Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (4): 573-584.DOI: 10.17521/cjpe.2024.0001 cstr: 32100.14.cjpe.2024.0001
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
GUO Li-Qi1, YAN Xiao-Lei1, CAO Lei1, GAO Jing1, LIU Rui-Qiang2,*(), ZHOU Xu-Hui2
Received:
2024-01-02
Accepted:
2024-05-06
Online:
2025-04-20
Published:
2025-04-18
Contact:
LIU Rui-Qiang
Supported by:
GUO Li-Qi, YAN Xiao-Lei, CAO Lei, GAO Jing, LIU Rui-Qiang, ZHOU Xu-Hui. Effects of mycorrhizal types and root traits of tree species on rhizosphere microbial network complexity[J]. Chin J Plant Ecol, 2025, 49(4): 573-584.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0001
树种 Tree species | 拉丁名 Latin name | 菌根类型 Mycorrhizal type | 胸径 DBH (cm) |
---|---|---|---|
卫矛 | Euonymus alatus | 丛枝根菌 AM | 2.87 ± 0.12 |
青楷槭 | Acer tegmentosum | 丛枝根菌 AM | 5.93 ± 1.05 |
色木槭 | Acer mono | 外生根菌 EcM | 7.17 ± 3.67 |
春榆 | Ulmus davidiana var. japonica | 外生根菌 EcM | 14.43 ± 3.13 |
红松 | Pinus koraiensis | 外生根菌 EcM | 16.02 ± 2.97 |
白桦 | Betula platyphylla | 外生根菌 EcM | 21.02 ± 1.25 |
落叶松 | Larix gmelinii | 外生根菌 EcM | 24.17 ± 3.10 |
黄檗 | Phellodendron amurense | 丛枝根菌 AM | 25.91 ± 1.28 |
胡桃楸 | Juglans mandshurica | 丛枝根菌 AM | 27.08 ± 3.17 |
山杨 | Populus davidiana | 外生根菌 EcM | 32.01 ± 5.17 |
蒙古栎 | Quercus mongolica | 外生根菌 EcM | 32.23 ± 4.00 |
水曲柳 | Fraxinus mandshurica | 丛枝根菌 AM | 36.20 ± 1.38 |
Table 1 DBH of collected tree species (mean ± SE)
树种 Tree species | 拉丁名 Latin name | 菌根类型 Mycorrhizal type | 胸径 DBH (cm) |
---|---|---|---|
卫矛 | Euonymus alatus | 丛枝根菌 AM | 2.87 ± 0.12 |
青楷槭 | Acer tegmentosum | 丛枝根菌 AM | 5.93 ± 1.05 |
色木槭 | Acer mono | 外生根菌 EcM | 7.17 ± 3.67 |
春榆 | Ulmus davidiana var. japonica | 外生根菌 EcM | 14.43 ± 3.13 |
红松 | Pinus koraiensis | 外生根菌 EcM | 16.02 ± 2.97 |
白桦 | Betula platyphylla | 外生根菌 EcM | 21.02 ± 1.25 |
落叶松 | Larix gmelinii | 外生根菌 EcM | 24.17 ± 3.10 |
黄檗 | Phellodendron amurense | 丛枝根菌 AM | 25.91 ± 1.28 |
胡桃楸 | Juglans mandshurica | 丛枝根菌 AM | 27.08 ± 3.17 |
山杨 | Populus davidiana | 外生根菌 EcM | 32.01 ± 5.17 |
蒙古栎 | Quercus mongolica | 外生根菌 EcM | 32.23 ± 4.00 |
水曲柳 | Fraxinus mandshurica | 丛枝根菌 AM | 36.20 ± 1.38 |
Fig. 1 Root traits among 12 tree species and the effect of mycorrhizal types on root traits (mean ± SE). AM, arbuscular mycorrhiza; EcM, ectomycorrhiza; N, nitrogen; P, phosphorus. Am, Acer mono; AT, Acer tegmentosum; BP, Betula platyphylla; EA, Euonymus alatus; FM, Fraxinus mandshurica; JM, Juglans mandshurica; LG, Larix gmelinii; PA, Phellodendron amurense; PD, Populus davidiana; PK, Pinus koraiensis; UD, Ulmus davidiana var. japonica; QM, Quercus mongolica. Different lowercase letters indicate significant differences among different tree species (p < 0.05). The percentage in parentheses represent the coefficient of variation on different mycorrhizal tree species; * indicate the significance levels of mycorrhizal type effects in the mixed effects model: **, p < 0.01; ***, p < 0.001.
Fig. 2 Microbial community composition between different mycorrhizal types of tree species (mean ± SE). * indicates a significant difference in relative abundance between mycorrhizal types (p < 0.05). AM, arbuscular mycorrhiza; EcM, ectomycorrhiza.
Fig. 3 Microbial diversity between different mycorrhizal types of tree species (mean ± SE). AM, arbuscular mycorrhiza; EcM, ectomycorrhiza. Am, Acer mono; AT, Acer tegmentosum; BP, Betula platyphylla; EA, Euonymus alatus; FM, Fraxinus mandshurica; JM, Juglans mandshurica; LG, Larix gmelinii; PA, Phellodendron amurense; PD, Populus davidiana; PK, Pinus koraiensis; UD, Ulmus davidiana var. japonica; QM, Quercus mongolica. Different lowercase letters indicate significant differences among different tree species (p < 0.05).
Fig. 4 Microbial network between different mycorrhizal types of tree species. The size of points indicates the degree of microbial taxonomies. AM, arbuscular mycorrhiza; EcM, ectomycorrhiza.
Fig. 5 Microbial community complexity between different mycorrhizal types of tree species (mean ± SE). AM, arbuscular mycorrhiza; EcM, ectomycorrhiza. Am, Acer mono; AT, Acer tegmentosum; BP, Betula platyphylla; EA, Euonymus alatus; FM, Fraxinus mandshurica; JM, Juglans mandshurica; LG, Larix gmelinii; PA, Phellodendron amurense; PD, Populus davidiana; PK, Pinus koraiensis; UD, Ulmus davidiana var. japonica; QM, Quercus mongolica. Different lowercase letters indicate significant differences among different tree species (p < 0.05); * represents a significant mycorrhizal type effect in the mixed effects model (p < 0.05).
[1] | Averill C, Turner BL, Finzi AC (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543-545. |
[2] |
Bahram M, Netherway T, Hildebrand F, Pritsch K, Drenkhan R, Loit K, Anslan S, Bork P, Tedersoo L (2020). Plant nutrient-acquisition strategies drive topsoil microbiome structure and function. New Phytologist, 227, 1189-1199.
DOI PMID |
[3] |
Brabcová V, Nováková M, Davidová A, Baldrian P (2016). Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytologist, 210, 1369-1381.
DOI PMID |
[4] |
Brundrett MC, Tedersoo L (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220, 1108-1115.
DOI PMID |
[5] |
Brzostek ER, Dragoni D, Brown ZA, Phillips RP (2015). Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytologist, 206, 1274-1282.
DOI PMID |
[6] |
Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016). Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences of the United States of America, 113, 8741-8746.
DOI PMID |
[7] | Chen YC, Chi JH, Lu XY, Cai YJ, Jiang H, Zhang QF, Zhang KR (2023). Fungal-bacterial composition and network complexity determine soil multifunctionality during ecological restoration. Catena, 230. DOI: 10.1016/j.catena.2023.107251. |
[8] | Csárdi G, Nepusz T (2006). The igraph software package for complex network research. InterJournal Complex Systems, 1695. http://igraph.sf.net. |
[9] | Deng MF, Hu SJ, Guo LL, Jiang L, Huang YY, Schmid B, Liu C, Chang PF, Li S, Liu XJ, Ma KP, Liu LL (2023). Tree mycorrhizal association types control biodiversity- productivity relationship in a subtropical forest. Science Advances, 9, eadd4468. DOI: 10.1126/sciadv.add4468. |
[10] | Eagar AC, Mushinski RM, Horning AL, Smemo KA, Phillips RP, Blackwood CB (2022). Arbuscular mycorrhizal tree communities have greater soil fungal diversity and relative abundances of saprotrophs and pathogens than ectomycorrhizal tree communities. Applied and Environmental Microbiology, 88, e0178221. DOI: 10.1128/AEM.01782-21. |
[11] | Fang M, Liang MX, Liu XB, Li WB, Huang EH, Yu SX (2020). Abundance of saprotrophic fungi determines decomposition rates of leaf litter from arbuscular mycorrhizal and ectomycorrhizal trees in a subtropical forest. Soil Biology & Biochemistry, 149, 107966. DOI: 10.1016/j.soilbio.2020.107966. |
[12] | Fernandez CW, Kennedy PG (2016). Revisiting the ‘Gadgil effect’: Do interguild fungal interactions control carbon cycling in forest soils? New Phytologist, 209, 1382-1394. |
[13] |
Frey SD (2019). Mycorrhizal fungi as mediators of soil organic matter dynamics. Annual Review of Ecology, Evolution, and Systematics, 50, 237-259.
DOI |
[14] | Gadgil RL, Gadgil PD (1971). Mycorrhiza and litter decomposition. Nature, 233, 133. |
[15] | Gao J, Zhou MY, Shao JJ, Zhou GY, Liu RQ, Zhou LY, Liu HY, He YH, Chen Y, Zhou XH (2021a). Fine root trait-function relationships affected by mycorrhizal type and climate. Geoderma, 394, 115011. DOI: 10.1016/j.geoderma.2021.115011. |
[16] | Gao YQ, Yuan Y, Li QK, Kou L, Fu XL, Dai XQ, Wang HM (2021b). Mycorrhizal type governs foliar and root multi-elemental stoichiometries of trees mainly via root traits. Plant and Soil, 460, 229-246. |
[17] | Gleason FH, Carney LT, Lilje O, Glockling SL (2012). Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecology, 5, 651-656. |
[18] | Han MG, Sun LJ, Gan DY, Fu LC, Zhu B (2020). Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biology & Biochemistry, 151, 108019. DOI: 10.1016/j.soilbio.2020.108019. |
[19] | Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME (2021). Environmental stress destabilizes microbial networks. The ISME Journal, 15, 1722-1734. |
[20] | Herren CM, McMahon KD (2017). Cohesion: a method for quantifying the connectivity of microbial communities. The ISME Journal, 11, 2426-2438. |
[21] | Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 92, 267-275. |
[22] | Jiang Z, Thakur MP, Liu R, Zhou G, Zhou L, Fu Y, Zhang P, He Y, Shao J, Gao J, Li N, Wang X, Jia S, Chen Y, Zhang C, Zhou X (2022). Soil P availability and mycorrhizal type determine root exudation in sub-tropical forests. Soil Biology & Biochemistry, 171, 108722. DOI: 10.1016/j.soilbio.2022.108722. |
[23] | Jiao S, Qi JJ, Jin CJ, Liu Y, Wang Y, Pan HB, Chen S, Liang CL, Peng ZH, Chen BB, Qian X, Wei GH (2022). Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Global Change Biology, 28, 6653-6664. |
[24] | Kong D, Wang J, Wu H, Valverde-Barrantes OJ, Wang R, Zeng H, Kardol P, Zhang H, Feng Y (2019). Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10, 2203. DOI: 10.1038/s41467-019-10245-6. |
[25] | Langley JA, Hungate BA (2003). Mycorrhizal controls on belowground litter quality. Ecology, 84, 2302-2312. |
[26] | Li WT, Liu QH, Xie LL, Yin CY (2023). Interspecific plant-plant interactions increase the soil microbial network stability, shift keystone microbial taxa, and enhance their functions in mixed stands. Forest Ecology and Management, 533, 120851. DOI: 10.1016/j.foreco.2023.120851. |
[27] |
Lin G, McCormack ML, Ma C, Guo D (2017). Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytologist, 213, 1440-1451.
DOI PMID |
[28] | Liu YP, Sun QB, Li J, Lian B (2018). Bacterial diversity among the fruit bodies of ectomycorrhizal and saprophytic fungi and their corresponding hyphosphere soils. Scientific Reports, 8, 11672. DOI: 10.1038/s41598-018-30120-6. |
[29] | Midgley MG, Brzostek E, Phillips RP (2015). Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. Journal of Ecology, 103, 1454-1463. |
[30] |
Phillips RP, Brzostek E, Midgley MG (2013). The mycorrhizal- associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41-51.
DOI PMID |
[31] | Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[32] | Shi J, Wang Z, Peng YM, Zhang ZY, Fan ZM, Wang J, Wang X (2023). Microbes drive metabolism, community diversity, and interactions in response to microplastic-induced nutrient imbalance. Science of the Total Environment, 877, 162885. DOI: 10.1016/j.scitotenv.2023.162885. |
[33] | Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008). Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China. Journal of Plant Ecology (Chinese Version), 32, 1217-1226. |
[师伟, 王政权, 刘金梁, 谷加存, 郭大力 (2008). 帽儿山天然次生林20个阔叶树种细根形态. 植物生态学报, 32, 1217-1226.]
DOI |
|
[34] | Singavarapu B, Beugnon R, Bruelheide H, Cesarz S, Du J, Eisenhauer N, Guo L, Nawaz A, Wang Y, Xue K, Wubet T (2022). Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology, 24, 4236-4255. |
[35] |
Smith GR, Wan J (2019). Resource-ratio theory predicts mycorrhizal control of litter decomposition. New Phytologist, 223, 1595-1606.
DOI PMID |
[36] | Steidinger BS, Crowther TW, Liang J, van Nuland ME, Werner GDA, Reich PB, Nabuurs GJ, de-Miguel S, Zhou M, Picard N, Herault B, Zhao X, Zhang C, Routh D, Peay KG, et al. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569, 404-408. |
[37] | Sun XF, Liu F, Zhang QZ, Li YC, Zhang LF, Wang J, Zhang HY, Wang CK, Wang XC (2021). Biotic and climatic controls on the interannual variation in canopy litterfall of a deciduous broad-leaved forest. Agricultural and Forest Meteorology, 307, 108483. DOI: 10.1016/j.agrformet.2021.108483. |
[38] | Tanunchai B, Ji L, Schroeter SA, Wahdan SFM, Thongsuk K, Hilke I, Gleixner G, Buscot F, Schulze ED, Noll M, Purahong W (2023). Tree mycorrhizal type regulates leaf and needle microbial communities, affects microbial assembly and co-occurrence network patterns, and influences litter decomposition rates in temperate forest. Frontiers in Plant Science, 14, 1239600. DOI: 10.3389/fpls.2023.1239600. |
[39] |
Valverde-Barrantes OJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB (2018). Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest. Oecologia, 186, 731-741.
DOI PMID |
[40] |
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE,van der Heijden MGA (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841. DOI: 10.1038/s41467-019-12798-y.
PMID |
[41] | Wan XH, Yu ZP, Wang MJ, Zhang Y, Huang ZQ (2022). Litter and root traits control soil microbial composition and enzyme activities in 28 common subtropical tree species. Journal of Ecology, 110, 3012-3022. |
[42] | Wang C, Pan X, Yu W, Ye X, Erdenebileg E, Wang C, Ma L, Wang R, Huang Z, Indree T, Liu G (2023). Aridity and decreasing soil heterogeneity reduce microbial network complexity and stability in the semi-arid grasslands. Ecological Indicators, 151, 110342. DOI: 10.1016/j.ecolind.2023.110342. |
[43] | Weil SS, Martinez-Almoyna C, Piton G, Renaud J, Boulangeat L, Foulquier A, Saillard A, Choler P, Poulenard J, Consortium O, Münkemüller T, Thuiller W (2021). Strong links between plant traits and microbial activities but different abiotic drivers in mountain grasslands. Journal of Biogeography, 48, 2755-2770. |
[44] | Wen Z, White PJ, Shen J, Lambers H (2022). Linking root exudation to belowground economic traits for resource acquisition. New Phytologist, 233, 1620-1635. |
[45] | Yin L, Dijkstra FA, Phillips RP, Zhu B, Wang P, Cheng W (2021). Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees. Soil Biology & Biochemistry, 157, 108246. DOI: 10.1016/j.soilbio.2021.108246. |
[46] | Yuan M, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J (2021). Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348. |
[47] | Zhang BG, Zhang J, Liu Y, Shi P, Wei GH (2018). Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology & Biochemistry, 118, 178-186. |
[48] | Zhang L, Zhou J, George TS, Limpens E, Feng G (2022). Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 27, 402-411. |
[49] | Zhang SQ, Chen C, Xu S, Yin SX (2003). Improvement in sulfuric-acid-hydrogen-peroxide assimilating method for determination of NPK in plant. Soil, 35, 174-175. |
[张山泉, 陈川, 徐沭, 殷士学 (2003). 硫酸-过氧化氢消化法测定植株氮磷钾方法的改进. 土壤, 35, 174-175.] | |
[50] | Zhang Y, Yu Z, Luan JW, Wang Y, Ye XD, Liu SR (2023). Spatiotemporal variations of vegetation greenness in the forest belt of Northeast China during 1982-2020. Acta Ecologica Sinica, 43, 6670-6681. |
[张宇, 余振, 栾军伟, 王一, 叶晓丹, 刘世荣 (2023). 1982-2020年东北森林带植被绿度时空变化特征. 生态学报, 43, 6670-6681.] | |
[51] | Zhao YX, Lou YC, Qin WZ, Cai JJ, Zhang P, Hu BL (2022). Interval aeration improves degradation and humification by enhancing microbial interactions in the composting process. Bioresource Technology, 358, 127296. DOI: 10.1016/j.biortech.2022.127296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn