Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1434-1444.DOI: 10.17521/cjpe.2023.0256 cstr: 32100.14.cjpe.2023.0256
Special Issue: 碳循环
• Research Articles • Previous Articles Next Articles
WANG Liang1, ZHAO Xue-Chao1, YANG Shao-Bo1, WANG Qing-Kui1,2,*()
Received:
2023-09-06
Accepted:
2024-04-08
Online:
2024-11-20
Published:
2024-04-09
Contact:
*WANG Qing-Kui (qwang@iae.ac.cn)
Supported by:
WANG Liang, ZHAO Xue-Chao, YANG Shao-Bo, WANG Qing-Kui. Priming effect of soil organic carbon decomposition induced by Cunninghamia lanceolate leaf litter and fine root and its response to nitrogen addition in subtropical forests[J]. Chin J Plant Ecol, 2024, 48(11): 1434-1444.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0256
凋落物类型 Litter type | 13C丰度 δ13C (‰) | 碳含量 C (g·kg-1) | 氮含量 N (g·kg-1) | C:N | 木质素含量 Lignin (g·kg-1) | 木质素:氮 Lignin:N |
---|---|---|---|---|---|---|
叶 Leaf | -2.61 ± 0.90a | 469.1 ± 0.43a | 23.76 ± 0.18a | 19.75 ± 0.13b | 121.5 ± 0.11b | 5.15 ± 0.75b |
细根 Fine root | -16.41 ± 0.17b | 473.1 ± 9.38a | 12.95 ± 0.29b | 36.53 ± 0.16a | 135.4 ± 0.23a | 10.25 ± 0.12a |
Table 1 Chemical properties and carbon isotope composition (δ13C) of leaves and fine roots of Cunninghamia lanceolata at the end of 13C labeling (mean ± SE)
凋落物类型 Litter type | 13C丰度 δ13C (‰) | 碳含量 C (g·kg-1) | 氮含量 N (g·kg-1) | C:N | 木质素含量 Lignin (g·kg-1) | 木质素:氮 Lignin:N |
---|---|---|---|---|---|---|
叶 Leaf | -2.61 ± 0.90a | 469.1 ± 0.43a | 23.76 ± 0.18a | 19.75 ± 0.13b | 121.5 ± 0.11b | 5.15 ± 0.75b |
细根 Fine root | -16.41 ± 0.17b | 473.1 ± 9.38a | 12.95 ± 0.29b | 36.53 ± 0.16a | 135.4 ± 0.23a | 10.25 ± 0.12a |
处理 Treatment | pH | 土壤有机碳含量 Soil organic carbon (C) content (g·kg-1) | 全氮含量 Total nitrogen (N) content (g·kg-1) | 碳氮比 C:N |
---|---|---|---|---|
CK | 4.06 ± 0.03a | 15.74 ± 0.95a | 1.83 ± 0.22a | 8.65 ± 0.55a |
L | 4.01 ± 0.05a | 15.37 ± 0.22ab | 1.89 ± 0.33a | 8.30 ± 1.43a |
R | 4.07 ± 0.05a | 15.37 ± 0.30ab | 1.86 ± 0.31a | 8.39 ± 1.23a |
N | 3.74 ± 0.06b | 14.73 ± 0.33b | 1.83 ± 0.25a | 8.14 ± 0.87a |
LN | 3.77 ± 0.06b | 14.82 ± 0.10ab | 1.94 ± 0.23a | 7.73 ± 0.94a |
RN | 3.81 ± 0.03b | 15.44 ± 0.84ab | 1.88 ± 0.22a | 8.28 ± 0.80a |
Table 2 Physical and chemical properties of incubate soil in Cunninghamia lanceolata forest (mean ± SE)
处理 Treatment | pH | 土壤有机碳含量 Soil organic carbon (C) content (g·kg-1) | 全氮含量 Total nitrogen (N) content (g·kg-1) | 碳氮比 C:N |
---|---|---|---|---|
CK | 4.06 ± 0.03a | 15.74 ± 0.95a | 1.83 ± 0.22a | 8.65 ± 0.55a |
L | 4.01 ± 0.05a | 15.37 ± 0.22ab | 1.89 ± 0.33a | 8.30 ± 1.43a |
R | 4.07 ± 0.05a | 15.37 ± 0.30ab | 1.86 ± 0.31a | 8.39 ± 1.23a |
N | 3.74 ± 0.06b | 14.73 ± 0.33b | 1.83 ± 0.25a | 8.14 ± 0.87a |
LN | 3.77 ± 0.06b | 14.82 ± 0.10ab | 1.94 ± 0.23a | 7.73 ± 0.94a |
RN | 3.81 ± 0.03b | 15.44 ± 0.84ab | 1.88 ± 0.22a | 8.28 ± 0.80a |
变量 Variable | 凋落物 Litter | 氮添加 Nitrogen addition | 凋落物×氮添加 Litter × nitrogen addition |
---|---|---|---|
总CO2 Total CO2 | <0.001 | <0.001 | 0.030 |
凋落物源CO2 Litter-derived CO2 | <0.001 | <0.001 | 0.277 |
有机碳源CO2 SOC-derived CO2 | <0.001 | <0.001 | 0.627 |
激发效应 Priming effect | <0.001 | <0.001 | 0.504 |
革兰氏阳性细菌 Gram-positive bacteria | <0.001 | <0.001 | 0.011 |
革兰氏阴性细菌 Gram-negative bacteria | 0.127 | <0.001 | 0.630 |
放线菌 Actinomycetes | <0.001 | 0.001 | 0.552 |
真菌 Fungi (F) | <0.001 | 0.036 | 0.009 |
细菌 Bacteria (B) | <0.001 | <0.001 | 0.453 |
真菌细菌比 F:B | <0.001 | <0.001 | 0.247 |
总微生物生物量 Total PLFAs | <0.001 | <0.001 | 0.162 |
β-1,4葡萄糖苷酶 β-1,4 glucosidase | <0.001 | <0.001 | 0.001 |
N-乙酰氨基肽酶 N-acetyl-glucosaminidase | <0.001 | <0.001 | 0.913 |
纤维二糖苷酶 β-cellobiohydrolase | <0.001 | <0.001 | 0.038 |
木聚糖酶 Xylanase | <0.001 | <0.001 | 0.172 |
Table 3 Main effects (p) of litter type, nitrogen addition and their interactions on CO2 from various sources, priming effect, soil extracellular enzyme activities, microbial biomass and community composition
变量 Variable | 凋落物 Litter | 氮添加 Nitrogen addition | 凋落物×氮添加 Litter × nitrogen addition |
---|---|---|---|
总CO2 Total CO2 | <0.001 | <0.001 | 0.030 |
凋落物源CO2 Litter-derived CO2 | <0.001 | <0.001 | 0.277 |
有机碳源CO2 SOC-derived CO2 | <0.001 | <0.001 | 0.627 |
激发效应 Priming effect | <0.001 | <0.001 | 0.504 |
革兰氏阳性细菌 Gram-positive bacteria | <0.001 | <0.001 | 0.011 |
革兰氏阴性细菌 Gram-negative bacteria | 0.127 | <0.001 | 0.630 |
放线菌 Actinomycetes | <0.001 | 0.001 | 0.552 |
真菌 Fungi (F) | <0.001 | 0.036 | 0.009 |
细菌 Bacteria (B) | <0.001 | <0.001 | 0.453 |
真菌细菌比 F:B | <0.001 | <0.001 | 0.247 |
总微生物生物量 Total PLFAs | <0.001 | <0.001 | 0.162 |
β-1,4葡萄糖苷酶 β-1,4 glucosidase | <0.001 | <0.001 | 0.001 |
N-乙酰氨基肽酶 N-acetyl-glucosaminidase | <0.001 | <0.001 | 0.913 |
纤维二糖苷酶 β-cellobiohydrolase | <0.001 | <0.001 | 0.038 |
木聚糖酶 Xylanase | <0.001 | <0.001 | 0.172 |
Fig. 1 Effects of litter and nitrogen addition on total (A), litter- (B) and SOC-derived CO2 (C) and priming effect (D) in Cunninghamia lanceolata forest (mean ± SE, n = 3). CK, control; L, Cunninghamia lanceolate leaf litter addition; R, Cunninghamia lanceolate fine root addition. SOC, soil organic carbon. Different lowercase letters represent significant difference among different litter addition treatments (p < 0.05), and different uppercase letters indicate significant differences between different nitrogen addition treatments (p < 0.05).
Fig. 2 Effects of litter and nitrogen addition on soil microbial biomass and community composition in Cunninghamia lanceolata forest (mean ± SE, n = 3). CK, control; L, Cunninghamia lanceolate leaf litter addition; R, Cunninghamia lanceolate fine root addition. Different lowercase letters represent significant differences among different litter addition treatments. Different uppercase letters indicate significant differences between different nitrogen addition treatments with and without nitrogen additions (p < 0.05). ACT, actinomycetes; B, bacteria; F, fungi; PLFAs, phospholipid fatty acids.
Fig. 3 Effects of litter and nitrogen (N) additions on soil extracellular enzyme activities in Cunninghamia lanceolata forest (mean ± SE, n = 3). CK, control; L, Cunninghamia lanceolate leaf litter addition; R, Cunninghamia lanceolate fine root addition. Different lowercase letters represent significant differences among different litter addition treatments. Different uppercase letters indicate significant differences between different nitrogen addition treatments with and without N additions (p < 0.05).
Fig. 4 Correlation analysis of priming effect with fungi (F) content, bacteria (B) content, F:B and β-cellobiohydrolase activity. Data in the figure are subtracted from the change in the control.
[1] | Agnihotri R, Sharma MP, Prakash A, Ramesh A, Bhattacharjya S, Patra AK, Manna MC, Kurganova I, Kuzyakov Y (2022). Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: review of mechanisms and controls. Science of the Total Environment, 806, 150571. DOI: 10.1016/j.scitotenv.2021.150571. |
[2] | Angst G, Mueller KE, Nierop KGJ, Simpson MJ (2021). Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology & Biochemistry, 156, 108189. DOI: 10.1016/j.soilbio.2021.108189. |
[3] | Aye NS, Butterly CR, Sale PWG, Tang C (2018). Interactive effects of initial pH and nitrogen status on soil organic carbon priming by glucose and lignocellulose. Soil Biology & Biochemistry, 123, 33-44. |
[4] | Chen LQ (2010). Research on structure of soil particle by hydrometer method. Environmental Science Survey, 29(4), 97-99. |
[陈丽琼 (2010). 比重计法测定土壤颗粒组成的研究. 环境科学导刊, 29(4), 97-99.] | |
[5] | Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, Blagodatsky S, Yang G, Zhang Q, Zhang D, Yu J, Yang Y (2018). Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications, 9, 3951. DOI: 10.1038/s41467-018-06232-y. |
[6] |
Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014). Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356-2367.
DOI PMID |
[7] |
Chen T, Yuan FH, Zhang LM, Hu YL (2022). Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect. Chinese Journal of Applied Ecology, 33, 2602-2610.
DOI |
[陈甜, 元方慧, 张琳梅, 胡亚林 (2022). 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响. 应用生态学报, 33, 2602-2610.]
DOI |
|
[8] |
Delgado-Baquerizo M, Eldridge DJ, Ochoa V, Gozalo B, Singh BK, Maestre FT (2017). Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 20, 1295-1305.
DOI PMID |
[9] | Deng S, Zheng X, Chen X, Zheng S, He X, Ge T, Kuzyakov Y, Wu J, Su Y, Hu Y (2021). Divergent mineralization of hydrophilic and hydrophobic organic substrates and their priming effect in soils depending on their preferential utilization by bacteria and fungi. Biology and Fertility of Soils, 57, 65-76. |
[10] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI PMID |
[11] |
Fang Y, Nazaries L, Singh BK, Singh BP (2018). Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biology, 24, 2775-2790.
DOI PMID |
[12] | Fanin N, Alavoine G, Bertrand I (2020). Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma, 377, 114576. DOI: 10.1016/j.geoderma.2020.114576. |
[13] | Feng JG, Zhu B (2021). Does calculation method affect the nutrient-addition effect on priming? Geoderma, 393, 115040. DOI: 10.1016/j.geoderma.2021.115040. |
[14] | Gan ZY, Wang H, Ding C, Lei M, Yang XG, Cai JY, Qiu QY, Hu YL (2022). Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms. Chinese Journal of Ecology, 46, 797-810. |
[甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林 (2022). 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理. 植物生态学报, 46, 797-810.]
DOI |
|
[15] |
German DP, Chacon SS, Allison SD (2011). Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology, 92, 1471-1480.
PMID |
[16] |
Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, Janssens IA (2018). Impact of priming on global soil carbon stocks. Global Change Biology, 24, 1873-1883.
DOI PMID |
[17] | Hicks LC, Rousk K, Rinnan R, Rousk J (2020). Soil microbial responses to 28 years of nutrient fertilization in a subarctic heath. Ecosystems, 23, 1107-1119. |
[18] | Huo CF, Luo YQ, Cheng WX (2017). Rhizosphere priming effect: a meta-analysis. Soil Biology & Biochemistry, 111, 78-84. |
[19] | Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419-445. |
[20] |
Joergensen RG (2022). Phospholipid fatty acids in soil—Drawbacks and future prospects. Biology and Fertility of Soils, 58, 1-6.
DOI |
[21] |
Keith A, Singh B, Singh BP (2011). Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environmental Science and Technology, 45, 9611-9618.
DOI PMID |
[22] | Kuzyakov Y, Friedel JK, Stahr K (2000). Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 1485-1498. |
[23] | Li XJ, Xie JS, Zhang QF, Lyu MK, Xiong XL, Liu XF, Lin TC, Yang YS (2020). Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia. Geoderma, 364, 114198. DOI: 10.1016/j.geoderma.2020.114198. |
[24] | Li Y, Sun J, Tian DS, Wang JS, Ha DL, Qu YX, Jing GW, Niu SL (2018). Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Science of the Total Environment, 615, 1535-1546. |
[25] | Liu BJ, Xie ZB, Liu Q, Wang XJ, Lin ZB, Bei QC, Lin XW, Liu G, Zhu JG (2021). Correlation between biochar-induced carbon priming effect in soils and soil physiochemical properties. Soils, 53, 343-353. |
[刘本娟, 谢祖彬, 刘琦, 王晓洁, 林志斌, 卑其成, 蔺兴武, 刘钢, 朱建国 (2021). 生物质炭引起的土壤碳激发效应与土壤理化特性的相关性. 土壤, 53, 343-353.] | |
[26] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159, 2251-2264.
DOI PMID |
[27] | Lyu M, Nie Y, Giardina CP, Vadeboncoeur MA, Ren Y, Fu Z, Wang M, Jin C, Liu X, Xie J (2019). Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests. Functional Ecology, 33, 2226-2238. |
[28] | Lyu M, Xie J, Vadeboncoeur MA, Wang M, Qiu X, Ren Y, Jiang M, Yang Y, Kuzyakov Y (2018). Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils. Biology and Fertility of Soils, 54, 925-934. |
[29] |
Mayer M, Rewald B, Matthews B, Sandén H, Rosinger C, Katzensteiner K, Gorfer M, Berger H, Tallian C, Berger TW, Godbold DL (2021). Soil fertility relates to fungal-mediated decomposition and organic matter turnover in a temperate mountain forest. New Phytologist, 231, 777-790.
DOI PMID |
[30] | Meyer N, Welp G, Rodionov A, Borchard N, Martius C, Amelung W (2018). Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biology & Biochemistry, 119, 152-161. |
[31] | Mo F, Ren C, Yu K, Zhou Z, Phillips RP, Luo Z, Zhang Y, Dang Y, Han J, Ye J, Vinay N, Liao Y, Xiong Y, Wen X (2022). Global pattern of soil priming effect intensity and its environmental drivers. Ecology, 103, e3790. DOI: 10.1002/ecy.3790. |
[32] | Nottingham AT, Turner BL, Stott AW, Tanner EVJ (2015). Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology & Biochemistry, 80, 26-33. |
[33] | Qi DD, Huang GD, Feng YH, He X, Song Y, Song FQ (2024). Nitrogen addition suppresses soil positive priming effect in temperate plantations: evidence from an 8-year in situ field experiment. Functional Ecology, 38, 429-438. |
[34] | Qiu Q, Wang H, Zhang Q, Said Mgelwa A, Zhu B, Hu Y (2022). Negative priming effect from tree leaf and root residues with contrasting chemical composition. Geoderma, 427, 116118. DOI: 10.1016/j.geoderma.2022.116118. |
[35] | Rowland AP, Roberts JD (1994). Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Communications in Soil Science Plant Analysis, 25, 269-277. |
[36] | Shahbaz M, Kumar A, Kuzyakov Y, Börjesson G, Blagodatskaya E (2018). Priming effects induced by glucose and decaying plant residues on SOM decomposition: a three-source 13C/14C partitioning study. Soil Biology & Biochemistry, 121, 138-146. |
[37] | Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E (2017). Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biology and Fertility of Soils, 53, 287-301. |
[38] | Sun ZL, Liu SE, Zhang TA, Zhao XC, Chen S, Wang QK (2019). Priming of soil organic carbon decomposition induced by exogenous organic carbon input: a meta-analysis. Plant and Soil, 443, 463-471. |
[39] | Tian P, Liu S, Wang Q, Sun T, Blagodatskaya E (2019). Organic N deposition favours soil C sequestration by decreasing priming effect. Plant and Soil, 445, 439-451. |
[40] | Wang C, Lu X, Mori T, Mao Q, Zhou K, Zhou G, Nie Y, Mo J (2018). Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology & Biochemistry, 121, 103-112. |
[41] | Wang H, Yang Y, Xi D, Qiu QY, Hu YL (2020). Impacts of labile organic carbon input on the priming effect of three forest soils in Wuyi Mountain. Acta Ecologica Sinica, 40, 9184-9194. |
[王浩, 杨钰, 习丹, 丘清燕, 胡亚林 (2020). 易分解有机碳输入量对武夷山不同林型土壤激发效应的影响. 生态学报, 40, 9184-9194.] | |
[42] | Wang QK (2011). Responses of forest soil carbon pool and carbon cycle to the changes of carbon input. Chinese Journal of Applied Ecology, 22, 1075-1081. |
[王清奎 (2011). 碳输入方式对森林土壤碳库和碳循环的影响研究进展. 应用生态学报, 22, 1075-1081.] | |
[43] | Wang QK, Chen LC, Yang QP, Sun T, Li CM (2019). Different effects of single versus repeated additions of glucose on the soil organic carbon turnover in a temperate forest receiving long-term N addition. Geoderma, 341, 59-67. |
[44] | Wang QK, Wang SL, Fan B, Yu XJ (2007). Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant and Soil, 297, 201-211. |
[45] | Wang QK, Wang SL, He TX, Liu L, Wu JB (2014). Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil Biology & Biochemistry, 71, 13-20. |
[46] |
Wang X, Li S, Zhu B, Homyak PM, Chen G, Yao X, Wu D, Yang Z, Lyu M, Yang Y (2023). Long-term nitrogen deposition inhibits soil priming effects by enhancing phosphorus limitation in a subtropical forest. Global Change Biology, 29, 4081-4093.
DOI PMID |
[47] | Xu M, Cardenas LM, Horrocks C, López-Aizpún M, Zhang J, Zhang F, Dungait JAJ (2021). The effect of tillage management on microbial functions in a maize crop at different slope positions. Geoderma, 401, 115171. DOI: 10.1016/j.geoderma.2021.115171. |
[48] | Xu YD, Ding F, Gao XD, Wang Y, Li M, Wang JK (2019). Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type. Journal of Soils and Sediments, 19, 1407-1415. |
[49] | Ye C, Huang W, Hall SJ, Hu S (2022). Association of organic carbon with reactive iron oxides driven by soil pH at the global scale. Global Biogeochemical Cycles, 36, e2021GB007128. DOI: 10.1029/2021GB007128. |
[50] |
Zhang Q, Deng HM, Yu JJ, Tao JH, Sun L, Yang PX, Chu JH (2019). Grain growth enhancing through preheating treatment of a sputtered stacked metallic precursor for Cu(In, Al)Se2 thin film solar cells application. Materials Science and Engineering: B, 242, 31-36.
DOI |
[51] | Zhang QF, Cheng L, Feng JG, Mei KC, Zeng QX, Zhu B, Chen YM (2021). Nitrogen addition stimulates priming effect in a subtropical forest soil. Soil Biology & Biochemistry, 160, 108339. DOI: 10.1016/j.soilbio.2021.108339. |
[52] | Zhang Z, Cai XZ, Tang CD, Guo JF (2017). Priming effect of dissolved organic matter in the surface soil of a Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 37, 7660-7667. |
[张政, 蔡小真, 唐偲頔, 郭剑芬 (2017). 可溶性有机质输入对杉木人工林表层土壤有机碳矿化的激发效应. 生态学报, 37, 7660-7667.] | |
[53] |
Zhu YF Sun ZL, Wang QK (2020). Effects of biochar and nitrogen additions on soil organic carbon decomposition and balance in a subtropical forest. Chinese Journal of Ecology, 39, 2851-2859.
DOI |
[朱依凡, 孙兆林, 王清奎 (2020). 生物炭和氮添加对亚热带常绿阔叶林土壤有机碳分解与平衡的影响. 生态学杂志, 39, 2851-2859.] |
[1] | MA Xu-Han, HUANG Ju-Ying, YU Hai-Long, HAN Cui, LI Bing. Soil organic carbon and its easily decomposed components under precipitation change and nitrogen addition in a desert steppe in northwest China [J]. Chin J Plant Ecol, 2024, 48(8): 1065-1077. |
[2] | LONG Ji-Lan, JIANG Zheng, LIU Ding-Qin, MIAO Yu-Xuan, ZHOU Ling-Yan, FENG Ying, PEI Jia-Ning, LIU Rui-Qiang, ZHOU Xu-Hui, FU Yu-Ling. Effects of drought on plant root exudates and associated rhizosphere priming effect: review and prospect [J]. Chin J Plant Ecol, 2024, 48(7): 817-827. |
[3] | YU Qing-Shui, NI Xiao-Feng, JI Cheng-Jun, ZHU Jiang-Ling, TANG Zhi-Yao, FANG Jing-Yun. Effects of 10-year nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in tropical rainforests in Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(6): 690-700. |
[4] | ZHANG Wen-Jin, SHE Wei-Wei, QIN Shu-Gao, QIAO Yan-Gui, ZHANG Yu-Qing. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of the dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[5] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[6] | Chang-Ti ZHAO Qing-Lin XIA Di TIAN Bing-Rui CHEN Rui-De ZHU Xiao-Han LIU Guo YU. Effects of long-term nitrogen addition on leaf secondary metabolites of the dominant plant species in temperate deciduous broad-leaved forest [J]. Chin J Plant Ecol, 2024, 48(12): 1576-1588. |
[7] | Ma Bin Wei-Wei SHE Qin Huan Song Chunyang Yuan Xinyue Chun MIAO Liu Liang Feng Wei Qin shugao Yuqing Zhang. Effects of nitrogen and water addition on seed functional traits of Artemisia ordosica [J]. Chin J Plant Ecol, 2024, 48(12): 1637-1649. |
[8] | ZHANG Xue-Yuan, GAO Cui-Ping, TANG Jing-Lei, ZHU Yi, TIAN Lei, HAN Guo-Dong, REN Hai-Yan. Responses of soil CH4 and CO2 flux to warming and nitrogen addition during freeze-thaw cycles in a desert steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(10): 1291-1301. |
[9] | LU Xiao-Fei, QIN Zhang-Fen, WANG Bin, KUANG Yuan-Wen. Effects of nitrogen addition on phytolith-occluded carbon of understory plant-soil system in a subtropical evergreen broadleaf forest in south China [J]. Chin J Plant Ecol, 2024, 48(10): 1302-1311. |
[10] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[11] | ZHANG Ya-Qi, PANG Dan-Bo, CHEN Lin, CAO Meng-Hao, HE Wen-Qiang, LI Xue-Bin. Response of ammonia oxidizing bacteria to nitrogen fertilization and plant litter input on desert steppe [J]. Chin J Plant Ecol, 2023, 47(5): 699-712. |
[12] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[13] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[14] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[15] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of microbial nutrient limiting characteristics in rhizosphere and bulk soil of coniferous forests under nitrogen deposition in southwest mountain, China [J]. Chin J Plant Ecol, 2022, 46(4): 473-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn