Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1536-1546.DOI: 10.17521/cjpe.2023.0258 cstr: 32100.14.cjpe.2023.0258
• Research Articles • Previous Articles
WANG Ni1, LI Zhao-Na1, ZHENG Xu-Li2, JIANG Si-Cheng1, YANG Hai-Yun1,*()
Received:
2023-09-08
Accepted:
2024-03-06
Online:
2024-11-20
Published:
2024-07-03
Contact:
*YANG Hai-Yun (yhy2006@zafu.edu.cn)
Supported by:
WANG Ni, LI Zhao-Na, ZHENG Xu-Li, JIANG Si-Cheng, YANG Hai-Yun. Pigment synthesis and photosynthetic characteristics of leaves in Pseudosasa japonica f. akebonosuji[J]. Chin J Plant Ecol, 2024, 48(11): 1536-1546.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0258
Fig. 1 Different types of leaves and different degrees of return-green leaves of Pseudosasa japonica f. akebonosuji. AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf.
材料 Material | 叶绿素a Chl a (µg·g-1) | 叶绿素b Chl b (µg·g-1) | 总叶绿素 Chl (a+b) (µg·g-1) | 类胡萝卜素 Car (µg·g-1) | 叶绿素a/b Chl a/b | 类胡萝卜素/叶绿素 Car/Chl |
---|---|---|---|---|---|---|
绿叶 GL | 408.9 ± 49.0a | 180.8 ± 24.3a | 589.7 ± 73.3a | 61.1 ± 12.1a | 2.3 ± 0.1a | 0.097 ± 0.021c |
条纹绿叶 SG | 355.7 ± 17.5a | 195.3 ± 12.6a | 551.1 ± 21.1a | 50.8 ± 9.5a | 1.9 ± 0.4b | 0.091 ± 0.044c |
条纹白叶 SA | 17.8 ± 3.1b | 10.7 ± 1.5b | 28.6 ± 4.6b | 8.8 ± 0.8b | 1.6 ± 0.1b | 0.338 ± 0.076b |
白叶 AL0 | 10.0 ± 1.0b | 5.7 ± 0.8b | 15.7 ± 1.7b | 7.8 ± 0.4b | 1.9 ± 0.5b | 0.534 ± 0.055a |
Table 1 Variation of photosynthetic pigment content of Pseudosasa japonica f. akebonosuji (mean ± SD)
材料 Material | 叶绿素a Chl a (µg·g-1) | 叶绿素b Chl b (µg·g-1) | 总叶绿素 Chl (a+b) (µg·g-1) | 类胡萝卜素 Car (µg·g-1) | 叶绿素a/b Chl a/b | 类胡萝卜素/叶绿素 Car/Chl |
---|---|---|---|---|---|---|
绿叶 GL | 408.9 ± 49.0a | 180.8 ± 24.3a | 589.7 ± 73.3a | 61.1 ± 12.1a | 2.3 ± 0.1a | 0.097 ± 0.021c |
条纹绿叶 SG | 355.7 ± 17.5a | 195.3 ± 12.6a | 551.1 ± 21.1a | 50.8 ± 9.5a | 1.9 ± 0.4b | 0.091 ± 0.044c |
条纹白叶 SA | 17.8 ± 3.1b | 10.7 ± 1.5b | 28.6 ± 4.6b | 8.8 ± 0.8b | 1.6 ± 0.1b | 0.338 ± 0.076b |
白叶 AL0 | 10.0 ± 1.0b | 5.7 ± 0.8b | 15.7 ± 1.7b | 7.8 ± 0.4b | 1.9 ± 0.5b | 0.534 ± 0.055a |
Fig. 2 Relative content of precursor substances for chlorophyll synthesis of Pseudosasa japonica f. akebonosuji among different leaf types (mean ± SD). Supposing content of green leaf is 1, A, B, C are contents of striped green leaf (SG), striped albino leaf (SA) and albino leaf (AL0) relative to green leaf (GL). ALA, δ-aminolevulinic acid; Chl, chlorophyll; Coprogen III, coproporphyrinogen III; Mg-Proto, Mg-protoporphyrin IX; PBG, porphobilinogen; Pchlide, protochlorophyllide; Proto IX, protoporphyrin IX; Urogen III, uroporphyrino-gen III. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
Fig. 3 Light response curves of net photosynthetic rate (Pn) in Pseudosasa japonica f. akebonosuji among different leaf types (mean ± SD). GL, green leaf; SA, albino sector in leaf with strips; SG, green sector in leaf with strips. PAR, photosynthetically active radiation.
叶型 Leaf type | 最大净光合速率 Pmax (μmol·m-2·s-1) | 表观量子效率 AQY (μmol·mol-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) |
---|---|---|---|---|---|
绿叶 GL | 13.70 ± 2.44a | 0.057 ± 0.005a | 1.18 ± 0.18a | 21.30 ± 2.02b | 424.50 ± 39.01b |
条纹绿叶 SG | 8.65 ± 2.55b | 0.004 ± 0.006b | 0.97 ± 0.02a | 26.16 ± 3.75b | 489.30 ± 86.63b |
条纹白叶 SA | 0.93 ± 0.01c | 0.003 ± 0.000c | 0.60 ± 0.12b | 260.02 ± 15.45a | 628.80 ± 42.80a |
白叶 AL0 | - | - | - | - | - |
Table 2 Effects of different leaf types on photosynthesis-light response parameters of Pseudosasa japonica f. akebonosuji (mean ± SD)
叶型 Leaf type | 最大净光合速率 Pmax (μmol·m-2·s-1) | 表观量子效率 AQY (μmol·mol-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) |
---|---|---|---|---|---|
绿叶 GL | 13.70 ± 2.44a | 0.057 ± 0.005a | 1.18 ± 0.18a | 21.30 ± 2.02b | 424.50 ± 39.01b |
条纹绿叶 SG | 8.65 ± 2.55b | 0.004 ± 0.006b | 0.97 ± 0.02a | 26.16 ± 3.75b | 489.30 ± 86.63b |
条纹白叶 SA | 0.93 ± 0.01c | 0.003 ± 0.000c | 0.60 ± 0.12b | 260.02 ± 15.45a | 628.80 ± 42.80a |
白叶 AL0 | - | - | - | - | - |
叶型 Leaf type | Vcmax (μmol·m-2·s-1 ) | Jmax (μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|
绿叶 GL | 86.22 ± 3.78a | 117.67 ± 4.36a | 1.37 ± 0.01c |
条纹绿叶 SG | 85.60 ± 8.29a | 120.77 ± 13.87a | 1.41 ± 0.03b |
条纹白叶 SA | 15.34 ± 1.58b | 30.61 ± 3.05b | 2.00 ± 0.01a |
白叶 AL0 | - | - | - |
Table 3 Photosynthesis parameters for CO2 response curve for different leaf types in Pseudosasa japonica f. akebonosuji (mean ± SD)
叶型 Leaf type | Vcmax (μmol·m-2·s-1 ) | Jmax (μmol·m-2·s-1) | Jmax/Vcmax |
---|---|---|---|
绿叶 GL | 86.22 ± 3.78a | 117.67 ± 4.36a | 1.37 ± 0.01c |
条纹绿叶 SG | 85.60 ± 8.29a | 120.77 ± 13.87a | 1.41 ± 0.03b |
条纹白叶 SA | 15.34 ± 1.58b | 30.61 ± 3.05b | 2.00 ± 0.01a |
白叶 AL0 | - | - | - |
Fig. 4 Dynamic curves for chlorophyll a fluorescein and the relative variable fluorescence intensity with different leaf types of Pseudosasa japonica f. akebonosuji. AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf.
Fig. 5 Probability of that a trapped exciton the moves an electron further than QA by trapped exciton (Ψo) and performance index (PIABS) of Pseudosasa japonica f. akebonosuji under different leaf types (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
Fig. 6 Proportion of Fk in F0 - Fj amplitude of chlorophyll (Wk) and proportion of Fj in F0 - Fp amplitude of chlorophyll (Vj) of Pseudosasa japonica f. akebonosuji under different leaf types (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf; F0, minimal fluorescence; Fj, fluorescence intensity at J-step; Fk, fluorescence intensity at K-step; Fp, fluorescence intensity at P-step. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
Fig. 7 Changes of relative absorbtion of photosystem I (PSI) (PSI) 820 nm of different leaf types in Pseudosasa japonica f. akebonosuji (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf.
Fig. 8 Difference of photosystem I (PSI) maximum ability of oxido-reduction ΔI/Io of different leaf types in Pseudosasa japonica f. akebonosuji (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
Fig. 9 Changes of coordination between photosystem I (PSI) and photosystem II (PSII) of Pseudosasa japonica f. akebonosuji among different leaf types (ΦPSI/PSII) (mean ± SD). AL0 (AL), albino leaf; AL2, albino leaf unfold for 2 months; AL6, albino leaf unfold for 6 months; AL12, albino leaf unfold for 12 months; GL, green leaf; SA, striped albino leaf; SG, striped green leaf. Different lowercase letters indicate significant differences among different leaf types (p < 0.05).
[1] | Chen LY, Xie DJ, Rong JD, Lai JL, Lin XL, Zheng YS (2019). Effects of photosynthetic pigment content on photosynthetic characteristics of different leaf color phenotypes of Sinobambusa tootsik f. luteoloalbostriata. Scientia Silvae Sinicae, 55(12), 21-31. |
[陈凌艳, 谢德金, 荣俊冬, 赖金莉, 林雪玲, 郑郁善 (2019). 光合色素含量差异对花叶唐竹不同叶色表型光合特性的影响. 林业科学, 55(12), 21-31.] | |
[2] | Cheng MM, Chen KY, Zhu XY, Wang KL, Zhou MB, Yang HY (2018). Photosynthetic characteristics and chloroplast ultrastructure of Pseudosasa japonica f. akebonosuji during green-revertilble albino stage. Scientia Silvae Sinicae, 54(4), 1-10. |
[成敏敏, 陈柯伊, 朱雪玉, 王凯利, 周明兵, 杨海芸 (2018). 花叶矢竹复绿期光合特性及叶绿体结构. 林业科学, 54(4), 1-10.] | |
[3] |
Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI PMID |
[4] |
Farquhar GD, von Caemmerer S, Berry JA (2001). Models of photosynthesis. Plant Physiology, 125, 42-45.
DOI PMID |
[5] |
Gu BW, Yang JF, Lu XL, Wu YH, Li N, Liu N, An N, Han XR (2021). Effects of continuous application of biochar on chlorophyll fluorescence characteristics of peanut at different growth stages. Scientia Agricultura Sinica, 54, 4552-4561.
DOI |
[顾博文, 杨劲峰, 鲁晓玲, 吴怡慧, 李娜, 刘宁, 安宁, 韩晓日 (2021). 连续施用生物炭对花生不同生育时期叶绿素荧光特性的影响. 中国农业科学, 54, 4552-4561.]
DOI |
|
[6] | Han T (2010). Effects of Chlorophyll Deficiency on Photosystem Photochemistry in Rice. Master degree dissertation, Nanjing Agricultural University, Nanjing. |
[韩涛 (2010). 叶绿素缺乏对水稻光系统光化学功能的影响. 硕士学位论文, 南京农业大学, 南京.] | |
[7] | Hikosaka K (2005). Nitrogen partitioning in the photosynthetic apparatus of Plantago asiatica leaves grown under different temperature and light conditions: similarities and differences between temperature and light acclimation. Plant & Cell Physiology, 46, 1283-1290. |
[8] | Hodgins RR, van Huystee RB (1986). Rapid simultaneous estimation of protoporphyrin and Mg-porphyrins in higher plants. Journal of Plant Physiology, 125, 311-323. |
[9] |
Jarvis P, López-Juez E (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology, 14, 787-802.
DOI PMID |
[10] | Ji WW, Lu C, Liu ZH, Tan JZ (2008). Preliminary study on the characteristics of the photosynthetic pigment and chlorophyll biological synthesis in Chlorophytum comosum. Journal of Anhui Agricultural Sciences, 36, 14065-14066. |
[计玮玮, 鲁聪, 刘中华, 谈建中 (2008). 吊兰光合色素与叶绿素生物合成特性的初步研究. 安徽农业科学, 36, 14065-14066.] | |
[11] |
Kumar AM, Söll D (2000). Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiology, 122, 49-56.
DOI PMID |
[12] | Li C, Wang JW, Hu ZY, Xia YY, Huang Q, Yu T, Yi HY, Lu YL, Wang J, Cao MJ (2021). A valine residue deletion in ZmSig2A, a sigma factor, accounts for a revertible leaf-color mutation in maize. The Crop Journal, 9, 1330-1343. |
[13] |
Li L, Zhang XX, Zheng R, Guo JQ (2016). Photosynthetic characteristics and photosynthesis-light response curve models of summer maize. Chinese Journal of Plant Ecology, 40, 1310-1318.
DOI |
[李力, 张祥星, 郑睿, 郭建青 (2016). 夏玉米光合特性及光响应曲线拟合. 植物生态学报, 40, 1310-1318.]
DOI |
|
[14] | Li PM, Gao HY, Strasser RJ (2005). Application of rapid chlorophyll fluorescence induced kinetic analysis in photosynthesis research. Physiology and Molecular Biology of Plants, 31, 559-566. |
[李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.] | |
[15] |
Liu LY, Feng JX, Liu WX, Wan XC (2020). Effects of drought stress on photosynthesis, growth and root structure of transgenic PtPIP2;8 poplar 84K (Populus alba × P. glandulosa). Chinese Journal of Plant Ecology, 44, 677-686.
DOI |
[刘丽燕, 冯锦霞, 刘文鑫, 万贤崇 (2020). 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响. 植物生态学报, 44, 677-686.]
DOI |
|
[16] | Liu SL, Ma MD, Pan YZ, Wei LL, He CX, Yang KM (2012). Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species. Chinese Journal of Plant Ecology, 36, 1062-1074. |
[刘柿良, 马明东, 潘远智, 魏刘利, 何成相, 杨开茂 (2012). 不同光强对两种桤木幼苗光合特性和抗氧化系统的影响. 植物生态学报, 36, 1062-1074.]
DOI |
|
[17] | Lu ML, Chen MJ, Zhang JJ, Zhao JX, Zhu JL, Du HY (2021). Leaf physiological indicator changes in the transformation of leaves color of Eucommia ulmoides ‘Hongye’. Journal of Nanjing Forestry University (Natural Science Edition), 45(1), 86-92. |
[路买林, 陈梦娇, 张嘉嘉, 赵建霞, 朱景乐, 杜红岩 (2021). ‘红叶’杜仲叶色转变过程中叶片生理指标变化. 南京林业大学学报(自然科学版), 45(1), 86-92.]
DOI |
|
[18] | Luo J, Ding XY, Xu YN, Wang JY, Zhang Q, Sun S, Li YT, Gao HY, Zhang ZS (2022). Effects of growth light intensity on the activity of photosystem in cucumber leaves. Plant Physiology Journal, 58, 1790-1800. |
[罗蛟, 丁新宇, 徐燕妮, 王俊彦, 张强, 孙山, 李玉婷, 高辉远, 张子山 (2022). 生长光强对黄瓜叶片光合机构活性影响研究. 植物生理学报, 58, 1790-1800.] | |
[19] | Rahma GABC, Arafet MB, Walid DAB, Simone CC, Chedly AB, Roberto BC (2018). Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Journal of Photochemistry and Photobiology B: Biology, 183, 275-287. |
[20] |
Schansker G, Srivastava A, Strasser RJ (2003). Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 30, 785-796.
DOI PMID |
[21] | Shang CL, Liu Q, Wang MX, Hou L, Zhao CZ, Wang XJ, Xia H (2021). Research progress on molecular mechanisms of leaf color variation in plants. Shandong Agricultural Sciences, 53(7), 127-134. |
[商彩丽, 刘青, 王明晓, 侯蕾, 赵传志, 王兴军, 夏晗 (2021). 植物叶色变异的分子机理研究进展. 山东农业科学, 53(7), 127-134.] | |
[22] | Su JL, Shi WS, Yang YY, Wang X, Ding YL, Lin SY (2020). Comparison of leaf color and pigment content and observation of leaf structure at different growth stages from six bamboo species. Scientia Silvae Sinicae, 56(7), 194-203. |
[苏佳露, 史无双, 杨雅运, 王星, 丁雨龙, 林树燕 (2020). 6个竹种叶色与光合色素含量及叶片结构比较. 林业科学, 56(7), 194-203.] | |
[23] |
Su XD, Li M (2021). Advances in structural biology of photosystem complexes in higher plants. Chinese Journal of Nature, 43(3), 165-175.
DOI |
[苏小东, 李梅 (2021). 高等植物光系统复合物结构生物学研究进展. 自然杂志, 43(3), 165-175.] | |
[24] | Sun JY, Zhang NH, Du LF (2007). Chlorophyll biosynthesis in a chlorophyll b-deficient oilseed rape mutant Cr3529. Acta Botanica Boreali-Occidentalia Sinica, 27, 1962-1966. |
[孙捷音, 张年辉, 杜林方 (2007). 油菜叶绿素b减少突变体Cr3529叶绿素生物合成的研究. 西北植物学报, 27, 1962-1966.] | |
[25] | von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994). The kinetics of ribulose-1,5-bisphosphate carboxylase/ oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta, 195, 88-97. |
[26] | Wang RJ, Zhu F, Liang HZ, Huang XH, Wang XX, Chu JJ (2020). Effects of Manganese (Mn) on the performances of photosystems I and II in Melia azedarach young plant. Acta Ecologica Sinica, 40, 2019-2027. |
[王仁杰, 朱凡, 梁惠子, 黄鑫浩, 王旭旭, 楚晶晶 (2020). 重金属Mn对苦楝叶片光系统性能的影响. 生态学报, 40, 2019-2027.] | |
[27] | Wang XX (2016). Analyses of Photosynthetic Characteristics and Chlorophyll Biosynthesis of Allotetraploid in Cucumis. Master degree dissertation, Nanjing Agricultural University, Nanjing. |
[王希希 (2016). 甜瓜属异源四倍体光合特性及其叶绿素生物合成研究. 硕士学位论文, 南京农业大学, 南京.] | |
[28] | Xu XL, Cao O, Qin M, Yao WJ, Din YL, Lin SY (2022). Research advances in plant leaf color variation. Molecular Plant Breeding. [2023-09-08] https://kns.cnki.net/kcms/detail/46.1068.S.20220517.1326.020.html. |
[徐薪璐, 蔡鸥, 秦敏, 姚文静, 丁雨龙, 林树燕 (2022). 植物叶色变异研究进展. 分子植物育种. [2023-09-08] https://kns.cnki.net/kcms/detail/46.1068.S.20220517.1326.020.html.] | |
[29] | Yang HY (2015). Study on Mechanism of Color Variation of Pseudosasa japonica f. akebonosuji. PhD dissertation, Beijing Forestry University, Beijing. |
[杨海芸 (2015). 花叶矢竹叶色变异机理研究. 博士学位论文, 北京林业大学, 北京.] | |
[30] | Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW (2011). Characterization of PSI recovery after chilling- induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 234, 883-889. |
[31] | Zong XF, Luo L, Lv DH, Wang SG, He GH (2013). Research on chlorophyll synthesis characteristics of the yellow- green leaf mutant ylg 3 throughout its life cycle. Journal of Southwest University (Natural Science), (11), 21-26. |
[宗学凤, 罗力, 吕典华, 王三根, 何光华 (2013). 水稻叶片全生育期黄化突变体ylg3叶绿素合成特性研究. 西南大学学报(自然科学版), (11), 21-26.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn