Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (5): 681-696.DOI: 10.17521/cjpe.2024.0146 cstr: 32100.14.cjpe.2024.0146
• Reviews • Previous Articles Next Articles
ZHU Run-Cheng1,2, CAI Xi-An1, HUANG Juan1,*
Received:
2024-05-09
Accepted:
2024-08-28
Online:
2025-05-20
Published:
2024-08-29
Contact:
HUANG Juan
Supported by:
ZHU Run-Cheng, CAI Xi-An, HUANG Juan. Emission of defense-related biogenic volatile organic compounds from plants and their response to nitrogen deposition[J]. Chin J Plant Ecol, 2025, 49(5): 681-696.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0146
Fig. 1 Synthesis pathways of the main components of plant defense-related biogenic volatile organic compounds (dBVOCs) (modified to quote from Grote et al. (2019)). DMAPP, dimethylallyl diphosphate; FPP, farnesyl pyrophosphate; GAP, glyceraldehyde 3-phosphate; G(G)PP, geranylgeranyl pyrophosphate; GLVs, green leaf volatiles; IPP, isopentenyl diphosphate; MeJA, methyl jasmonate; MeSA, methyl salicylate; PEP, phosphoenolpyruvate.
影响因子 Influence factor | 植物 Plant | dBVOCs种类 dBVOCs type | 影响 Effect | 参考文献 Reference | |
---|---|---|---|---|---|
生物胁迫 Biotic stress | 存在植食昆虫 Phytophthora insects exist | 榕属 Ficus | GLVs | + | Panthee et al., |
欧洲赤松 Pinus sylvestris | 单萜 Monoterpenes 倍半萜 Sesquiterpenes GLVs | + + + | Ghimire et al., | ||
毛龙葵 Solanum sarrachoides | 倍半萜 Sesquiterpenes 单萜 Monoterpenes GLVs | + + + | Murungi et al., | ||
大麦 Hordeum vulgare | MeSA | + | Ninkovic et al., | ||
蚕豆 Vicia faba | GLVs MeSA | + + | Webster et al., | ||
烟草 Nicotiana attenuata | 萜类 Terpenes GLVs | + + | Halitschke et al., | ||
番茄 Solanum lycopersicum | 萜类 Terpene 单萜 Monoterpenes GLVs MeSA 芳香族挥发物 Aromatic volatiles | + + + + + | Zebelo et al., | ||
黄瓜 Cucumis sativus 土豆 Solanum tuberosum | 萜类 Terpenes GLVs 含氮化合物 Nitrogen-containing compounds | + + + | Schettino et al., | ||
植食昆虫减少 Phytophthora insects decline | 桦属 Betula ssp. | 倍半萜 Sesquiterpenes | - | Ghimire et al., | |
无植食昆虫 Without phytophthora insects | 欧洲鹅耳枥 Carpinus betulus | 倍半萜 Sesquiterpenes | NS | Fitzky et al., | |
苏云金芽孢杆菌 Bacillus thuringiensis | 油菜 Brassica napus | 萜类 Terpenes GLVs | + + | Ibrahim et al., | |
非生物胁迫 Abiotic pressure | 增温 Increased temperature | 樟 Cinnamomum camphora | 单萜 Monoterpenes | + | Tian et al., |
桦属 Betula ssp. | 单萜 Monoterpenes 倍半萜 Sesquiterpenes GLVs | + + + | Ghimire et al., | ||
欧洲云杉、欧洲赤松 Picea abies, Pinus sylvestris | 萜类 Terpenes 含氧单萜 Oxygenated monoterpenes 非含氧单萜 Non-oxygenated monoterpenes 倍半萜 Sesquiterpenes | NS/- + + + | Kivimäenpää et al., | ||
热胁迫 Thermal stress | 三球悬铃木等 Platanus orientalis etc. | 异戊二烯 Isoprene 单萜 Monoterpenes 倍半萜 Sesquiterpenes 酚类 Phenols | + - - - | Velikova et al., | |
臭氧浓度升高 Elevated ozone concentration | 欧洲云杉、欧洲赤松 Picea abies, Pinus sylvestris | 萜类 Terpenes 单萜 Monoterpenes 倍半萜 Sesquiterpenes | + + + | Kivimäenpää et al., | |
青杨 Populus cathayana | 异戊二烯 Isoprene | - | Yuan et al., | ||
缺水、低温和盐胁迫 Water deficit, cold and salt stresses | 拟南芥 Arabidopsis thaliana | 水杨酸 Salicylic acid | + | Jin et al., | |
盐胁迫 Salt stress | 欧洲山毛榉、欧洲鹅耳枥 Fagus sylvatica, Carpinus betulus | 含氧化合物 Oxygenated compounds GLVs | + + | Fitzky et al., | |
CO2浓度升高 Elevated CO2 concentration | 三球悬铃木 Platanus orientalis | 异戊二烯 Isoprene | - | Velikova et al., | |
非生物胁迫 Abiotic pressure | 干旱胁迫 Drought stress | 黑松 Pinus thunbergii | 异戊二烯 Isoprene 单萜 Monoterpenes 倍半萜 Sesquiterpenes | +/- +/- +/- | Yang et al., |
马尾松 Pinus massoniana | 总萜 Total terpenes 单萜 Monoterpenes 倍半萜 Sesquiterpenes 含氧化合物 Oxygenated compounds 芳香族化合物 Aromatic compounds | - - - - - | Huang et al., | ||
冬青栎 Quercus ilex | 萜类 Terpene | + | Blanch et al., | ||
夏栎、欧洲山毛榉 Quercus robur, Fagus sylvatica | 异戊二烯 Isoprene 单萜 Monoterpenes | + + | Fitzky et al., | ||
夏栎 Quercus robur | 异戊二烯 Isoprene 单萜 Monoterpenes 倍半萜 Sesquiterpenes GLVs | - + + + | Peron et al., | ||
白云杉 Picea glauca | OVOCs | + | Perreca et al., | ||
地中海松 Pinus halepensis | 萜类 Terpene | - | Blanch et al., | ||
干旱×臭氧 Drought × ozone | 夏栎 Quercus robur | MeSA | + | Peron et al., |
Table 1 Effects of biotic and abiotic factors on defense-related biogenic volatile organic compounds (dBVOCs) emissions
影响因子 Influence factor | 植物 Plant | dBVOCs种类 dBVOCs type | 影响 Effect | 参考文献 Reference | |
---|---|---|---|---|---|
生物胁迫 Biotic stress | 存在植食昆虫 Phytophthora insects exist | 榕属 Ficus | GLVs | + | Panthee et al., |
欧洲赤松 Pinus sylvestris | 单萜 Monoterpenes 倍半萜 Sesquiterpenes GLVs | + + + | Ghimire et al., | ||
毛龙葵 Solanum sarrachoides | 倍半萜 Sesquiterpenes 单萜 Monoterpenes GLVs | + + + | Murungi et al., | ||
大麦 Hordeum vulgare | MeSA | + | Ninkovic et al., | ||
蚕豆 Vicia faba | GLVs MeSA | + + | Webster et al., | ||
烟草 Nicotiana attenuata | 萜类 Terpenes GLVs | + + | Halitschke et al., | ||
番茄 Solanum lycopersicum | 萜类 Terpene 单萜 Monoterpenes GLVs MeSA 芳香族挥发物 Aromatic volatiles | + + + + + | Zebelo et al., | ||
黄瓜 Cucumis sativus 土豆 Solanum tuberosum | 萜类 Terpenes GLVs 含氮化合物 Nitrogen-containing compounds | + + + | Schettino et al., | ||
植食昆虫减少 Phytophthora insects decline | 桦属 Betula ssp. | 倍半萜 Sesquiterpenes | - | Ghimire et al., | |
无植食昆虫 Without phytophthora insects | 欧洲鹅耳枥 Carpinus betulus | 倍半萜 Sesquiterpenes | NS | Fitzky et al., | |
苏云金芽孢杆菌 Bacillus thuringiensis | 油菜 Brassica napus | 萜类 Terpenes GLVs | + + | Ibrahim et al., | |
非生物胁迫 Abiotic pressure | 增温 Increased temperature | 樟 Cinnamomum camphora | 单萜 Monoterpenes | + | Tian et al., |
桦属 Betula ssp. | 单萜 Monoterpenes 倍半萜 Sesquiterpenes GLVs | + + + | Ghimire et al., | ||
欧洲云杉、欧洲赤松 Picea abies, Pinus sylvestris | 萜类 Terpenes 含氧单萜 Oxygenated monoterpenes 非含氧单萜 Non-oxygenated monoterpenes 倍半萜 Sesquiterpenes | NS/- + + + | Kivimäenpää et al., | ||
热胁迫 Thermal stress | 三球悬铃木等 Platanus orientalis etc. | 异戊二烯 Isoprene 单萜 Monoterpenes 倍半萜 Sesquiterpenes 酚类 Phenols | + - - - | Velikova et al., | |
臭氧浓度升高 Elevated ozone concentration | 欧洲云杉、欧洲赤松 Picea abies, Pinus sylvestris | 萜类 Terpenes 单萜 Monoterpenes 倍半萜 Sesquiterpenes | + + + | Kivimäenpää et al., | |
青杨 Populus cathayana | 异戊二烯 Isoprene | - | Yuan et al., | ||
缺水、低温和盐胁迫 Water deficit, cold and salt stresses | 拟南芥 Arabidopsis thaliana | 水杨酸 Salicylic acid | + | Jin et al., | |
盐胁迫 Salt stress | 欧洲山毛榉、欧洲鹅耳枥 Fagus sylvatica, Carpinus betulus | 含氧化合物 Oxygenated compounds GLVs | + + | Fitzky et al., | |
CO2浓度升高 Elevated CO2 concentration | 三球悬铃木 Platanus orientalis | 异戊二烯 Isoprene | - | Velikova et al., | |
非生物胁迫 Abiotic pressure | 干旱胁迫 Drought stress | 黑松 Pinus thunbergii | 异戊二烯 Isoprene 单萜 Monoterpenes 倍半萜 Sesquiterpenes | +/- +/- +/- | Yang et al., |
马尾松 Pinus massoniana | 总萜 Total terpenes 单萜 Monoterpenes 倍半萜 Sesquiterpenes 含氧化合物 Oxygenated compounds 芳香族化合物 Aromatic compounds | - - - - - | Huang et al., | ||
冬青栎 Quercus ilex | 萜类 Terpene | + | Blanch et al., | ||
夏栎、欧洲山毛榉 Quercus robur, Fagus sylvatica | 异戊二烯 Isoprene 单萜 Monoterpenes | + + | Fitzky et al., | ||
夏栎 Quercus robur | 异戊二烯 Isoprene 单萜 Monoterpenes 倍半萜 Sesquiterpenes GLVs | - + + + | Peron et al., | ||
白云杉 Picea glauca | OVOCs | + | Perreca et al., | ||
地中海松 Pinus halepensis | 萜类 Terpene | - | Blanch et al., | ||
干旱×臭氧 Drought × ozone | 夏栎 Quercus robur | MeSA | + | Peron et al., |
影响因子 Influence factor | 植物 Plant | dBVOCs种类 dBVOCs species | 影响 Effect | 参考文献 Reference |
---|---|---|---|---|
氮添加 Nitrogen (N) addition | 欧洲赤松 Pinus sylvestris | 非含氧单萜 Non-oxidized monoterpenes | + | Ghimire et al., |
青杨 Populus cathayana | 异戊二烯 Isoprene | + | Yuan et al., | |
芒属 Miscanthus 柳属 Salix | 异戊二烯 Isoprene 异戊二烯 Isoprene | - + | Hu et al., | |
杉木 Cunninghamia lanceolata | BVOC-C | + | Zhang et al., | |
黑松 Pinus thunbergii | 异戊二烯 Isoprene 倍半萜 Sesquiterpenes | + + | Yang et al., | |
木荷 Schima superba 厚壳桂 Cryptocarya chinensis 线枝蒲桃 Syzygium araiocladum | 异戊二烯 Isoprene 单萜 Monoterpenes 倍半萜 Sesquiterpenes | + + + | Ma et al., | |
垂枝桦 Betula pendula | α-蒎烯 α-pinene β-蒎烯 β-pinene 罗勒烯 Ocimene 己醛 Hexanal | - - + + | Carriero et al., | |
缺氮 N deficient | 大豆 Glycine max | 倍半萜 Sesquiterpenes 部分GLVs Part of GLVs | + - | Winter & Rostás, |
氮添加×臭氧 N addition × ozone | 欧洲赤松 Pinus sylvestris | 单萜 Monoterpenes 倍半萜 Sesquiterpenes | + + | Kivimäenpää et al., |
Table 2 Effects of nitrogen deposition on defense-related biogenic volatile organic compounds (dBVOCs) emissions
影响因子 Influence factor | 植物 Plant | dBVOCs种类 dBVOCs species | 影响 Effect | 参考文献 Reference |
---|---|---|---|---|
氮添加 Nitrogen (N) addition | 欧洲赤松 Pinus sylvestris | 非含氧单萜 Non-oxidized monoterpenes | + | Ghimire et al., |
青杨 Populus cathayana | 异戊二烯 Isoprene | + | Yuan et al., | |
芒属 Miscanthus 柳属 Salix | 异戊二烯 Isoprene 异戊二烯 Isoprene | - + | Hu et al., | |
杉木 Cunninghamia lanceolata | BVOC-C | + | Zhang et al., | |
黑松 Pinus thunbergii | 异戊二烯 Isoprene 倍半萜 Sesquiterpenes | + + | Yang et al., | |
木荷 Schima superba 厚壳桂 Cryptocarya chinensis 线枝蒲桃 Syzygium araiocladum | 异戊二烯 Isoprene 单萜 Monoterpenes 倍半萜 Sesquiterpenes | + + + | Ma et al., | |
垂枝桦 Betula pendula | α-蒎烯 α-pinene β-蒎烯 β-pinene 罗勒烯 Ocimene 己醛 Hexanal | - - + + | Carriero et al., | |
缺氮 N deficient | 大豆 Glycine max | 倍半萜 Sesquiterpenes 部分GLVs Part of GLVs | + - | Winter & Rostás, |
氮添加×臭氧 N addition × ozone | 欧洲赤松 Pinus sylvestris | 单萜 Monoterpenes 倍半萜 Sesquiterpenes | + + | Kivimäenpää et al., |
Fig. 2 Prediction for the effect of increased nitrogen (N) deposition on defense-related biogenic volatile organic compounds (dBVOCs) emissions. A, System is in nitrogen limitation. B, System is in phosphorus limitation. +, promotion; -, suppression; ↑, increase; ↓, decrease. C, carbon; P, phosphorus.
[1] |
Aerts N, Mendes MP, Van Wees SCM (2021). Multiple levels of crosstalk in hormone networks regulating plant defense. The Plant Journal, 105, 489-504.
DOI PMID |
[2] |
Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K (2018). Green leaf volatile production by plants: a meta-analysis. New Phytologist, 220, 666-683.
DOI PMID |
[3] | Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Schurgers G, Sorvari S, Vesala T (2010). Terrestrial biogeochemical feedbacks in the climate system. Nature Geoscience, 3, 525-532. |
[4] |
Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006). Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science, 311, 812-815.
DOI PMID |
[5] | Bauer GA, Bazzaz FA, Minocha R, Long S, Magill A, Aber J, Berntson GM (2004). Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. Forest Ecology and Management, 196, 173-186. |
[6] | Berger TW, Glatzel G (2001). Response of Quercus petraea seedlings to nitrogen fertilization. Forest Ecology and Management, 149, 1-14. |
[7] | Blanch JS, Peñuelas J, Llusià J (2007). Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiologia Plantarum, 131, 211-225. |
[8] | Blande JD, Holopainen JK, Niinemets Ü (2014). Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant, Cell & Environment, 37, 1892-1904. |
[9] |
Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30-59.
PMID |
[10] | Cai MF, An CJ, Guy C (2021). A scientometric analysis and review of biogenic volatile organic compound emissions: research hotspots, new frontiers, and environmental implications. Renewable and Sustainable Energy Reviews, 149, 111317. DOI: 10.1016/j.rser.2021.111317. |
[11] | Cai XA, Huang J, Wu T, Liu JX, Jiang F, Wang SH (2021). Study on methane emission from tree leaves. Ecology and Environmental Sciences, 30(9), 1842-1847. |
[ 蔡锡安, 黄娟, 吴彤, 刘菊秀, 蒋芬, 王森浩 (2021). 植物叶片排放甲烷的初步研究. 生态环境学报, 30(9), 1842-1847.]
DOI |
|
[12] |
Carriero G, Brunetti C, Fares S, Hayes F, Hoshika Y, Mills G, Tattini M, Paoletti E (2016). BVOC responses to realistic nitrogen fertilization and ozone exposure in silver birch. Environmental Pollution, 213, 988-995.
DOI PMID |
[13] | Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, Kulmala M (2009). Atmospheric aerosols in the earth system: a review of interactions and feedbacks. Atmospheric Chemistry and Physics Discussions, 9, 11087-11183. |
[14] |
Chang YN, Zhu C, Jiang J, Zhang HM, Zhu JK, Duan CG (2020). Epigenetic regulation in plant abiotic stress responses. Journal of Integrative Plant Biology, 62, 563-580.
DOI |
[15] | Cofer TM, Engelberth M, Engelberth J (2018). Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. Plant, Cell & Environment, 41, 1673-1682. |
[16] | Curtius T, Franzen H (1914). Über die chemischen bestandteile grüner pflanzen. Über die flüchtigen bestandteile der hainbuchenblätter. European Journal of Organic Chemistry, 404, 93-130. |
[17] | D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J (2007). Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. The Plant Journal, 49, 194-207. |
[18] | de Long JR, Sundqvist MK, Gundale MJ, Giesler R, Wardle DA (2016). Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Functional Ecology, 30, 314-325. |
[19] | Demen WA, Tyson BJ, Mooney HA (1975). Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemistry, 14, 2555-2557. |
[20] | Dicke M, Baldwin IT (2010). The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends in Plant Science, 15, 167-175. |
[21] | Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226. |
[22] | Duan CS, Zuo SD, Wu ZF, Qiu Y, Wang JF, Lei YH, Liao H, Ren Y (2021). A review of research hotspots and trends in biogenic volatile organic compounds (BVOCs) emissions combining bibliometrics with evolution tree methods. Environmental Research Letters, 16, 013003. DOI: 10.1088/1748-9326/abcee9. |
[23] |
Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198, 16-32.
DOI PMID |
[24] |
Erb M, Kliebenstein DJ (2020). Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiology, 184, 39-52.
DOI PMID |
[25] |
Erb M, Veyrat N, Robert CAM, Xu H, Frey M, Ton J, Turlings TCJ (2015). Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications, 6, 6273. DOI: 10.1038/ncomms7273.
PMID |
[26] | Ericsson A, Nordén LG, Näsholm T, Walheim M (1993). Mineral nutrient imbalances and arginine concentrations in needles of Picea abies (L.) Karst. from two areas with different levels of airborne deposition. Trees, 8, 67-74. |
[27] |
Escobar-Bravo R, Lin PA, Waterman JM, Erb M (2023). Dynamic environmental interactions shaped by vegetative plant volatiles. Natural Product Reports, 40, 840-865.
DOI PMID |
[28] | Fall R, Karl T, Hansel A, Jordan A, Lindinger W (1999). Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. Journal of Geophysical Research: Atmospheres, 104, 15963-15974. |
[29] |
Fernández-Martínez M, Llusià J, Filella I, Niinemets Ü, Arneth A, Wright IJ, Loreto F, Peñuelas J (2018). Nutrient-rich plants emit a less intense blend of volatile isoprenoids. New Phytologist, 220, 773-784.
DOI PMID |
[30] |
Filella I, Primante C, Llusià J, Martín González AM, Seco R, Farré-Armengol G, Rodrigo A, Bosch J, Peñuelas J (2013). Floral advertisement scent in a changing plant-pollinators market. Scientific Reports, 3, 3434. DOI: 10.1038/srep03434.
PMID |
[31] | Fitzky AC, Kaser L, Peron A, Karl T, Graus M, Tholen D, Halbwirth H, Trimmel H, Pesendorfer M, Rewald B, Sandén H (2023). Same, same, but different: drought and salinity affect BVOC emission rate and alter blend composition of urban trees. Urban Forestry & Urban Greening, 80, 127842. DOI: 10.1016/j.ufug.2023.127842. |
[32] | Fitzky AC, Peron A, Kaser L, Karl T, Graus M, Tholen D, Pesendorfer M, Mahmoud M, Sandén H, Rewald B (2021). Diversity and interrelations among the constitutive VOC emission blends of four broad-leaved tree species at seedling stage. Frontiers in Plant Science, 12, 708711. DOI: 10.3389/fpls.2021.708711. |
[33] | Friedrich U, von Oheimb G, Kriebitzsch WU, Schleßelmann K, Weber MS, Härdtle W (2012). Nitrogen deposition increases susceptibility to drought—Experimental evidence with the perennial grass Molinia caerulea (L.) Moench. Plant and Soil, 353, 59-71. |
[34] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226. |
[35] |
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889-892.
DOI PMID |
[36] | Ghimire RP, Kivimäenpää M, Kasurinen A, Häikiö E, Holopainen T, Holopainen JK (2017). Herbivore-induced BVOC emissions of Scots pine under warming, elevated ozone and increased nitrogen availability in an open-field exposure. Agricultural and Forest Meteorology, 242, 21-32. |
[37] | Ghimire RP, Markkanen JM, Kivimäenpää M, Lyytikäinen- Saarenmaa P, Holopainen JK (2013). Needle removal by pine sawfly larvae increases branch-level VOC emissions and reduces below-ground emissions of Scots pine. Environmental Science & Technology, 47, 4325-4332. |
[38] | Ghimire RP, Silfver T, Myller K, Oksanen E, Holopainen JK, Mikola J (2022). BVOC emissions from a subarctic ecosystem, as controlled by insect herbivore pressure and temperature. Ecosystems, 25, 872-891. |
[39] | Gong Q, Wang YJ, He LF, Huang F, Zhang DF, Wang Y, Wei X, Han M, Deng HT, Luo L, Cui F, Hong YG, Liu YL (2023). Molecular basis of methyl-salicylate-mediated plant airborne defence. Nature, 622, 139-148. |
[40] | Grote R, Sharma M, Ghirardo A, Schnitzler JP (2019). A new modeling approach for estimating abiotic and biotic stress-induced de novo emissions of biogenic volatile organic compounds from plants. Frontiers in Forests and Global Change, 2, 26. DOI: 10.3389/ffgc.2019.00026. |
[41] |
Gu BJ, Ju XT, Chang J, Ge Y, Vitousek PM (2015). Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America, 112, 8792-8797.
DOI PMID |
[42] | Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres, 100, 8873-8892. |
[43] | Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181-3210. |
[44] | Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012). The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471-1492. |
[45] |
Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008). Shared signals—‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecology Letters, 11, 24-34.
DOI PMID |
[46] |
Harley PC, Sharkey TD, Monson RK (1994). lsoprene emission from velvet bean leaves. Plant Physiology, 105, 279-185.
PMID |
[47] |
Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011). Nutrient co-limitation of primary producer communities. Ecology Letters, 14, 852-862.
DOI PMID |
[48] | Hirao T, Okazawa A, Harada K, Kobayashi A, Muranaka T, Hirata K (2012). Green leaf volatiles enhance methyl jasmonate response in Arabidopsis. Journal of Bioscience and Bioengineering, 114, 540-545. |
[49] |
Holopainen JK, Gershenzon J (2010). Multiple stress factors and the emission of plant VOCs. Trends in Plant Science, 15, 176-184.
DOI PMID |
[50] |
Holopainen JK, Rikala R, Kainulainen P, Oksanen J (1995). Resource partitioning to growth, storage and defence in nitrogen-fertilized Scots pine and susceptibility of the seedlings to the tarnished plant bug Lygus rugulipennis. New Phytologist, 131, 521-532.
DOI PMID |
[51] | Hu B, Jarosch AM, Gauder M, Graeff-Hönninger S, Schnitzler JP, Grote R, Rennenberg H, Kreuzwieser J (2018). VOC emissions and carbon balance of two bioenergy plantations in response to nitrogen fertilization: a comparison of Miscanthus and Salix. Environmental Pollution, 237, 205-217. |
[52] | Hu LF, Ye M, Erb M (2019). Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Plant, Cell & Environment, 42, 959-971. |
[53] |
Huang J, Liu JX, Zhang W, Cai XA, Liu L, Zheng MH, Mo JM (2019). Effects of urbanization on plant phosphorus availability in broadleaf and needleleaf subtropical forests. Science of the Total Environment, 684, 50-57.
DOI |
[54] | Huang J, Mo JM, Zhang W, Lu XK (2014). Research on acidification in forest soil driven by atmospheric nitrogen deposition. Acta Ecologica Sinica, 34, 302-310. |
[55] | Huang J, Wang XM, Zheng MH, Mo JM (2021). 13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in Southern China. Forest Ecology and Management, 481, 118748. DOI: 10.1016/j.foreco.2020.118748. |
[56] | Huang RX, Zhang TN, Ge XG, Cao YH, Li ZC, Zhou BZ (2023). Emission trade-off between isoprene and other BVOC components in Pinus massoniana saplings may be regulated by content of chlorophylls, starch and NSCs under drought stress. International Journal of Molecular Sciences, 24, 8946. DOI: 10.3390/ijms24108946. |
[57] | Huang XR, Lai JM, Liu YF, Zheng LL, Fang X, Song W, Yi ZG (2020). Biogenic volatile organic compound emissions from Pinus massoniana and Schima superba seedlings: their responses to foliar and soil application of nitrogen. Science of the Total Environment, 705, 135761. DOI: 10.1016/j.scitotenv.2019.135761. |
[58] | Hunziker P, Lambertz SK, Weber K, Crocoll C, Halkier BA, Schulz A (2021). Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111977118. DOI: 10.1073/pnas.2111977118. |
[59] |
Ibrahim MA, Stewart-Jones A, Pulkkinen J, Poppy GM, Holopainen JK (2008). The influence of different nutrient levels on insect-induced plant volatiles in Bt and conventional oilseed rape plants. Plant Biology, 10, 97-107.
DOI PMID |
[60] | Iriti M, Faoro F (2009). Chemical diversity and defense metabolism: how plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences, 10, 3371-3399. |
[61] | Jin TC, Min F, Li YD, Ding XY, Han H, Shi M, Yang LP (2023). Molecular mechanism of abiotic stresses induced expression of defense gene in Arabidopsis thaliana. Journal of Northeast Forestry University, 51(5), 60-65. |
[ 金太成, 闵菲, 李一荻, 丁晓月, 韩晗, 石淼, 杨丽萍 (2023). 非生物胁迫诱导拟南芥中防御基因表达的分子机制. 东北林业大学学报, 51(5), 60-65.] | |
[62] | Jones CG, Hartley SE (1999). A protein competition model of phenolic allocation. Oikos, 86, 27-44. |
[63] | Kang L (1995). Interaction between grasshoppers and plants under grazing disturbance. Acta Ecologica Sinica, 15, 1-11. |
[ 康乐 (1995). 放牧干扰下的蝗虫-植物相互作用关系. 生态学报, 15, 1-11.] | |
[64] | Kivimäenpää M, Ghimire RP, Sutinen S, Häikiö E, Kasurinen A, Holopainen T, Holopainen JK (2016). Increases in volatile organic compound emissions of Scots pine in response to elevated ozone and warming are modified by herbivory and soil nitrogen availability. European Journal of Forest Research, 135, 343-360. |
[65] | Kivimäenpää M, Riikonen J, Ahonen V, Tervahauta A, Holopainen T (2013). Sensitivity of Norway spruce physiology and terpenoid emission dynamics to elevated ozone and elevated temperature under open-field exposure. Environmental and Experimental Botany, 90, 32-42. |
[66] | Kivimäenpää M, Riikonen J, Valolahti H, Elina H, Holopainen JK, Holopainen T (2022). Effects of elevated ozone and warming on terpenoid emissions and concentrations of Norway spruce depend on needle phenology and age. Tree Physiology, 42, 1570-1586. |
[67] | Kleist E, Mentel TF, Andres S, Bohne A, Folkers A, Kiendler-Scharr A, Rudich Y, Springer M, Tillmann R, Wildt J (2012). Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences, 9, 5111-5123. |
[68] | Klinger LF, Greenburg J, Guenther A, Tyndall G, Zimmerman P, M’Bangui M, Moutsamboté JM, Kenfack D (1998). Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa. Journal of Geophysical Research: Atmospheres, 103, 1443-1454. |
[69] | Klinger LF, Li QJ, Guenther AB, Greenberg JP, Baker B, Bai JH (2002). Assessment of volatile organic compound emissions from ecosystems of China. Journal of Geophysical Research: Atmospheres, 107, 4603. DOI: 10.1029/2001JD001076. |
[70] | Koo YJ, Kim MA, Kim EH, Song JT, Jung C, Moon JK, Kim JH, Seo HS, Song SI, Kim JK, Lee JS, Cheong JJ, Do Choi Y (2007). Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology, 64, 1-15. |
[71] | Kutty NN, Mishra M (2023). Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. Frontiers in Plant Science, 14, 1135000. DOI: 10.3389/fpls.2023.1135000. |
[72] | Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009). Biogenic volatile organic compounds in the Earth system. New Phytologist, 183, 27-51. |
[73] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI PMID |
[74] | Li FR, Dudley TL, Chen BM, Chang XY, Liang LY, Peng SL (2016). Responses of tree and insect herbivores to elevated nitrogen inputs: a meta-analysis. Acta Oecologica, 77, 160-167. |
[75] | Li MY, Wang J, Wang ZX, Wu XY, Huang RZ, Zhu JM (2013). Photosynthetic characteristics, biomass allocation, C, N and P distribution of Schima superba seedlings in response to simulated nitrogen deposition. Acta Ecologica Sinica, 33, 1569-1577. |
[ 李明月, 王健, 王振兴, 吴晓燕, 黄儒珠, 朱锦懋 (2013). 模拟氮沉降条件下木荷幼苗光合特性、生物量与C、N、P分配格局. 生态学报, 33, 1569-1577.] | |
[76] |
Liang XY, Zhang T, Lu XK, Ellsworth DS, BassiriRad H, You CM, Wang D, He PC, Deng Q, Liu H, Mo JM, Ye Q (2020). Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Global Change Biology, 26, 3585-3600.
DOI PMID |
[77] | Litvak ME, Loreto F, Harley PC, Sharkey TD, Monson RK (1996). The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant, Cell & Environment, 19, 549-559. |
[78] |
Liu J, Wu NN, Wang H, Sun JF, Peng B, Jiang P, Bai E (2016). Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter. Ecology, 97, 1796-1806.
DOI PMID |
[79] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159, 2251-2264.
DOI PMID |
[80] | Lloret J, Valiela I (2016). Unprecedented decrease in deposition of nitrogen oxides over North America: the relative effects of emission controls and prevailing air-mass trajectories. Biogeochemistry, 129, 165-180. |
[81] |
Loivamäki M, Gilmer F, Fischbach RJ, Sörgel C, Bachl A, Walter A, Schnitzler JP (2007). Arabidopsis, a model to study biological functions of isoprene emission? Plant Physiology, 144, 1066-1078.
PMID |
[82] | Loreto F, D’Auria S (2022). How do plants sense volatiles sent by other plants? Trends in Plant Science, 27, 29-38. |
[83] | Loreto F, Nascetti P, Graverini A, Mannozzi M (2000). Emission and content of monoterpenes in intact and wounded needles of the Mediterranean Pine, Pinus pinea. Functional Ecology, 14, 589-595. |
[84] |
Loreto F, Schnitzler JP (2010). Abiotic stresses and induced BVOCs. Trends in Plant Science, 15, 154-166.
DOI PMID |
[85] |
Loreto F, Velikova V (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127, 1781-1787.
PMID |
[86] |
Lu XK, Mao QG, Gilliam FS, Luo YQ, Mo JM (2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801.
DOI PMID |
[87] | Lu XK, Mo JM, Gilliam FS, Fang H, Zhu FF, Fang YT, Zhang W, Huang J (2012). Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China. Biotropica, 44, 302-311. |
[88] |
Lun XX, Lin Y, Chai FH, Fan C, Li H, Liu JF (2020). Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia. Journal of Environmental Sciences, 95, 266-277.
DOI PMID |
[89] | Ma HY, Wu QH, Fu Y, Yang ZD, He H (2023). Short-term response of BVOCs emissions from several dominant tropical rainforest tree species in Hainan Island to simulated nitrogen deposition. Acta Ecologica Sinica, 43, 1073-1089. |
[ 马慧燕, 伍乾辉, 付彦, 杨宗德, 何禾 (2023). 几种海南岛热带雨林优势种植物挥发性有机物排放对模拟氮沉降的短期响应. 生态学报, 43, 1073-1089.] | |
[90] |
Malone SC, Simonpietri A, Knighton WB, Trowbridge AM (2023). Drought impairs herbivore-induced volatile terpene emissions by ponderosa pine but not through constraints on newly assimilated carbon. Tree Physiology, 43, 938-951.
DOI PMID |
[91] | Mao QG, Chen H, Wang C, Pang ZQ, Mo JM, Lu XK (2021). Effect of long-term nitrogen and phosphorus additions on understory plant nutrients in a primary tropical forest. Forests, 12, 803. DOI: 10.3390/f12060803. |
[92] | Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J (2012). Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS ONE, 7, e36433. DOI: 10.1371/journal.pone.0036433. |
[93] | Mattson Jr WJ (1980). Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119-161. |
[94] |
Mofikoya AO, Bui TNT, Kivimäenpää M, Holopainen JK, Himanen SJ, Blande JD (2019). Foliar behaviour of biogenic semi-volatiles: potential applications in sustainable pest management. Arthropod-Plant Interactions, 13, 193-212.
DOI |
[95] |
Monson RK, Harley PC, Litvak ME, Wildermuth M, Guenther AB, Zimmerman PR, Fall R (1994). Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia, 99, 260-270.
DOI PMID |
[96] |
Monson RK, Weraduwage SM, Rosenkranz M, Schnitzler JP, Sharkey TD (2021). Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia, 197, 885-902.
DOI PMID |
[97] | Murungi LK, Kirwa H, Salifu D, Torto B (2016). Opposing roles of foliar and glandular trichome volatile components in cultivated nightshade interaction with a specialist herbivore. PLoS ONE, 11, e0160383. DOI: 10.1371/journal.pone.0160383. |
[98] | Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002). Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 419, 915-917. |
[99] | Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther A, Kesselmeier J, Lerdau MT, Monson RK, Peñuelas J (2011). Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences, 8, 2209-2246. |
[100] | Ninkovic V, Glinwood R, Ünlü AG, Ganji S, Unelius CR (2021). Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Frontiers in Plant Science, 12, 710268. DOI: 10.3389/fpls.2021.710268. |
[101] | Panthee S, Ashton LA, Tani A, Sharma B, Nakamura A (2022). Mechanical branch wounding alters the BVOC emission patterns of Ficus plants. Forests, 13, 1931. DOI: 10.3390/f13111931. |
[102] | Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318, 113-116. |
[103] | Peron A, Kaser L, Fitzky AC, Graus M, Halbwirth H, Greiner J, Wohlfahrt G, Rewald B, Sandén H, Karl T (2021). Combined effects of ozone and drought stress on the emission of biogenic volatile organic compounds from Quercus robur L. Biogeosciences, 18, 535-556. |
[104] | Perreca E, Eberl F, Santoro MV, Wright LP, Schmidt A, Gershenzon J (2022). Effect of drought and methyl jasmonate treatment on primary and secondary isoprenoid metabolites derived from the MEP pathway in the white spruce Picea glauca. International Journal of Molecular Sciences, 23, 3838. DOI: 10.3390/ijms23073838. |
[105] | Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12, 470-476. |
[106] | Possell M, Heath J, Nicholas Hewitt C, Ayres E, Kerstiens G (2004). Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur. Global Change Biology, 10, 1835-1843. |
[107] |
Schettino M, Grasso DA, Weldegergis BT, Castracani C, Mori A, Dicke M, Van Lenteren JC, Van Loon JJA (2017). Response of a predatory ant to volatiles emitted by aphid- and caterpillar-infested cucumber and potato plants. Journal of Chemical Ecology, 43, 1007-1022.
DOI PMID |
[108] |
Schneider GF, Cheesman AW, Winter K, Turner BL, Sitch S, Kursar TA (2017). Current ambient concentrations of ozone in Panama modulate the leaf chemistry of the tropical tree Ficus insipida. Chemosphere, 172, 363-372.
DOI PMID |
[109] | Schnitzler JP, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A, Hansel A (2004). Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiology, 135, 152-160. |
[110] |
Schwartzberg EG, Böröczky K, Tumlinson JH (2011). Pea aphids, Acyrthosiphon pisum, suppress induced plant volatiles in broad bean, Vicia faba. Journal of Chemical Ecology, 37, 1055-1062.
DOI PMID |
[111] | Silva DB, Weldegergis BT, Van Loon JJA, Bueno VHP (2017). Qualitative and quantitative differences in herbivore- induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. Journal of Chemical Ecology, 43, 53-65. |
[112] | Singh AA, Ghosh A, Agrawal M, Agrawal SB (2023). Secondary metabolites responses of plants exposed to ozone: an update. Environmental Science and Pollution Research, 30, 88281-88312. |
[113] |
Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997). lsoprene increases thermos tolerance of isoprene-emitting species. Plant Physiology, 115, 1413-1420.
PMID |
[114] |
Staudt M, Joffre R, Rambal S, Kesselmeier J (2001). Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiology, 21, 437-445.
DOI PMID |
[115] | Tang F, Fu YY, Ye JR (2015). The effect of methyl salicylate on the induction of direct and indirect plant defense mechanisms in poplar (Populus × euramericana ‘Nanlin 895’). Journal of Plant Interactions, 10, 93-100. |
[116] | Tian SF, Guo RZ, Zou XX, Zhang XJ, Yu XN, Zhan Y, Ci DW, Wang ML, Wang YF, Si T (2019). Priming with the green leaf volatile (Z)-3-hexeny-1-yl acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings. Frontiers in Plant Science, 10, 785. DOI: 10.3389/fpls.2019.00785. |
[117] | Tian ZF, Luo QY, Li Y, Zuo ZJ (2020). Terpinene and β-pinene acting as signaling molecules to improve Cinnamomum camphora thermotolerance. Industrial Crops and Products, 154, 112641. DOI: 10.1016/j.indcrop.2020.112641. |
[118] |
Tumlinson JH (2014). The importance of volatile organic compounds in ecosystem functioning. Journal of Chemical Ecology, 40, 212-213.
DOI PMID |
[119] |
Turlings TCJ, Erb M (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annual Review of Entomology, 63, 433-452.
DOI PMID |
[120] |
Velikova V, Tsonev T, Barta C, Centritto M, Koleva D, Stefanova M, Busheva M, Loreto F (2009). BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environmental Pollution, 157, 2629-2637.
DOI PMID |
[121] |
Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009). A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 5, 283-291.
DOI PMID |
[122] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997). Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737. DOI: 10.2307/2269431. |
[123] |
Vogt T (2010). Phenylpropanoid biosynthesis. Molecular Plant, 3, 2-20.
DOI PMID |
[124] |
Wang H, Wu QZ, Guenther AB, Yang XC, Wang LN, Xiao T, Li J, Feng JM, Xu Q, Cheng HQ (2021). A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001-2016: the roles of land cover change and climate variability. Atmospheric Chemistry and Physics, 21, 4825-4848.
DOI |
[125] | Wang L, Jäggi S, Cofer TM, Waterman JM, Walthert M, Glauser G, Erb M (2023). Immature leaves are the dominant volatile-sensing organs of maize. Current Biology, 33, 3679-3689. |
[126] |
Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M, Hardie J, Pickett J (2008). Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. Journal of Chemical Ecology, 34, 1153-1161.
DOI PMID |
[127] | Williams RS, Thomas RB, Strain BR, Lincoln DE (1997). Effects of elevated CO2, soil nutrient levels, and foliage age on the performance of two generations of Neodiprion lecontei (Hymenoptera: Diprionidae) feeding on loblolly pine. Environmental Entomology, 26, 1312-1322. |
[128] |
Winter TR, Rostás M (2010). Nitrogen deficiency affects bottom-up cascade without disrupting indirect plant defense. Journal of Chemical Ecology, 36, 642-651.
DOI PMID |
[129] | Wright DM, Jordan GJ, Lee WG, Duncan RP, Forsyth DM, Coomes DA (2010). Do leaves of plants on phosphorus-impoverished soils contain high concentrations of phenolic defence compounds? Functional Ecology, 24, 52-61. |
[130] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[131] | Yang WZ, Cao J, Wu Y, Kong FL, Li LY (2021). Review on plant terpenoid emissions worldwide and in China. Science of the Total Environment, 787, 147454. DOI: 10.1016/j.scitotenv.2021.147454. |
[132] | Yang WZ, Zhang BW, Wu Y, Liu S, Kong FL, Li LY (2023). Effects of soil drought and nitrogen deposition on BVOC emissions and their O3 and SOA formation for Pinus thunbergii. Environmental Pollution, 316, 120693. DOI: 10.1016/j.envpol.2022.120693. |
[133] | Yu GR, Jia YL, He NP, Zhu JX, Chen Z, Wang QF, Piao SL, Liu XJ, He HL, Guo XB, Wen Z, Li P, Ding GA, Goulding K (2019). Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 12, 424-429. |
[134] | Yuan XY, Shang B, Xu YS, Xin Y, Tian Y, Feng ZZ, Paoletti E (2017). No significant interactions between nitrogen stimulation and ozone inhibition of isoprene emission in Cathay poplar. Science of the Total Environment, 601-602, 222-229. |
[135] |
Zebelo S, Piorkowski J, Disi J, Fadamiro H (2014). Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum. BMC Plant Biology, 14, 140. DOI: 10.1186/1471-2229-14-140.
PMID |
[136] |
Zettlemoyer MA (2022). Leaf traits mediate herbivory across a nitrogen gradient differently in extirpated vs. extant prairie species. Oecologia, 198, 711-720.
DOI PMID |
[137] | Zhang W, Mo JM, Yu GR, Fang YT, Li DJ, Lu XK, Wang H (2008). Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. Plant and Soil, 306, 221-236. |
[138] | Zhang Y, Sun HZ, Liu YF, Tang XH, Fang X (2021). Effects of nitrogen addition and drought on seedling growth, photosynthesis and volatile organic compounds-carbon emission of two subtropical tree seedlings. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 50, 524-532. |
[ 张羽, 孙浩钊, 刘燕飞, 汤行昊, 方熊 (2021). 氮添加和干旱对亚热带两个树种生长、光合及挥发性有机碳释放的影响. 福建农林大学学报(自然科学版), 50, 524-532.] | |
[139] | Zhang YQ, Mathur R, Bash JO, Hogrefe C, Xing J, Roselle SJ (2018). Long-term trends in total inorganic nitrogen and sulfur deposition in the US from 1990 to 2010. Atmospheric Chemistry and Physics, 18, 9091-9106. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 88
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn