶绿素荧光参数和叶绿体超微结构的影响. 西北林学院学报, 35(2), 24-31.] | |
[44] | Zhang R, Wang Y, Jin GQ, Zhou ZC (2015). Effects of simulated N deposition on growth and leaf N and P content in seedlings of three provenances of Schima superba under phosphorous deficit stress. Scientia Silvae Sinicae, 51(4), 36-43. |
[张蕊, 王艺, 金国庆, 周志春 (2015). 模拟氮沉降对低磷胁迫下3个种源木荷幼苗生长及叶片氮磷含量的影响. 林业科学, 51(4), 36-43.] | |
[45] | Zhou MX, Yan GY, Xing YJ, Chen F, Zhang X, Wang JY, Zhang JH, Dai GH, Zheng XB, Sun WJ, Wang QG, Liu T (2019). Nitrogen deposition and decreased precipitation does not change total nitrogen uptake in a temperate forest. Science of the Total Environment, 651, 32-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn