Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (12): 1576-1588.DOI: 10.17521/cjpe.2024.0262 cstr: 32100.14.cjpe.2024.0262
• Research Articles • Previous Articles Next Articles
ZHAO Chang-Ti1(), XIA Qing-Lin1, TIAN Di1,*(
)(
), CHEN Bing-Rui1, ZHU Rui-De1, LIU Xiao-Han1, YU Guo2, JI Cheng-Jun2
Received:
2024-08-06
Accepted:
2024-12-12
Online:
2024-12-20
Published:
2024-12-20
Contact:
TIAN Di
Supported by:
ZHAO Chang-Ti, XIA Qing-Lin, TIAN Di, CHEN Bing-Rui, ZHU Rui-De, LIU Xiao-Han, YU Guo, JI Cheng-Jun. Effects of long-term nitrogen addition on leaf secondary metabolites of the dominant plant species in a temperate deciduous broad-leaved forest[J]. Chin J Plant Ecol, 2024, 48(12): 1576-1588.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0262
Fig. 1 Effect of nitrogen (N) addition on soil physicochemical properties in Betula platyphylla forest and Quercus mongolica forest (n = 9 individuals × 3 treatments × 2 forests = 54). The “×” symbol represents the mean value for each group. Each subplot displays the p-values for statistical differences between the forest types in the top right corner (ns, p > 0.05; **, p < 0.01; ***, p < 0.001). Different lowercase letters indicate significant differences between treatments (p < 0.05). CK, control, 0 kg N·hm-2·a-1; N50, low nitrogen, 50 kg N·hm-2·a-1; N100, high nitrogen, 100 kg N·hm-2·a-1.
Fig. 2 Effects of nitrogen addition on leaf phenolic secondary metabolites content of four dominant plants in temperate deciduous broad-leaved forest (n = 9 individuals × 3 treatments × 4 species = 108). The “×” symbol represents the mean value for each group. Different lowercase letters indicate significant differences between different treatments (p < 0.05). CK, control, 0 kg N·hm-2·a-1; N50, low nitrogen, 50 kg N·hm-2·a-1; N100, high nitrogen, 100 kg N·hm-2·a-1.
Fig. 3 Principal component (PC) analysis diagram of leaf phenolic secondary metabolites and nutrient content for four dominant plants in temperate deciduous broad-leaved forest (A) and relationship between the first principal component (PC1) and soil physicochemical properties (B-F) (n = 9 individuals × 3 treatments × 4 species = 108). Different colors represent different species groups. Deep-colored dots represent the mean values of each species, while light-colored dots represent the sample points. The regression line is depicted with a solid line if p < 0.05, otherwise with a dashed line. FLA, flavonoid content; LC, leaf carbon content; LN, leaf nitrogen content; LP, leaf phosphorus content; pH, soil pH; STC, soil organic carbon content; STN, soil total nitrogen content; STP, soil total phosphorus content; SWC, soil water content; TA, tannin content; TP, total phenolic content.
Fig. 4 Principal component analysis diagram of leaf secondary metabolites and nutrient content for Betula platyphylla forest (A) and Quercus mongolica forest (B) (n = 9 individuals × 3 treatment × 2 species = 54). Different colors represent different nitrogen treatments. Barplots show PC1 and PC2 score differences across nitrogen treatments, with significant differences indicated by different lowercase letters (p < 0.05). FLA, flavonoid content; LC, leaf carbon content; LN, leaf nitrogen content; LP, leaf phosphorus content; TA, tannin content; TP, total phenolic content. CK, control, 0 kg N·hm-2·a-1; N50, low nitrogen, 50 kg N·hm-2·a-1; N100, high nitrogen, 100 kg N·hm-2·a-1.
Fig. 5 Effects of nitrogen addition to the relative growth rate of Betula platyphylla and Quercus mongolica (n = 9 individuals × 3 treatments = 27). The “×” symbol represents the mean value for each group. “ns” indicates relative growth rate of each tree species have no significant differences among different nitrogen treatments (p < 0.05). CK, control, 0 kg N·hm-2·a-1; N50, low nitrogen, 50 kg N·hm-2·a-1; N100, high nitrogen, 100 kg N·hm-2·a-1.
[1] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience, 48, 921-934. |
[2] | Agrawal AA, Fishbein M (2006). Plant defense syndromes. Ecology, 87, S132-S149. |
[3] | Bates D, Maechler M, Bolker B, Christensen RHB, Singmann H, Dai B, Scheipl F, Grothendieck G, Green P, Fox J, Bauer A, Krivitsky PN (2022). Package ‘lme4’ [Computer software].[2024-08-06]. |
[4] |
Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30-59.
PMID |
[5] | Bryant JP, Chapin III FS, Klein DR (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40, 357. |
[6] | Chen ML, Chen H, Mao QG, Zhu XM, Mo JM (2016). Effect of nitrogen deposition on the soil phosphorus cycle in forest ecosystems: a review. Acta Ecologica Sinica, 36, 4965-4976. |
[ 陈美领, 陈浩, 毛庆功, 朱晓敏, 莫江明 (2016). 氮沉降对森林土壤磷循环的影响. 生态学报, 36, 4965-4976.] | |
[7] | Cheng SQ, Jiang F, Jin GZ (2022). Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest. Chinese Journal of Plant Ecology, 46, 678-686. |
[ 程思祺, 姜峰, 金光泽 (2022). 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系. 植物生态学报, 46, 678-686.]
DOI |
|
[8] |
Coley PD, Bryant JP, Chapin III FS (1985). Resource availability and plant antiherbivore defense. Science, 230, 895-899.
DOI PMID |
[9] | de Long JR, Sundqvist MK, Gundale MJ, Giesler R, Wardle DA (2016). Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Functional Ecology, 30, 314-325. |
[10] | Deng B, Li YY, Xu DD, Ye QQ, Liu GH (2019). Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Scientific Reports, 9, 2370. DOI: 10.1038/s41598-019-38837-8. |
[11] | Deng MF, Liu LL, Sun ZZ, Piao SL, Ma YC, Chen YW, Wang J, Qiao CL, Wang X, Li P (2016). Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations. New Phytologist, 212, 1019-1029. |
[12] | Deng Q, Hui DF, Dennis S, Reddy KC (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 26, 713-728. |
[13] | Dobor L, Baldo M, Bílek L, Barka I, Máliš F, Štěpánek P, Hlásny T (2024). The interacting effect of climate change and herbivory can trigger large-scale transformations of European temperate forests. Global Change Biology, 30, e17194. DOI: 10.1111/gcb.17194. |
[14] | Du EZ, de Vries W, Han WX, Liu XJ, Yan ZB, Jiang Y (2016). Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmospheric Chemistry and Physics, 16, 8571-8579. |
[15] | Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY (2013). NEECF: a project of nutrient enrichment experiments in China’s forests. Journal of Plant Ecology, 6, 428-435. |
[16] | Endara MJ, Coley PD (2011). The resource availability hypothesis revisited: a meta-analysis. Functional Ecology, 25, 389-398. |
[17] |
Erb M, Kliebenstein DJ (2020). Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiology, 184, 39-52.
DOI PMID |
[18] | Feng JG, Zhu B (2020). A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems. Chinese Journal of Plant Ecology, 44, 583-597. |
[ 冯继广, 朱彪 (2020). 氮磷添加对树木生长和森林生产力影响的研究进展. 植物生态学报, 44, 583-597.]
DOI |
|
[19] | Gao SJ (2021). Effects of Simulated Nitrogen Deposition on Carbon and Nitrogen in Soil of Xishan Artificial Forest, Beijing. PhD dissertation,Beijing Forestry University, Beijing. |
[ 高士杰 (2021). 模拟氮沉降对北京西山人工林土壤碳氮动态影响研究. 博士学位论文, 北京林业大学, 北京.] | |
[20] | Gundale MJ (2022). The impact of anthropogenic nitrogen deposition on global forests: negative impacts far exceed the carbon benefits. Global Change Biology, 28, 690-692. |
[21] | Guo SR (2024). Changes of Triterpenoids Content and Antioxidant Activity in White Birch Bark of Northeast China and Analysis of the Influencing Factors. Master degree dissertation, Northeast Forestry University, Harbin. |
[ 郭思汝 (2024). 东北地区白桦树皮三萜类化合物含量、抗氧化活性的变化及其影响因子分析. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[22] | Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007). Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics, 8, 157-178. |
[23] | Hartig F (2022). Package ‘DHARMa’ [Computer software].[2024-08-06]. |
[24] | Herms DA, Mattson WJ (1992). The dilemma of plants: to grow or defend. The Quarterly Review of Biology, 67, 283-335. |
[25] | Höegberg P, Fan H, Quist M, Binkley D, Tamm CO (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499. |
[26] | Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M (2018). Climate change effects on secondary compounds of forest trees in the Northern Hemisphere. Frontiers in Plant Science, 9, 1445. DOI: 10.3389/fpls.2018.01445. |
[27] |
Jamieson MA, Burkle LA, Manson JS, Runyon JB, Trowbridge AM, Zientek J (2017). Global change effects on plant-insect interactions: the role of phytochemistry. Current Opinion in Insect Science, 23, 70-80.
DOI PMID |
[28] | Kassambara A, Mundt F (2017). Package ‘factoextra’. Extract and visualize the results of multivariate data analyses.[2024-08-06]. |
[29] |
Lämke JS, Unsicker SB (2018). Phytochemical variation in treetops: causes and consequences for tree-insect herbivore interactions. Oecologia, 187, 377-388.
DOI PMID |
[30] | Li J, Nie JY, Li HF, Xu GF, Wang XD, Wu YL, Wang ZX (2008). On determination conditions for total polyphenols in fruits and its derived products by Folin-phenol methods. Journal of Fruit Science, 25(1), 126-131. |
[ 李静, 聂继云, 李海飞, 徐国峰, 王孝娣, 毋永龙, 王贞旭 (2008). Folin-酚法测定水果及其制品中总多酚含量的条件. 果树学报, 25(1), 126-131.] | |
[31] | Li J, Sang CP, Yang JY, Qu LR, Xia ZW, Sun H, Jiang P, Wang XG, He HB, Wang C (2021). Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology & Biochemistry, 156, 108207. DOI: 10.1016/j.soilbio.2021.108207. |
[32] | Li KX, Zhao W, Xu LL, Li Y, Zhang BL, Zhan YG, Yin J (2021). Effects of temperature stress on the accumulation of secondary metabolites and defensive enzymes in multiple shoots of Betula platyphylla. Journal of Beijing Forestry University, 43(7), 31-39. |
[ 李可鑫, 赵微, 徐林琳, 李影, 张宝莲, 詹亚光, 尹静 (2021). 温度胁迫对白桦丛生苗次生产物合成及抗逆酶积累的影响. 北京林业大学学报, 43(7), 31-39.] | |
[33] | Li M, Zeng RS, Luo SM (2007). Secondary metabolites related with plant resistance against pathogenic microorganisms and insect pests. Chinese Journal of Biological Control, 23, 269-273. |
[ 李明, 曾任森, 骆世明 (2007). 次生代谢产物在植物抵抗病虫为害中的作用. 中国生物防治, 23, 269-273.] | |
[34] | Ling Y, Qin J, Shang XL, Yang WX, Fang SZ (2020). Effect of applying amount of nitrogen on growth and total phenolic accumulation in Cyclocarya paliurus seedling. Journal of Plant Resources and Environment, 29(4), 45-51. |
[ 凌岩, 秦健, 尚旭岚, 杨万霞, 方升佐 (2020). 施氮量对青钱柳幼苗生长和总酚积累的影响. 植物资源与环境学报, 29(4), 45-51.] | |
[35] | Liu PS, Wen SZ, Li ZH, He GX, He HJ (2023). Effects of nitrogen application on components and contents of volatile secondary metabolites in Phoebe bournei. Journal of Central South University of Forestry & Technology, 43(5), 16-26. |
[ 刘沛书, 文仕知, 李智华, 何功秀, 何含杰 (2023). 施氮对闽楠挥发性次生代谢物组分和含量的影响. 中南林业科技大学学报, 43(5), 16-26.] | |
[36] | Liu ZJ, Adams JC, Viator HP, Constantin RJ, Carpenter SB (1999). Influence of soil fertilization, plant spacing, and cokppicing on growth, stomatal conductance, abscisic acid, and camptothecin levels in Camptotheca acuminata seedlings. Physiologia Plantarum, 105, 402-408. |
[37] | Lu X, Mao Q, Gilliam FS, Luo Y, Mo J (2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801. |
[38] |
Lu X, Vitousek PM, Mao Q, Gilliam FS, Luo Y, Zhou G, Zou X, Bai E, Scanlon TM, Hou E, Mo J (2018). Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 115, 5187-5192.
DOI PMID |
[39] | Luo ZB, Calfapietra C, Scarascia-Mugnozza G, Liberloo M, Polle A (2008). Carbon-based secondary metabolites and internal nitrogen pools in Populus nigra under Free Air CO2 Enrichment (FACE) and nitrogen fertilisation. Plant and Soil, 304, 45-57. |
[40] | Lv JY, Yang SY, Zhou W, Liu ZW, Tan JF, Wei M (2024). Microbial regulation of plant secondary metabolites: impact, mechanisms and prospects. Microbiological Research, 283, 127688. DOI: 10.1016/j.micres.2024.127688. |
[41] | Mao Q, Lu X, Zhou K, Chen H, Zhu X, Mori T, Mo J (2017). Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. Geoderma, 285, 57-63. |
[42] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI PMID |
[43] | Martínez LC, Haedo JP, Pérez-Méndez N, Fioroni F, Garibaldi LA, Marrero HJ (2024). Nutrient addition increases insect herbivory in Nothofagus antarctica on North-Patagonian forests. Forest Ecology and Management, 558, 121769. DOI: 10.1016/j.foreco.2024.121769. |
[44] | Midolo G, Alkemade R, Schipper AM, Benítez-López A, Perring MP, de Vries W (2019). Impacts of nitrogen addition on plant species richness and abundance: a global meta-analysis. Global Ecology and Biogeography, 28, 398-413. |
[45] | Ministry of Agriculture of the PRC (2008). Determination of Tannin Content in Fruit, Vegetable and Derived Product. Spectrophotometry Method. Standards Press of China, Beijing. |
[ 中华人民共和国农业部 (2008). NY/T 1600—2008水果、蔬菜及其制品中单宁含量的测定-分光光度计法. 中国标准出版社, 北京.] | |
[46] |
Morrow CJ, Jaeger SJ, Lindroth RL (2022). Intraspecific variation in plant economic traits predicts trembling aspen resistance to a generalist insect herbivore. Oecologia, 199, 119-128.
DOI PMID |
[47] | Mosa KA, Ali MA, Ramamoorthy K, Ismail A (2022). Exploring the relationship between plant secondary metabolites and macronutrient homeostasis//Kumar V, Srivastava AK, Suprasanna P. Plant Nutrition and Food Security in the Era of Climate Change. Academic Press, New York. 119-146. |
[48] | Nybakken L, Lie MH, Julkunen-Tiitto R, Asplund J, Ohlson M (2018). Fertilization changes chemical defense in needles of mature Norway spruce (Picea abies). Frontiers in Plant Science, 9, 770. DOI: 10.3389/fpls.2018.00770. |
[49] | Pant P, Pandey S, Dall’Acqua S (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chemistry & Biodiversity, 18, e2100345. DOI: 10.1002/cbdv.202100345. |
[50] | Qin J (2023). Effects of Nitrogen Addition on Growth and Secondary Metabolite Accumulation in Cyclocarya paliurus. PhD dissertation,Nanjing Forestry University, Nanjing. |
[ 秦健 (2023). 氮素对青钱柳生长及次生代谢物积累的影响. 博士学位论文, 南京林业大学, 南京.] | |
[51] | Schulte-Uebbing LF, Beusen AHW, Bouwman AF, de Vries W (2022). From planetary to regional boundaries for agricultural nitrogen pollution. Nature, 610, 507-512. |
[52] | Simkin SM, Allen EB, Bowman WD, Clark CM, Belnap J, Brooks ML, Cade BS, Collins SL, Geiser LH, Gilliam FS, Jovan SE, Pardo LH, Schulz BK, Stevens CJ, Suding KN, et al. (2016). Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America, 113, 4086-4091. |
[53] | Song YQ, Wang YP, Mao YJ (2005). Determination of total flavonoid in Asparagus officinalis Linn. by spectrophotometry. Chemical Analysis and Meterage, 14(4), 52-53. |
[ 宋元清, 王艳平, 毛远菁 (2005). 分光光度法测定芦笋中总黄酮的含量. 化学分析计量, 14(4), 52-53.] | |
[54] | Sun Y, Guo J, Li Y, Luo G, Li L, Yuan H, Mur LAJ, Guo S (2020). Negative effects of the simulated nitrogen deposition on plant phenolic metabolism: a meta-analysis. Science of the Total Environment, 719, 137442. DOI: 10.1016/j.scitotenv.137442. |
[55] | Sun Y, Fernie AR (2024). Plant secondary metabolism in a fluctuating world: climate change perspectives. Trends in Plant Science, 29, 560-571. |
[56] | Tak Y, Kumar M (2020). Phenolics: a key defence secondary metabolite to counter biotic stress//Lone R, Shuab R, Kamili AN. Plant Phenolics in Sustainable Agriculture. Springer, Singapore. 309-329. |
[57] |
Tan ZY, Deng J, Ye QX, Zhang ZF (2022). The antibacterial activity of natural-derived flavonoids. Current Topics in Medicinal Chemistry, 22, 1009-1019.
DOI PMID |
[58] | Throop HL, Lerdau MT (2004). Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems, 7, 109-133. |
[59] |
Tian D, Du EZ, Jiang L, Ma SH, Zeng WJ, Zou AL, Feng CY, Xu LC, Xing AJ, Wang W, Zheng CY, Ji CJ, Shen HH, Fang JY (2018). Responses of forest ecosystems to increasing N deposition in China: a critical review. Environmental Pollution, 243, 75-86.
DOI PMID |
[60] | Tian D, Li P, Fang WJ, Xu J, Luo YK, Yan ZB, Zhu B, Wang JJ, Xu XN, Fang JY (2017). Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences, 14, 3461-3469. |
[61] | Tian DS, Niu SL (2015). A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 10, 024019. DOI: 10.1088/1748-9326/10/2/024019. |
[62] | Tshivhandekano I, Ngezimana W, Tshikalange TE, Makunga NP, Mudau FN (2018). Nitrogen application influences quality, pharmacological activities and metabolite profiles of Athrixia phylicoides DC. (Bush tea) cultivated under greenhouse and field conditions. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 68, 388-400. |
[63] | Vet R, Artz RS, Carou S, Shaw M, Ro CU, Aas W, Baker A, Bowersox VC, Dentener F, Galy-Lacaux C, Hou A, Pienaar JJ, Gillett R, Forti MC, Gromov S, et al. (2014). A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93, 3-100. |
[64] |
Wang R, Goll D, Balkanski Y, Hauglustaine D, Boucher O, Ciais P, Janssens I, Penuelas J, Guenet B, Sardans J, Bopp L, Vuichard N, Zhou F, Li B, Piao S, et al. (2017). Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 23, 4854-4872.
DOI PMID |
[65] | Wareing PF, Phillips IJ (1981). Growth and Differentiation in Plants. Pergamon Press, Oxford. |
[66] | Weldon J, Merder J, Ferretti M, Grandin U (2022). Nitrogen deposition causes eutrophication in bryophyte communities in central and northern European forests. Annals of Forest Science, 79, 24. DOI: 10.1186/s13595-022-01148-6. |
[67] | Wen Z, Xu W, Li Q, Han M, Tang A, Zhang Y, Luo X, Shen J, Wang W, Li K, Pan Y, Zhang L, Li W, Collett Jr. JL, Zhong B, et al. (2020). Changes of nitrogen deposition in China from 1980 to 2018. Environment International, 144, 106022. DOI: 10.1016/j.envint.2020.106022. |
[68] | Wright DM, Jordan GJ, Lee WG, Duncan RP, Forsyth DM, Coomes DA (2010). Do leaves of plants on phosphorus-impoverished soils contain high concentrations of phenolic defence compounds? Functional Ecology, 24, 52-61. |
[69] |
Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625.
PMID |
[70] | Wu Y, Kwak JH, Karst J, Ni M, Yan Y, Lv X, Xu J, Chang SX (2021). Long-term nitrogen and sulfur deposition increased root-associated pathogen diversity and changed mutualistic fungal diversity in a boreal forest. Soil Biology & Biochemistry, 155, 108163. DOI: 10.1016/j.soilbio.2021.108163. |
[71] | Xing A, Du E, Shen H, Xu L, de Vries W, Zhao M, Liu X, Fang J (2022). Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecology Letters, 25, 77-88. |
[72] |
Yao H, Hu XY, Zhu JL, Zhu JX, Ji CJ, Fang JY (2015). Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing. Chinese Journal of Plant Ecology, 39, 849-856.
DOI |
[ 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云 (2015). 北京东灵山3种温带森林土壤呼吸及其20年的变化. 植物生态学报, 39, 849-856.]
DOI |
|
[73] | Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[74] | Zhang CH, Guo HR, Huang H, Ma TY, Song W, Chen CJ, Liu XY (2021). Atmospheric nitrogen deposition and its responses to anthropogenic emissions in a global hotspot region. Atmospheric Research, 248, 105137. DOI: 10.1016/j.atmosres.2020.105137. |
[75] | Zhu RC, Cai XA, Huang J (2024). Emission of defense-related biogenic volatile organic compounds from plants and their response to nitrogen deposition. Chinese Journal of Plant Ecology. DOI: 10.17521/cjpe.2024.0146. |
[ 朱润铖, 蔡锡安, 黄娟 (2024). 植物防御相关挥发性有机物排放及对氮沉降的响应. 植物生态学报. DOI: 10.17521/cjpe.2024.0146.] | |
[76] | Zou AL, Ma SH, Ni XF, Cai Q, Li XP, Ji CJ (2019). Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing. Biodiversity Science, 27, 607-618. |
[ 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均 (2019). 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响. 生物多样性, 27, 607-618.]
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn