Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (4): 562-572.DOI: 10.17521/cjpe.2024.0283 cstr: 32100.14.cjpe.2024.0283
• Research Articles • Previous Articles Next Articles
WANG Bei-Bei, WU Su, WANG Miao-Miao*(), HU Jin-Tao
Received:
2024-08-21
Accepted:
2024-12-10
Online:
2025-04-20
Published:
2025-04-18
Contact:
WANG Miao-Miao
WANG Bei-Bei, WU Su, WANG Miao-Miao, HU Jin-Tao. Contributions of radiative, structural, and physiological information of solar-induced chlorophyll fluorescence on predicting crop gross primary production across temporal scales[J]. Chin J Plant Ecol, 2025, 49(4): 562-572.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0283
光谱仪 Spectrometer | 波段范围 Band range (nm) | 光谱分辨率 Spectral resolution (nm) | 信噪比 Signal-to-noise ratio | 计算参数 Calculational parameter |
---|---|---|---|---|
QEpro | 730-785 | 0.17 | 1 000 | Solar-induced chlorophyll fluorescence |
HR2000+ | 350-1 100 | 1.10 | 250 | Reflectance vegetation index |
Table 1 Configuration parameters of the spectrometers used in FluoSpec 2 system
光谱仪 Spectrometer | 波段范围 Band range (nm) | 光谱分辨率 Spectral resolution (nm) | 信噪比 Signal-to-noise ratio | 计算参数 Calculational parameter |
---|---|---|---|---|
QEpro | 730-785 | 0.17 | 1 000 | Solar-induced chlorophyll fluorescence |
HR2000+ | 350-1 100 | 1.10 | 250 | Reflectance vegetation index |
Fig. 1 Seasonal variations of gross primary productivity (GPP) (A), solar-induced chlorophyll fluorescence (SIF) (B), photosynthetically active radiation (PAR) (C), near-infrared reflectance of vegetation (NIRv) (D), fluorescence corrected vegetation index (FCVI) (E), fluorescence quantum efficiency based on NIRv method (ΦF_FCVI) (F), and fluorescence quantum efficiency based on FCVI method (ΦF_FCVI) for Triticum aestivum (blue circle) and Zea mays (red circle) of Shangqiu in 2019 (G).
Fig. 2 Relationships between solar-induced chlorophyll fluorescence (SIF) and gross primary productivity (GPP) at different temporal resolutions and crops and the determination coefficient (R2) of the linear relationships. A, 0.5 h scale. B, One-day scale. C, One-week scale. D, Two-week scale. E, One-month scale. F, Histogram of R2 at different temporal resolutions.
Fig. 3 Relative contribution percentage of the physiological, structural and radiative components of solar-induced chlorophyll fluorescence (SIF) to the linear relationship between SIF and gross primary productivity. FCVI, fluorescence corrected vegetation index; NIRv, near-infrared reflectance of vegetation.
Fig. 4 Relative contribution percentage of the physiological, structural and radiative components of the solar-induced chlorophyll fluorescence (SIF) of Triticum aestivum (A) and Zea mays (B) based on the near-infrared reflectance of vegetation (NIRv) method to the linear relationship between SIF and gross primary productivity.
[1] | Badgley G, Field CB, Berry JA (2017). Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 3, e1602244. DOI: 10.1126/sciadv.1602244. |
[2] |
Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI PMID |
[3] | Dechant B, Ryu Y, Badgley G, Zeng YL, Berry JA, Zhang YG, Goulas Y, Li ZH, Zhang Q, Kang M, Li J, Moya I (2020). Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sensing of Environment, 241, 111733. DOI: 10.1016/j.rse.2020.111733. |
[4] | Foken T, Wichura B (1996). Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 78, 83-105. |
[5] | Guanter L, Zhang YG, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, et al. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111, E1327-E1333. |
[6] | Hao D, Zeng Y, Qiu H, Biriukova K, Celesti M, Migliavacca M, Rossini M, Asrar GR, Chen M (2021). Practical approaches for normalizing directional solar-induced fluorescence to a standard viewing geometry. Remote Sensing of Environment, 255, 112171. DOI: 10.1016/j.rse.2020.112171. |
[7] | Huang Y, Zhou C, Du MH, Wu PF, Yuan L, Tang JW (2022). Tidal influence on the relationship between solar-induced chlorophyll fluorescence and canopy photosynthesis in a coastal salt marsh. Remote Sensing of Environment, 2701, 12865. DOI: 10.1016/j.rse.2021.112865. |
[8] |
Kimm H, Guan K, Burroughs CH, Peng B, Ainsworth EA, Bernacchi CJ, Moore CE, Kumagai E, Yang X, Berry JA, Wu G (2021). Quantifying high-temperature stress on soybean canopy photosynthesis: the unique role of sun-induced chlorophyll fluorescence. Global Change Biology, 27, 2403-2415.
DOI PMID |
[9] | Li ZH, Zhang Q, Li J, Yang X, Wu YF, Zhang ZY, Wang SH, Wang HZ, Zhang YG (2020). Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sensing of Environment, 236, 111420. DOI: 10.1016/j.rse.2019.111420. |
[10] | Liu LY, Liu XJ, Wang ZH, Zhang B (2016). Measurement and analysis of bidirectional SIF emissions in wheat canopies. IEEE Transactions on Geoscience and Remote Sensing, 54, 2640-2651. |
[11] | Magney TS, Barnes ML, Yang X (2020). On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophysical Research Letters, 47, e2020GL091098. DOI: 10.1029/2020GL091098. |
[12] |
Magney TS, Bowling DR, Logan BA, Grossmann K, Stutz J, Blanken PD, Burns SP, Cheng R, Garcia MA, Kӧhler P, Lopez S, Parazoo NC, Raczka B, Schimel D, Frankenberg C (2019). Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 116, 11640-11645.
DOI PMID |
[13] | Meroni M, Busetto L, Colombo R, Guanter L, Moreno J, Verhoef W (2010). Performance of spectral fitting methods for vegetation fluorescence quantification. Remote Sensing of Environment, 114, 363-374. |
[14] | Miao G, Guan K, Yang X, Bernacchi CJ, Berry JA, DeLucia EH, Wu J, Moore CE, Meacham K, Cai Y, Peng B, Kimm H, Masters MD (2018). Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements. Journal of Geophysical Research: Biogeosciences, 123, 610-623. |
[15] | Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, et al. (2007). Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147, 209-232. |
[16] | Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006). Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583. |
[17] |
Porcar-Castell A, Tyystjärvi E, Atherton J, van der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA (2014). Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany, 65, 4065-4095.
DOI PMID |
[18] | Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439. |
[19] |
Ryu Y, Berry JA, Baldocchi DD (2019). What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment, 223, 95-114.
DOI |
[20] | Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100. |
[21] | Wu G, Guan K, Ainsworth EA, Martin DG, Kimm H, Yang X (2024a). Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean. Journal of Experimental Botany, 75, 350-363. |
[22] | Wu L, Zhang X, Rossini M, Wu Y, Zhang Z, Zhang Y (2022). Physiological dynamics dominate the response of canopy far-red solar-induced fluorescence to herbicide treatment. Agricultural and Forest Meteorology, 323, 109063. DOI: 10.1016/j.agrformet.2022.109063. |
[23] | Wu LS, Zhang YG, Zhang ZY, Zhang XK, Wu YF (2022). Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring. Chinese Journal of Plant Ecology, 46, 1167-1199. |
[吴霖升, 张永光, 章钊颖, 张小康, 吴云飞 (2022). 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用. 植物生态学报, 46, 1167-1199.]
DOI |
|
[24] | Wu LS, Zhang YG, Zhang ZY, Zhang XK, Wu YF, Chen JM (2024b). Deriving photosystem-level red chlorophyll fluorescence emission by combining leaf chlorophyll content and canopy far-red solar-induced fluorescence: possibilities and challenges. Remote Sensing of Environment, 304, 114043. DOI: 10.1016/j.rse.2024.114043. |
[25] | Wu YF, Zhang ZY, Wu LS, Zhang YG (2024c). Solar-induced chlorophyll fluorescence tracks canopy photosynthesis under dry conditions in a semi-arid grassland. Agricultural and Forest Meteorology, 356, 110174. DOI: 10.1016/j.agrformet.2024.110174. |
[26] | Yang K, Ryu Y, Dechant B, Berry JA, Hwang Y, Jiang C, Kang M, Kim J, Kimm H, Kornfeld A, Yang X (2018a). Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. Remote Sensing of Environment, 216, 658-673. |
[27] | Yang P, Liu X, Liu Z, van der Tol C, Liu L (2023). The roles of radiative, structural and physiological information of sun-induced chlorophyll fluorescence in predicting gross primary production of a corn crop at various temporal scales. Agricultural and Forest Meteorology, 342, 109720. DOI: 10.1016/j.agrformet.2023.109720. |
[28] | Yang P, van der Tol C (2018b). Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance. Remote Sensing of Environment, 209, 456-467. |
[29] | Yang P, van der Tol C, Campbell PKE, Middleton EM (2020). Fluorescence Correction Vegetation Index (FCVI): a physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111676. DOI: 10.1016/j.rse.2020.111676. |
[30] | Yang P, van der Tol C, Campbell PKE, Middleton EM (2021). Unraveling the physical and physiological basis for the solar- induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop. Biogeosciences, 18, 441-465. |
[31] | Yang X, Tang J, Mustard JF, Lee JE, Rossini M, Joiner J, Munger JW, Kornfeld A, Richardson AD (2015). Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 42, 2977-2987. |
[32] | Zeng Y, Badgley G, Dechant B, Ryu Y, Chen M, Berry JA (2019). A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 232, 111209. DOI: 10.1016/j.rse.2019.05.028. |
[33] | Zeng Y, Chen M, Hao D, Damm A, Badgley G, Rascher U, Johnson JE, Dechant B, Siegmann B, Ryu Y, Qiu H, Krieger V, Panigada C, Celesti M, Miglietta F, et al. (2022). Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sensing of Environment, 270, 112856. DOI: 10.1016/j.rse.2021.112856. |
[34] | Zeng Y, Hao D, Badgley G, Damm A, Rascher U, Ryu Y, Johnson J, Krieger V, Wu S, Qiu H, Liu Y, Berry JA, Chen M (2021). Estimating near-infrared reflectance of vegetation from hyperspectral data. Remote Sensing of Environment, 267, 112723. DOI: 10.1016/j.rse.2021.112723. |
[35] | Zhang Y, Guanter L, Berry JA, van der Tol C, Yang X, Tang J, Zhang F (2016). Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sensing of Environment, 187, 145-155. |
[36] | Zhang YG, Zhang Q, Liu LY, Zhang YJ, Wang SQ, Ju WM, Zhou GS, Zhou L, Tang JW, Zhu XD, Wang F, Huang Y, Zhang ZY, Qiu B, Zhang XK, et al. (2021). ChinaSpec: a network for long-term ground-based measurements of solar-induced fluorescence in China. Journal of Geophysical Research: Biogeosciences, 126, e2020JG006042. DOI: 10.1029/2020JG006042. |
[37] | Zhang Z, Zhang Y, Porcar-Castell A, Joiner J, Guanter L, Yang X, Migliavacca M, Ju W, Sun Z, Chen S, Martini D, Zhang Q, Li Z, Cleverly J, Wang H, Goulas Y (2020a). Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111722. DOI: 10.1016/j.rse.2020.111722. |
[38] | Zhang Z, Zhang Y, Zhang Q, Chen J, Porcar-Castell A, Guanter L, Wu Y, Zhang X, Wang H, Ding D, Li Z (2020b). Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies. Agricultural and Forest Meteorology, 295, 108147. DOI: 10.1016/j.agrformet.2020.108147. |
[39] | Zhang ZY, Wang SH, Qiu B, Song L, Zhang YG (2019). Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application. Journal of Remote Sensing, 23, 37-52. |
[章钊颖, 王松寒, 邱博, 宋练, 张永光 (2019). 日光诱导叶绿素荧光遥感反演及碳循环应用进展. 遥感学报, 23, 37-52.] | |
[40] | Zhao DY, Hou YQ, Zhang ZY, Wu YF, Zhang XK, Wu LS, Zhu XL, Zhang YG (2022). Temporal resolution of vegetation indices and solar-induced chlorophyll fluorescence data affects the accuracy of vegetation phenology estimation: a study using in-situ measurements. Ecological Indicators, 136, 108673. DOI: 10.1016/j.ecolind.2022.108673. |
[1] | HAO Shang-Hua, LUO Meng-Xiang, CAO Hong-Li, ZHANG Sen, WANG Ming-Dao. Effects of Penicillium oxalicum C11 on Rehmannia glutinosa growth and its metabolites analysis [J]. Chin J Plant Ecol, 2024, 48(6): 809-816. |
[2] | ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping, LI Long. Advances in the role of plant diversity in soil organic carbon content and stability [J]. Chin J Plant Ecol, 2024, 48(11): 1393-1405. |
[3] | CHEN Lin-Kang, ZHAO Ping, WANG Ding, XIANG Rui, LONG Guang-Qiang. Non-additive effect of mixed decomposition of maize and potato straw [J]. Chin J Plant Ecol, 2023, 47(12): 1728-1738. |
[4] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[5] | YU Qiu-Wu, YANG Jing, SHEN Guo-Chun. Relationship between canopy structure and species composition of an evergreen broadleaf forest in Tiantong region, Zhejiang, China [J]. Chin J Plant Ecol, 2022, 46(5): 529-538. |
[6] | XIE Yu-Hang, JIA Pu, ZHENG Xiu-Tan, LI Jin-Tian, SHU Wen-Sheng, WANG Yu-Tao. Impacts and action pathways of domestication on diversity and community structure of crop microbiome: a review [J]. Chin J Plant Ecol, 2022, 46(3): 249-266. |
[7] | XUE Jin-Ru, LÜ Xiao-Liang. Assessment of vegetation productivity under the implementation of ecological programs in the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2022, 46(10): 1289-1304. |
[8] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[9] | LI Chong-Wei, BAI Xin-Fu, CHEN Guo-Zhong, ZHU Ping, ZHANG Shu-Ting, HOU Yu-Ping, ZHANG Xing-Xiao. Differences in soil nutrients and phenolic acid metabolites contents in American ginseng cultivated soils with different restoration years [J]. Chin J Plant Ecol, 2021, 45(11): 1263-1274. |
[10] | OU Wen-Hui, LIU Ya-Heng, LI Na, XU Zhi-Yan, PENG Qiu-Tong, YANG Yu-Jing, LI Zhong-Qiang. Testing multiple hypotheses for the richness pattern of macrophyte in the Qaidam Basin of Northwest China [J]. Chin J Plant Ecol, 2021, 45(11): 1213-1220. |
[11] | CUI Li, GUO Feng, ZHANG Jia-Lei, YANG Sha, WANG Jian-Guo, MENG Jing-Jing, GENG Yun, LI Xin-Guo, WAN Shu-Bo. Improvement of continuous microbial environment in peanut rhizosphere soil by Funneliformis mosseae [J]. Chin J Plant Ecol, 2019, 43(8): 718-728. |
[12] | LIU Lu, ZHAO Chang-Ming, XU Wen-Ting, SHEN Guo-Zhen, XIE Zong-Qiang. Litter dynamics of evergreen deciduous broad-leaved mixed forests and its influential factors in Shennongjia, China [J]. Chin J Plant Ecol, 2018, 42(6): 619-628. |
[13] | ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680. |
[14] | YE Zi-Piao, DUAN Shi-Hua, AN Ting, KANG Hua-Jing. Construction of CO2-response model of electron transport rate in C4 crop and its application [J]. Chin J Plant Ecol, 2018, 42(10): 1000-1008. |
[15] | Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn