Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (4): 552-561.DOI: 10.17521/cjpe.2024.0307 cstr: 32100.14.cjpe.2024.0307
• Research Articles • Previous Articles Next Articles
LI Meng-Qi1, MIAO Ling-Feng1,2, LI Da-Dong1,3, LONG Yi-Fan1, YE Bing-Bing1, YANG Fan1,*()
Received:
2024-09-12
Accepted:
2025-01-07
Online:
2025-04-20
Published:
2025-04-18
Contact:
YANG Fan
Supported by:
LI Meng-Qi, MIAO Ling-Feng, LI Da-Dong, LONG Yi-Fan, YE Bing-Bing, YANG Fan. Response of mangrove fine root functional traits to sediment nutrient changes at different tide levels in Dongzhaigang, Hainan, China[J]. Chin J Plant Ecol, 2025, 49(4): 552-561.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0307
物种/潮位 Species/intertidal elevation | SWC (%) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | AP (mg·kg−1) |
---|---|---|---|---|
海莲/低 Bruguiera sexangular/L | 0.56 ± 0.01a | 0.95 ± 0.01c | 1.10 ± 0.19b | 27.68 ± 2.68a |
海莲/中 Bruguiera sexangular/M | 0.48 ± 0.03b | 1.05 ± 0.01b | 0.62 ± 0.03c | 17.74 ± 5.51a |
海莲/高 Bruguiera sexangular/H | 0.37 ± 0.00c | 0.76 ± 0.02e | 0.45 ± 0.11d | 26.71 ± 12.06a |
无瓣海桑/低 Sonneratia apetala/L | 0.56 ± 0.01a | 0.85 ± 0.02d | 1.61 ± 0.13a | 33.21 ± 8.71a |
无瓣海桑/中 Sonneratia apetala/M | 0.48 ± 0.03b | 1.23 ± 0.01a | 0.33 ± 0.05d | 24.82 ± 5.75a |
无瓣海桑/高 Sonneratia apetala/H | 0.37 ± 0.00c | 0.67 ± 0.01f | 0.29 ± 0.10d | 16.65 ± 5.11a |
Table 2 Nutrients and moisture contents in rhizosphere sediments of two mangrove species at different tide levels (mean ± SE)
物种/潮位 Species/intertidal elevation | SWC (%) | NH4+-N (mg·kg-1) | NO3--N (mg·kg-1) | AP (mg·kg−1) |
---|---|---|---|---|
海莲/低 Bruguiera sexangular/L | 0.56 ± 0.01a | 0.95 ± 0.01c | 1.10 ± 0.19b | 27.68 ± 2.68a |
海莲/中 Bruguiera sexangular/M | 0.48 ± 0.03b | 1.05 ± 0.01b | 0.62 ± 0.03c | 17.74 ± 5.51a |
海莲/高 Bruguiera sexangular/H | 0.37 ± 0.00c | 0.76 ± 0.02e | 0.45 ± 0.11d | 26.71 ± 12.06a |
无瓣海桑/低 Sonneratia apetala/L | 0.56 ± 0.01a | 0.85 ± 0.02d | 1.61 ± 0.13a | 33.21 ± 8.71a |
无瓣海桑/中 Sonneratia apetala/M | 0.48 ± 0.03b | 1.23 ± 0.01a | 0.33 ± 0.05d | 24.82 ± 5.75a |
无瓣海桑/高 Sonneratia apetala/H | 0.37 ± 0.00c | 0.67 ± 0.01f | 0.29 ± 0.10d | 16.65 ± 5.11a |
Fig. 1 Activities of root peroxidase, sediment urease and acid phosphatase of 2 mangrove plants under different tide levels (mean ± SE). A, Root peroxidase activity. B, Urease activity of sediments. C, Sediment acid phosphatase activity. HL, Bruguiera sexangular; HS, Sonneratia apetala. H, high intertidal elevation; M, middle intertidal elevation; L, low intertidal elevation. Different lowercase letters indicate that the activities of root peroxidase, rhizosphere sediment urease, and acid phosphatase are significantly different at various tide levels and between the two species (p < 0.05).
Fig. 2 Relationship of fine root length, specific root surface area, root tissue density of two mangrove species with ammonium and nitrate nitrogen, and available phosphorus contents in sediments under different tide levels in mangrove ecosystem of Dongzhaigang. HL, Bruguiera sexangular; HS, Sonneratia apetala. H, high intertidal elevation; M, middle intertidal elevation; L, low intertidal elevation.
Fig. 3 Relationship between specific root length, specific root surface area, root tissue density, and root nitrogen content of two mangrove species under different tide levels in Dongzhaigang mangrove ecosystem. HL, Bruguiera sexangular; HS, Sonneratia apetala. H, high intertidal elevation; M, middle intertidal elevation; L, low intertidal elevation.
Fig. 4 Relationship between carbon (C), nitrogen (N), and phosphorus (P) contents of fine roots of two mangrove species at different tide levels in the mangrove ecosystem of Dongzhaigang. HL, Bruguiera sexangular; HS, Sonneratia apetala. H, high intertidal elevation; M, middle intertidal elevation; L, low intertidal elevation.
[1] | A’Bear AD, Jones TH, Kandeler E, Boddy L (2014). Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology & Biochemistry, 70, 151-158. |
[2] | Bao SD (2000). Soil Agro-Chemistrical Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] |
Blokhina OB, Chirkova TV, Fagerstedt KV (2001). Anoxic stress leads to hydrogen peroxide formation in plant cells. Journal of Experimental Botany, 52, 1179-1190.
PMID |
[4] |
Chai M, Li R, Tam NFY, Zan Q (2019). Effects of mangrove plant species on accumulation of heavy metals in sediment in a heavily polluted mangrove swamp in Pearl River Estuary, China. Environmental Geochemistry and Health, 41, 175-189.
DOI PMID |
[5] | Chen L, Hong WJ, Huang YP, Mai ZT, Zeng DH (2019). Growth, leaf element content and stoichiometric characteristics of six common mangrove species. Forestry and Environmental Science, 35(1), 83-88. |
[陈亮, 洪文君, 黄永平, 麦志通, 曾德华 (2019). 6种红树树种生长与叶片元素含量及化学计量特征. 林业与环境科学, 35(1), 83-88.] | |
[6] | Chen R, Wang WW, Cao LR, Chen M, Chen GS, Yao XD, Wang XH (2023). Variation of carbon, nitrogen and phosphorus stoichiometric characteristics of fine roots in masson pine and Chinese fir plantations with soil depth. Acta Ecologica Sinica, 43, 3709-3718. |
[陈蓉, 王韦韦, 曹丽荣, 陈铭, 陈光水, 姚晓东, 王小红 (2023). 马尾松和杉木人工林细根碳氮磷化学计量特征随土层深度的变化. 生态学报, 43, 3709-3718.] | |
[7] | Chen XH, Chen ZZ, Lei JR, Wu TT, Li YL (2022). Distribution characteristics of active organic carbon components in sediments of typical community types of mangrove wetland in Qinglan Port. Acta Ecologica Sinica, 42, 4572-4581. |
[陈小花, 陈宗铸, 雷金睿, 吴庭天, 李苑菱 (2022). 清澜港红树林湿地典型群落类型沉积物活性有机碳组分分布特征. 生态学报, 42, 4572-4581.] | |
[8] | Chen XP, Guo BQ, Zhong QL, Wang MT, Li M, Yang FC, Cheng DL (2018). Response of fine root carbon, nitrogen, and phosphorus stoichiometry to soil nutrients in Pinus taiwanensis along an elevation gradient in the Wuyi Mountains. Acta Ecologica Sinica, 38, 273-281. |
[陈晓萍, 郭炳桥, 钟全林, 王满堂, 李曼, 杨福春, 程栋梁 (2018). 武夷山不同海拔黄山松细根碳、氮、磷化学计量特征对土壤养分的适应. 生态学报, 38, 273-281.] | |
[9] | Dai J (2018). Adaptational Mechanism of Mangrove Seedlings of Kandelia obovata to Tidal Waterlogging. Master degree dissertation, East China Normal University, Shanghai. |
[代捷 (2018). 秋茄幼苗对潮汐水淹的适应机制. 硕士学位论文, 华东师范大学, 上海.] | |
[10] |
Fazlioglu F, Chen L (2020). Introduced non-native mangroves express better growth performance than co-occurring native mangroves. Scientific Reports, 10, 3854. DOI: 10.1038/s41598-020-60454-z.
PMID |
[11] | Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo DL, et al. (2017). Climate, soil and plant functional types as drivers of global fine-root trait variation. Journal of Ecology, 105, 1182-1196. |
[12] | Gao JF (2006). Experimental Supervision of Plant Physiology. Higher Education Press, Beijing. |
[高俊凤 (2006). 植物生理学实验指导. 高等教育出版社, 北京.] | |
[13] |
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Oravec M, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, Parella T, Peñuelas J (2015). Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. New Phytologist, 207, 591-603.
DOI PMID |
[14] |
Grassein F, Lemauviel-Lavenant S, Lavorel S, Bahn M, Bardgett RD, Desclos-Theveniau M, Laîné P (2015). Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting european grass species. Annals of Botany, 115, 107-115.
DOI PMID |
[15] | Hartzell JL, Jordan TE, Cornwell JC (2017). Phosphorus sequestration in sediments along the salinity gradients of chesapeake bay subestuaries. Estuaries and Coasts, 40, 607-1625. |
[16] | Huang AM, Fang Y, Sun J, Li JL, Hu DD, Zhong QL, Cheng DL (2023). Fine root traits of Phyllostachys edulis at different altitudes in Wuyi Mountain. Acta Ecologica Sinica, 43, 398-407. |
[黄爱梅, 方毅, 孙俊, 李锦隆, 胡丹丹, 钟全林, 程栋梁 (2023). 武夷山不同海拔毛竹细根功能性状. 生态学报, 43, 398-407.] | |
[17] | Koerselman, Willem, Meuleman, Arthur FM, (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[18] | Long YF, Tian MJ, Ye BB, Li MQ, Li DD, Yang F (2024). Comparative study on the community characteristics and population dynamics of Bruguiera sexangula at different tidal elevations in Dongzhaigang Nature Reserve. Plant Science Journal, 43, 72-81. |
[龙奕帆, 田梦洁, 叶冰冰, 李梦琦, 李大东, 杨帆 (2024). 东寨港自然保护区不同潮位下海莲群落特征及种群动态的比较研究. 植物科学学报, 43, 72-81.] | |
[19] |
Lovelock CE, Feller IC, Adame MF, Reef R, Penrose HM, Wei Ll, Ball MC (2011). Intense storms and the delivery of materials that relieve nutrient limitations in mangroves of an arid zone estuary. Functional Plant Biology, 38, 514-522.
DOI PMID |
[20] | Magara F, Boury-Jamot B (2024). About statistical significance, and the lack thereof. Laboratory Animals, 58, 448-452. |
[21] |
Mueller P, Granse D, Nolte S, Weingartner M, Hoth S, Jensen K (2020). Unrecognized controls on microbial functioning in blue carbon ecosystems: the role of mineral enzyme stabilization and allochthonous substrate supply. Ecology and Evolution, 10, 998-1011.
DOI PMID |
[22] |
Ortega-Morales BO, Chan-Bacab MJ, de la Rosa SDC, Camacho-Chab JC (2010). Valuable processes and products from marine intertidal microbial communities. Current Opinion in Biotechnology, 21, 346-352.
DOI PMID |
[23] | Pan F, Liang Y, Wang K, Zhang W (2018). Responses of fine root functional traits to soil nutrient limitations in a karst ecosystem of southwest China. Forests, 9, 743. DOI: 10.3390/f9120743. |
[24] | Qi X, Chen L, Zhu J, Li Z, Lei H, Shen Q, Wu H, Ouyang S, Zeng Y, Hu Y, Xiang W (2022). Increase of soil phosphorus bioavailability with ectomycorrhizal tree dominance in subtropical secondary forests. Forest Ecology and Management, 521, 120435. DOI: 10.1016/j.foreco.2022.120435. |
[25] |
Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 997-1005.
DOI PMID |
[26] | Song X, Wang Y, Lv X (2016). Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from north China grasslands. Ecology & Evolution, 6, 1871-1882. |
[27] | Sun Y, Gu J, Zhuang H, Wang Z (2010). Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China. Ecological Research, 25, 95-302. |
[28] | Tian CM, Liu JJ, Liang YM, Liu YH (1999). Rhizosphere microorganisms and soil bio-chemical properties at Huoditang forest region of the Qinling Mountains. Bulletin of Soil and Water Conservation, 19(2), 19-22. |
[田呈明, 刘建军, 梁英梅, 刘永华 (1999). 秦岭火地塘林区森林根际微生物及其土壤生化特性研究. 水土保持通报, 19(2), 19-22.] | |
[29] |
Trumbore SE, Gaudinski JB (2003). The secret lives of roots. Science, 302, 1344-1345.
PMID |
[30] |
Tully K, Gedan K, Epanchin-Niell R, Strong A, Bernhardt ES, Bendor T, Mitchell M, Kominoski J, Jordan TE, Neubauer SC (2019). The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. Bioscience, 69, 368-378.
DOI |
[31] | Valverde Barrantes OJ, Smemo KA, Blackwood CB (2015). Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Functional Ecology, 29, 796-807. |
[32] |
Voesenek L, Colmer TD, Pierik R, Millenaar FF, Peeters A (2006). How plants cope with complete submergence. New Phytologist, 170, 213-226.
PMID |
[33] |
Wahl S, Ryser P (2000). Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 148, 459-471.
DOI PMID |
[34] |
Wurzburger N, Wright SJ (2015). Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology, 96, 2137-2146.
PMID |
[35] | Ye Y, Tam NF, Wong YS, Lu CY (2003). Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany, 49, 209-221. |
[36] | Yu M, Su W, Huang L, Parikh SJ, Tang C, Dahlgren RA, Xu J (2021). Bacterial community structure and putative nitrogen-cycling functional traits along a charosphere gradient under waterlogged conditions. Soil Biology & Biochemistry, 162, 08420. DOI: 10.1016/j.soilbio.2021.108420. |
[37] | Zhou Y, Guan F, Li Z, Zheng Y, Zhou X, Zhang X (2022). Effects of tree species on moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) fine root morphology, biomass, and soil properties in bamboo-broadleaf mixed forests. Forests, 13, 1834. DOI: 10.3390/f13111834. |
[38] | Zhou YH, Zhang ZH, Li J, Liu X, Hu G (2020). Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in leaves and soils of mangroves in Beilun estuary, Guangxi. Earth and Environment, 48, 58-65. |
[周元慧, 张忠华, 黎洁, 刘熊, 胡刚 (2020). 广西北仑河口红树植物叶片和土壤的碳氮磷生态化学计量特征. 地球与环境, 48, 58-65.] | |
[39] | Zhu D, Hui D, Huang Z, Qiao X, Tong S, Wang M, Yang Q, Yu S (2021). Comparative impact of light and neighbor effect on the growth of introduced species Sonneratia apetala and native mangrove species in China: implications for restoration. Restoration Ecology, 30, e13522. DOI: 10.1111/rec.13522. |
[40] | Zhu ZL, Xing GX (2002). Nitrogen Cycle—A Natural Process that Sustains Life on Earth. Tsinghua University Press, Beijing. |
[朱兆良, 邢光熹 (2002). 氮循环: 维系地球生命生生不息的一个自然过程. 清华大学出版社, 北京.] | |
[41] | Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, García-Orenes F, Mataix-Beneyto J (2006). Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under mediterranean conditions. Soil Biology & Biochemistry, 38, 2125-2134. |
[1] | Meng-Xue WANG Ming-Yan HU Cheng-Jin CHU Yang CHEN Wen-Qi LUO Zilong Ma. C, N, P stoichiometric characteristics of leaves and fine roots in different mycorrhizal tree species in subtropical forests [J]. Chin J Plant Ecol, 2025, 49(化学计量与功能性状): 0-0. |
[2] | zhang yongjun li jingdong an qi hong linggui Rui Zhang Xiao-Long ZHOU. Effects of nitrogen addition and warming on community traits in an alpine grassland community of the Tianshan Mountains [J]. Chin J Plant Ecol, 2025, 49(化学计量与功能性状): 0-0. |
[3] | Jing Zhang Li JunPan Han XU Yi-De LI Hai ShengHe. Comparison of plant biomass in conifer and broadleaved mixed artificial forests in south subtropical area and analyses of the influential factors [J]. Chin J Plant Ecol, 2025, 49(化学计量与功能性状): 0-0. |
[4] | Dai Lijun, Xiang Lingyi, Jian Chen, WANG Xiaofeng. The alteration of backwater dynamics in the Three Gorges has intensified the local differentiation of functional traits among typical herbaceous plants within the riparian zone of small watersheds [J]. Chin J Plant Ecol, 2025, 49(化学计量与功能性状): 1-. |
[5] | QIAO Pei-Yang, GU Xiao-Xuan, LIU Chang-Xin, CAO Ze-Yu, ZHANG Ting-Ting, LIN Chen, CHEN Qin-Chang, PENG Xiu-Fan, CHEN Fei-Fei, LI Hua-Liang, CHEN Wei, CHEN Lu-Zhen. Damage to the mangrove forests in Dongzhaigang of Hainan caused by super typhoon “Yagi” [J]. Chin J Plant Ecol, 2025, 49(4): 540-551. |
[6] | LI Shu-Wen, TANG Lu-Yao, ZHANG Bo-Na, YE Lin-Feng, TONG Jin-Lian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Regional differentiation of cooperative relationships between Ulmus pumila branches and leaves along precipitation gradients [J]. Chin J Plant Ecol, 2025, 49(2): 282-294. |
[7] | ZHENG Lin-Min, XIONG Xiao-Ling, JIANG Yong-Meng, WANG Man, ZHANG Jin-Xiu, ZENG Zhi-Wei, LYU Mao-Kui, XIE Jin-Sheng. Decomposition regularities of leaf litter and fine roots of Cunninghamia lanceolata and their divergent drivers at different altitudes in the Wuyi Mountain [J]. Chin J Plant Ecol, 2025, 49(2): 244-255. |
[8] | CAI Hui-Ying, LIANG Ya-Tao, LOU Hu, YANG Guang, SUN Long. Changes of fine root functional traits and rhizosphere bacterial community of Betula platyphylla after fire [J]. Chin J Plant Ecol, 2024, 48(7): 828-843. |
[9] | LIU Yao, ZHONG Quan-Lin, XU Chao-Bin, CHENG Dong-Liang, ZHENG Yue-Fang, ZOU Yu-Xing, ZHANG Xue, ZHENG Xin-Jie, ZHOU Yun-Ruo. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(6): 744-759. |
[10] | XU Zi-Yi, JIN Guang-Ze. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaf-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[11] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[12] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[13] | QU Ze-Kun, ZHU Li-Qin, JIANG Qi, WANG Xiao-Hong, YAO Xiao-Dong, CAI Shi-Feng, LUO Su-Zhen, sCHEN Guang-Shui. Nutrient foraging strategies of arbuscular mycorrhizal tree species in a subtropical evergreen broadleaf forest and their relationship with fine root morphology [J]. Chin J Plant Ecol, 2024, 48(4): 416-427. |
[14] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[15] | PANG Yu, HE Tong-Xin, SUN Jian-Fei, NING Wen-Cai, PEI Guang-Ting, HU Bao-Qing, Wang Bin. Construction of fine root biomass estimation models of dominant tree species in a north tropic karst forest [J]. Chin J Plant Ecol, 2024, 48(10): 1312-1325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn