Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (11): 1241-1250.DOI: 10.17521/cjpe.2021.0221
Special Issue: 红树林及红树植物
• Research Articles • Previous Articles Next Articles
ZHANG Xiao-Yan1,2, WEE Kim Shan Alison1, KAJITA Tadashi3, CAO Kun-Fang1,2,*()
Received:
2021-06-09
Accepted:
2021-08-31
Online:
2021-11-20
Published:
2021-09-29
Contact:
CAO Kun-Fang
Supported by:
ZHANG Xiao-Yan, WEE Kim Shan Alison, KAJITA Tadashi, CAO Kun-Fang. Effects of provenance on leaf structure and function of two mangrove species: the genetic adaptation to temperature[J]. Chin J Plant Ecol, 2021, 45(11): 1241-1250.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0221
树种 Species | 种源地 Provenance | 地理坐标 Geographical coordinates | 年平均气温 Mean annual temperature (℃) |
---|---|---|---|
木榄 Bruguiera gymnorhiza | 中国文昌 Wenchang, China | 19.62° N, 110.84° E | 24.4 |
中国北海 Beihai, China | 21.50° N, 109.76° E | 23.2 | |
中国福田 Futian, China | 22.52° N, 114.01° E | 22.6 | |
中国云霄 Yunxiao, China | 23.86° N, 117.51° E | 21.0 | |
日本西田川 Nishida, Japan | 24.41° N, 123.78° E | 23.0 | |
日本冲绳 Okinawa, Japan | 26.66° N, 128.01° E | 21.9 | |
秋茄树 Kandelia obovata | 中国山口 Shankou, China | 21.42° N, 109.21° E | 23.2 |
中国云霄 Yunxiao, China | 23.92° N, 117.42° E | 20.7 | |
日本西田川 Nishida, Japan | 24.39° N, 123.82° E | 23.0 | |
日本冲绳 Okinawa, Japan | 26.46° N, 127.94° E | 22.3 | |
中国福鼎 Fuding, China | 27.28° N, 120.30° E | 18.4 |
Table 1 Geographical location and mean annual temperature of the selected provenances of two mangrove species in this study
树种 Species | 种源地 Provenance | 地理坐标 Geographical coordinates | 年平均气温 Mean annual temperature (℃) |
---|---|---|---|
木榄 Bruguiera gymnorhiza | 中国文昌 Wenchang, China | 19.62° N, 110.84° E | 24.4 |
中国北海 Beihai, China | 21.50° N, 109.76° E | 23.2 | |
中国福田 Futian, China | 22.52° N, 114.01° E | 22.6 | |
中国云霄 Yunxiao, China | 23.86° N, 117.51° E | 21.0 | |
日本西田川 Nishida, Japan | 24.41° N, 123.78° E | 23.0 | |
日本冲绳 Okinawa, Japan | 26.66° N, 128.01° E | 21.9 | |
秋茄树 Kandelia obovata | 中国山口 Shankou, China | 21.42° N, 109.21° E | 23.2 |
中国云霄 Yunxiao, China | 23.92° N, 117.42° E | 20.7 | |
日本西田川 Nishida, Japan | 24.39° N, 123.82° E | 23.0 | |
日本冲绳 Okinawa, Japan | 26.46° N, 127.94° E | 22.3 | |
中国福鼎 Fuding, China | 27.28° N, 120.30° E | 18.4 |
Fig. 2 Correlation between leaf anatomical structure of Bruguiera gymnorhiza and Kandelia obovata seedlings from different provenances and mean annual temperature of native habitats. R1, p1 represents the seedlings of Bruguiera gymnorhiza; R2, p2 represents the seedlings of Kandelia obovata.
Fig. 3 Correlation between leaf vein density and stomatal density (A), maximum stomatal conductance (B) and palisade tissue thickness (C) of seedlings of Bruguiera gymnorhiza and Kandelia obovata from different provenances (mean ± SE).
Fig. 4 Correlation between photosynthetic rate and spongy tissue thickness (A), palisade tissue thickness (B), vein density (C) and leaf thickness (D) of seedlings of Bruguiera gymnorhiza and Kandelia obovata from different provenances (mean ± SE).
Fig. 5 Principal component analysis of 8 leaf anatomical structure characters (A) and 11 provenances (B) of Bruguiera gymnorhiza and Kandelia obovata seedlings from different provenances. CT, cuticle thickness; LT, leaf thickness; Pn, photosynthetic rate; PT, palisade tissue thickness; RPS, palisade tissue thickness/spongy tissue thickness; SD, stomatal density; ST, sponge tissue thickness; VD, vein density.
[1] |
Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013). Potential for evolutionary responses to climate change—Evidence from tree populations. Global Change Biology, 19, 1645-1661.
DOI URL |
[2] |
Brodersen CR, Vogelmann TC (2007). Do epidermal lens cells facilitate the absorptance of diffuse light? American Journal of Botany, 94, 1061-1066.
DOI PMID |
[3] |
Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448.
DOI PMID |
[4] |
Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, Moore PJ, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, et al. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507, 492-495.
DOI URL |
[5] | Caringella MA, Bongers FJ, Sack L (2015). Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants. Plant, Cell & Environment, 38, 2735-2746. |
[6] |
Chen BY, Wang CH, Tian YK, Chu QG, Hu CH (2015). Anatomical characteristics of young stems and mature leaves of dwarf pear. Scientia Horticulturae, 186, 172-179.
DOI URL |
[7] | Chen Y, Liu KD, Li HL, Xu FH, Zhong JD, Cheng XL, Yuan CC (2014). Leaf structures and stress resistance in five mangrove species. Journal of Northeast Forestry University, 42(7), 27-31. |
[ 陈燕, 刘锴栋, 黎海利, 许方宏, 钟军弟, 成夏岚, 袁长春 (2014). 5种红树植物的叶片结构及其抗逆性比较. 东北林业大学学报, 42(7), 27-31.] | |
[8] |
Corlett RT, Westcott DA (2013). Will plant movements keep up with climate change? Trends in Ecology & Evolution, 28, 482-488.
DOI URL |
[9] | DeLucia EH, Nelson K, Vogelmann TC, Smith WK (1996). Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant, Cell & Environment, 19, 159-170. |
[10] |
Domínguez E, Cuartero J, Heredia A (2011). An overview on plant cuticle biomechanics. Plant Science, 181, 77-84.
DOI PMID |
[11] |
Drake JE, Aspinwall MJ, Pfautsch S, Rymer PD, Reich PB, Smith RA, Crous KY, Tissue DT, Ghannoum O, Tjoelker MG (2015). The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. Global Change Biology, 21, 459-472.
DOI PMID |
[12] | Ellison JC, Stoddart DR (1991). Mangrove ecosystem collapse during predicted sea-level rise: holocene analogues and implications. Journal of Coastal Research, 7, 151-165. |
[13] |
González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr N, Laffan SW, Miller JT, Rosauer DF, Faith DP, Nipperess DA, Kujala H, Linke S, Butt N, Külheim C, Crisp MD, Gruber B (2016). Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change, 6, 1110-1114.
DOI |
[14] | Gorsuch PA, Pandey S, Atkin OK (2010). Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant, Cell & Environment, 33, 244-258. |
[15] | Han XB, Li RQ, Wang JB (1997). Cellular structural comparison between different thermo-resistant cultivars of Raphanus sativus L. under heat stress. Journal of Wuhan Botanical Research, 15, 173-178. |
[ 韩笑冰, 利容千, 王建波 (1997). 热胁迫下萝卜不同耐热性品种细胞组织结构比较. 武汉植物学研究, 15, 173-178.] | |
[16] |
Hanba YT, Miyazawa SI, Terashima I (1999). The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Functional Ecology, 13, 632-639.
DOI URL |
[17] |
Ji RX, Yu X, Chang Y, Shen C, Bai XK, Xia XL, Yin WL, Liu C (2020). Geographical provenance variation of leaf anatomical structure of Caryopteris mongholica and its significance in response to environmental changes. Chinese Journal of Plant Ecology, 44, 277-286.
DOI URL |
[ 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超 (2020). 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 44, 277-286.] | |
[18] |
Ji ZJ, Quan XK, Wang CK (2013). Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes. Acta Ecologica Sinica, 33, 6967-6974.
DOI URL |
[ 季子敬, 全先奎, 王传宽 (2013). 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性. 生态学报, 33, 6967-6974.] | |
[19] |
Kröber W, Heklau H, Bruelheide H (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology, 17, 373-383.
DOI PMID |
[20] | Li YY, Lin P (2006). Anatomical characteristics of leaves in three mangrove species. Journal of Tropical and Subtropical Botany, 14, 301-306. |
[ 李元跃, 林鹏 (2006). 三种红树植物叶片的比较解剖学研究. 热带亚热带植物学报, 14, 301-306.] | |
[21] | Liao BW, Zhang QM (2014). Area, distribution and species composition of mangroves in China. Wetland Science, 12, 435-440. |
[ 廖宝文, 张乔民 (2014). 中国红树林的分布、面积和树种组成. 湿地科学, 12, 435-440.] | |
[22] | Ma XF, Wang XF, Li Q, He X (2013). The analysis of drought resistance and the comparison of anatomical structures of the leave of Xanthoceras sorbifolia Bunge introduced from different regions. Journal of Arid Land Resources and Environment, 27, 92-96. |
[ 马小芬, 王兴芳, 李强, 贺晓 (2013). 不同种源地文冠果叶片解剖结构比较及抗旱性分析. 干旱区资源与环境, 27, 92-96.] | |
[23] |
McCann S, Greenlees MJ, Newell D, Shine R (2014). Rapid acclimation to cold allows the cane toad to invade montane areas within its Australian range. Functional Ecology, 28, 1166-1174.
DOI URL |
[24] |
Méndez-Alonzo R, López-Portillo J, Rivera-Monroy VH (2008). Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico. Biotropica, 40, 449-456.
DOI URL |
[25] | Miao C, Li RQ, Wang JB (1994). Leaf structural changes of Brassica campestris and B. oleracea in response to heat stress. Journal of Wuhan Botanical Research, 12, 207-211. |
[ 苗琛, 利容千, 王建波 (1994). 热胁迫下不结球白菜和甘蓝叶片组织结构的变化. 武汉植物学研究, 12, 207-211.] | |
[26] | Oguchi R, Hikosaka K, Hirose T (2005). Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell & Environment, 28, 916-927. |
[27] |
Parkhurst DF (1994). Diffusion of CO2 and other gases inside leaves. New Phytologist, 126, 449-479.
DOI PMID |
[28] | Poulson ME, Vogelmann TC (1990). Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of Oxalis. Plant, Cell & Environment, 13, 803-811. |
[29] |
Rueden CT, Hiner MC, Eliceiri KW (2016). ImageJ: image analysis interoperability for the next generation of biological image data. Microscopy and Microanalysis, 22, 2066-2067.
DOI URL |
[30] |
Suarez AV, Tsutsui ND (2008). The evolutionary consequences of biological invasions. Molecular Ecology, 17, 351-360.
DOI URL |
[31] | Tian SQ, Zhu SD, Zhu JJ, Shen ZH, Cao KF (2016). Impact of leaf morphological and anatomical traits on mesophyll conductance and leaf hydraulic conductance in mangrove plants. Plant Science Journal, 34, 909-919. |
[ 田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳 (2016). 红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响. 植物科学学报, 34, 909-919.] | |
[32] | Vogelmann TC, Martin G (1993). The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant, Cell & Environment, 16, 65-72. |
[33] |
Vogelman TC, Nishio JN, Smith WK (1996). Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends in Plant Science, 1, 65-70.
DOI URL |
[34] |
Wen Y, Zhao WL, Cao KF (2020). Global convergence in the balance between leaf water supply and demand across vascular land plants. Functional Plant Biology, 47, 904-911.
DOI URL |
[35] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[36] |
Xiong DL, Flexas J, Yu TT, Peng SB, Huang JL (2017). Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytologist, 213, 572-583.
DOI URL |
[37] | Zheng JJ, Lu W, Chen LH, Li PC (1996). Relationship between leaf rate of leaf air space in longan and Chinese olive and cold resistance. Journal of Fujian Agricultural University, 25(2), 40-43. |
[ 郑家基, 卢炜, 陈利恒, 李平聪 (1996). 龙眼、橄榄叶片空隙率与耐寒性的关系. 福建农业大学学报, 25(2), 40-43.] |
[1] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[2] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[3] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[4] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[5] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[6] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[7] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[8] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[9] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[10] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[11] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[12] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[13] | YE Jie-Hong, YU Cheng-Long, ZHUO Shao-Fei, CHEN Xin-Lan, YANG Ke-Ming, WEN Yin, LIU Hui. Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae [J]. Chin J Plant Ecol, 2023, 47(10): 1432-1440. |
[14] | LI Bian-Bian, ZHANG Feng-Hua, ZHAO Ya-Guang, SUN Bing-Nan. Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus [J]. Chin J Plant Ecol, 2023, 47(1): 101-113. |
[15] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn