Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (1): 83-92.DOI: 10.17521/cjpe.2024.0143 cstr: 32100.14.cjpe.2024.0143
• Research Articles • Previous Articles Next Articles
NIU Ya-Ping1,2, GAO Xiao-Xia1, YAO Shi-Ting1,3, YANG Yuan-He1,2, PENG Yun-Feng1,*()
Received:
2024-05-07
Accepted:
2024-11-12
Online:
2025-01-20
Published:
2025-03-08
Contact:
PENG Yun-Feng
Supported by:
NIU Ya-Ping, GAO Xiao-Xia, YAO Shi-Ting, YANG Yuan-He, PENG Yun-Feng. Linkages of plant diversity and functional groups to aboveground productivity upon alpine grassland degradation[J]. Chin J Plant Ecol, 2025, 49(1): 83-92.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0143
Fig. 1 Location of sampling sites across the Three-River Source Region. The vegetation map is generated from Vegetation Atlas of China with a scale of 1:1 000 000 (The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, 2007).
Fig. 2 Changes in species richness (A), Shannon-Weiner diversity index (B), Simpson diversity index (C), Pielou evenness index (D) and coverage of different functional groups (E-H) along degradation gradients in various grassland types (mean ± 95%CI). Different lowercase letters represent significant differences among different degradation levels (p < 0.05); ns, p > 0.05. AM, alpine meadow; AS, alpine steppe; ASM, alpine swamp meadow; HD, heavy degradation; MD, moderate degradation; ND, non-degradation; SD, slight degradation.
草地类型 Grassland type | 退化程度 Degradation level | 土壤pH Soil pH | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水率 Soil moisture (%) | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) |
---|---|---|---|---|---|---|
高寒草原 AS | 未退化 ND | 8.51 ± 0.19b | 1.14 ± 0.17b | 12.34 ± 3.93a | 4.81 ± 1.43a | 4.71 ± 1.90a |
轻度退化 SD | 8.58 ± 0.20a | 1.19 ± 0.15ab | 12.44 ± 3.58a | 4.79 ± 2.02a | 4.18 ± 1.83ab | |
中度退化 MD | 8.57 ± 0.17a | 1.24 ± 0.18ab | 11.86 ± 3.37a | 4.32 ± 1.67a | 3.71 ± 1.67b | |
重度退化 HD | 8.60 ± 0.18a | 1.26 ± 0.19a | 12.31 ± 2.85a | 3.12 ± 1.47b | 3.54 ± 1.93b | |
高寒草甸 AM | 未退化 ND | 6.71 ± 0.74b | 0.75 ± 0.18b | 48.29 ± 16.05a | 25.44 ± 14.91a | 4.63 ± 3.41b |
轻度退化 SD | 6.77 ± 0.78b | 0.81 ± 0.21b | 45.75 ± 18.23a | 17.03 ± 7.13b | 4.71 ± 3.53b | |
中度退化 MD | 7.11 ± 0.78a | 0.93 ± 0.22a | 34.07 ± 11.24b | 13.00 ± 8.13c | 6.41 ± 3.71a | |
重度退化 HD | 7.21 ± 0.83a | 0.98 ± 0.22a | 25.47 ± 8.74c | 5.37 ± 3.84d | 7.15 ± 3.74a | |
高寒沼泽化草甸 ASM | 未退化 ND | 6.94 ± 0.72c | 0.44 ± 0.11c | 143.34 ± 28.84a | 23.50 ± 7.61a | 3.10 ± 1.56b |
轻度退化 SD | 7.06 ± 0.81bc | 0.59 ± 0.22b | 109.39 ± 37.27b | 22.77 ± 7.54a | 5.87 ± 5.14ab | |
中度退化 MD | 7.17 ± 0.84b | 0.75 ± 0.30a | 83.29 ± 49.36c | 13.69 ± 4.33b | 8.71 ± 9.18a | |
重度退化 HD | 7.37 ± 0.74a | 0.89 ± 0.24a | 47.22 ± 34.12d | 4.27 ± 1.32c | 10.18 ± 6.25a |
Table 1 Changes in soil properties along degradation gradients in various alpine grassland types (mean ± SD)
草地类型 Grassland type | 退化程度 Degradation level | 土壤pH Soil pH | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水率 Soil moisture (%) | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) |
---|---|---|---|---|---|---|
高寒草原 AS | 未退化 ND | 8.51 ± 0.19b | 1.14 ± 0.17b | 12.34 ± 3.93a | 4.81 ± 1.43a | 4.71 ± 1.90a |
轻度退化 SD | 8.58 ± 0.20a | 1.19 ± 0.15ab | 12.44 ± 3.58a | 4.79 ± 2.02a | 4.18 ± 1.83ab | |
中度退化 MD | 8.57 ± 0.17a | 1.24 ± 0.18ab | 11.86 ± 3.37a | 4.32 ± 1.67a | 3.71 ± 1.67b | |
重度退化 HD | 8.60 ± 0.18a | 1.26 ± 0.19a | 12.31 ± 2.85a | 3.12 ± 1.47b | 3.54 ± 1.93b | |
高寒草甸 AM | 未退化 ND | 6.71 ± 0.74b | 0.75 ± 0.18b | 48.29 ± 16.05a | 25.44 ± 14.91a | 4.63 ± 3.41b |
轻度退化 SD | 6.77 ± 0.78b | 0.81 ± 0.21b | 45.75 ± 18.23a | 17.03 ± 7.13b | 4.71 ± 3.53b | |
中度退化 MD | 7.11 ± 0.78a | 0.93 ± 0.22a | 34.07 ± 11.24b | 13.00 ± 8.13c | 6.41 ± 3.71a | |
重度退化 HD | 7.21 ± 0.83a | 0.98 ± 0.22a | 25.47 ± 8.74c | 5.37 ± 3.84d | 7.15 ± 3.74a | |
高寒沼泽化草甸 ASM | 未退化 ND | 6.94 ± 0.72c | 0.44 ± 0.11c | 143.34 ± 28.84a | 23.50 ± 7.61a | 3.10 ± 1.56b |
轻度退化 SD | 7.06 ± 0.81bc | 0.59 ± 0.22b | 109.39 ± 37.27b | 22.77 ± 7.54a | 5.87 ± 5.14ab | |
中度退化 MD | 7.17 ± 0.84b | 0.75 ± 0.30a | 83.29 ± 49.36c | 13.69 ± 4.33b | 8.71 ± 9.18a | |
重度退化 HD | 7.37 ± 0.74a | 0.89 ± 0.24a | 47.22 ± 34.12d | 4.27 ± 1.32c | 10.18 ± 6.25a |
Fig. 3 Relationships of plant diversity and coverage of functional groups with environmental factors along degradation gradients in different grassland types. The response ratio, which was calculated as the natural logarithm of the ratio of degradation plots to non-degradation plots, was used in regression analysis to account for spatial heterogeneity among different sampling sites. AM, alpine meadow; AS, alpine steppe; ASM, alpine swamp meadow; MAP, mean annual precipitation; MAT, mean annual air temperature. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Fig. 4 Changes in aboveground net primary productivity (ANPP) along degradation gradients in various grassland types (A, mean ± 95% CI), relationships of ANPP with plant diversity and coverage of functional groups (B), and moderators of ANPP based on relative influence of predictor variables in the random forest model (C). In A, different lowercase letters represent significant difference among different degradation levels (p < 0.05). In B, the solid circles indicate significant effects (p < 0.05), the hollow circles indicate non-significant effects (p > 0.05) and the error bars denote 95% confidence intervals. In C, the response ratio, which was calculated as the natural logarithm of the ratio of degradation plots to non-degradation plots, was used in univariate regression and random forest analyses to account for spatial heterogeneity among different sampling sites. AM, alpine meadow; AS, alpine steppe; ASM, alpine swamp meadow; HD, heavy degradation; MAP, mean annual precipitation; MAT, mean annual air temperature; MD, moderate degradation; ND, non-degradation; SD, slight degradation.
[1] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[2] | Bai Y, Ma L, Degen AA, Rafiq MK, Kuzyakov Y, Zhao J, Zhang R, Zhang T, Wang W, Li X, Long R, Shang Z (2020). Long-term active restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon. Global Change Biology, 26, 7217-7228. |
[3] | Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[4] | Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, et al. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735. |
[5] | Bates D, Mächler M, Bolker B, Walker S (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[6] | Breidenbach A, Schleuss PM, Liu S, Schneider D, Dippold MA, de la Haye T, Miehe G, Heitkamp F, Seeber E, Mason-Jones K, Xu X, Yang H, Xu J, Dorji T, Gube M, et al. (2022). Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nature Communications, 13, 2681. DOI: 10.1038/s41467-022-30047-7. |
[7] | Breiman L (2001). Random forests. Machine Learning, 45(1), 5-32. |
[8] | Dong QM, Zhou HK, Shi JJ, Dong SK, Shang ZH, Wang XC, Shang YC, Zhao ZZ, Li SX, Wang YL (2018). Quantitative health assessment and production of alpine grassland: integration and demonstration of ecological function improvement technology. Qinghai Science and Technology, 25(1), 15-24. |
[董全民, 周华坤, 施建军, 董世魁, 尚占环, 汪新川, 尚永成, 赵之重, 李世雄, 王彦龙 (2018). 高寒草地健康定量评价及生产——生态功能提升技术集成与示范. 青海科技, 25(1), 15-24.] | |
[9] | Dong S, Shang Z, Gao J, Boone RB (2020). Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 287, 106684. DOI: 10.1016/j.agee.2019.106684. |
[10] | Fang JY, Geng XQ, Zhao X, Shen HH, Hu HF (2018). How many areas of grasslands are there in China? Chinese Science Bulletin, 63, 1731-1739. |
[方精云, 耿晓庆, 赵霞, 沈海花, 胡会峰 (2018). 我国草地面积有多大? 科学通报, 63, 1731-1739.] | |
[11] | Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156. |
[12] | Hurlbert SH (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187-211. |
[13] | Institute of Soil Science, Chinese Academy of Sciences (1980). Soils of China. Science Press, Beijing. |
[中国科学院南京土壤研究所 (1980). 中国土壤. 科学出版社, 北京.] | |
[14] | Jing HY, Xiong XS, Jiang F, Pu XC, Ma WH, Li DJ, Liu ZL, Wang ZH (2024). Climate change filtered out resource-acquisitive plants in a temperate grassland in Inner Mongolia, China. Science China-Life Sciences, 67, 403-413. |
[15] | Ma YS, Lang BN, Li QY, Shi JJ, Dong QM (2002). Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow River source region. Pratacultural Science, 19(9), 1-5. |
[马玉寿, 郎百宁, 李青云, 施建军, 董全民 (2002). 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 19(9), 1-5.] | |
[16] | Miehe G, Miehe S, Kaiser K, Liu J, Zhao X (2008). Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio, 37, 272-279. |
[17] | Pan QM, Xue JG, Tao J, Xu MY, Zhang WH (2018). Current status of grassland degradation and measures for grassland restoration in northern China. Chinese Science Bulletin, 63, 1642-1650. |
[潘庆民, 薛建国, 陶金, 徐明月, 张文浩 (2018). 中国北方草原退化现状与恢复技术. 科学通报, 63, 1642-1650.] | |
[18] | Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016). Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104, 817-827. |
[19] | R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[20] | Ren JZ, Xu G, Li XL, Lin HL, Tang Z (2016). Development track and prospect of pratacultural science in China. Chinese Science Bulletin, 61, 178-192. |
[任继周, 胥刚, 李向林, 林慧龙, 唐增 (2016). 中国草业科学的发展轨迹与展望. 科学通报, 61, 178-192.] | |
[21] | Ren S, Terrer C, Li J, Cao Y, Yang S, Liu D (2024). Historical impacts of grazing on carbon stocks and climate mitigation opportunities. Nature Climate Change, 14, 380-386. |
[22] | Shang ZH, Dong QM, Shi JJ, Zhou HK, Dong SK, Shao XQ, Li SX, Wang YL, Ma YS, Ding LM, Cao GM, Long RJ (2018). Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau——Concurrently discuss of ecological restoration in Sangjiangyuan region. Acta Agrestia Sinica, 26(1), 1-21. |
[尚占环, 董全民, 施建军, 周华坤, 董世魁, 邵新庆, 李世雄, 王彦龙, 马玉寿, 丁路明, 曹广民, 龙瑞军 (2018). 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题. 草地学报, 26(1), 1-21.]
DOI |
|
[23] |
Strömberg CAE, Staver AC (2022). The history and challenge of grassy biomes. Science, 377, 592-593.
DOI PMID |
[24] | Su PX, Zhou ZJ, Shi R, Xie TT (2018). Variation in basic properties and carbon sequestration capacity of an alpine sod layer along moisture and elevation gradients. Acta Ecologica Sinica, 38, 1040-1052. |
[苏培玺, 周紫鹃, 侍瑞, 解婷婷 (2018). 高寒草毡层基本属性与固碳能力沿水分和海拔梯度的变化. 生态学报, 38, 1040-1052.] | |
[25] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences(2007). 1:1 000 000 Vegetation Map of the People’s Republic of China. Geological Publishing House, Beijing. |
[中国科学院中国植被图编辑委员会 (2007). 1:1 000 000中国植被图集. 地质出版社, 北京.] | |
[26] | Wang DJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Shang ZH, She YD, Ma L, Huang XT, Zhang ZH, Zhang Q, Zhao FY, Zuo J, Mao Z (2020). Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 301, 106970. DOI: 10.1016/j.agee.2020.106970. |
[27] | Wang L, Wang DL (2007). Research advances in diet selection mechanisms of grazing herbivores. Chinese Journal of Applied Ecology, 18, 205-211. |
[王岭, 王德利 (2007). 放牧家畜食性选择机制研究进展. 应用生态学报, 18, 205-211.] | |
[28] | Wang XX, Dong SK, Sherman R, Liu QR, Liu SL, Li YY, Wu Y (2015). A comparison of biodiversity-ecosystem function relationships in alpine grasslands across a degradation gradient on the Qinghai-Tibetan Plateau. Rangeland Journal, 37(1), 45-55. |
[29] |
Wu Z, Peng YF, Yang GB, Li QL, Liu Y, Ma LH, Yang YH, Jiang XJ (2022). Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands. Chinese Journal of Plant Ecology, 46, 461-472.
DOI |
[吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军 (2022). 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响. 植物生态学报, 46, 461-472.]
DOI |
|
[30] | Yu LF, Sun WJ, Zhang HY, Cong N, Chen Y, Hu JJ, Jing X (2024). Grazing exclusion jeopardizes plant biodiversity effect but enhances dryness effect on multifunctionality in arid grasslands. Agriculture, Ecosystems & Environment, 363, 108883. DOI: 10.1016/j.agee.2024.108883. |
[31] | Zhang HJ, Chen WL, Dong LZ, Wang W (2024). Grassland degradation amplifies the negative effect of nitrogen enrichment on soil microbial community stability. Global Change Biology, 30, e17217. DOI: 10.1111/gcb.17217. |
[32] | Zhang M, Delgado-Baquerizo M, Li G, Isbell F, Wang Y, Hautier Y, Wang Y, Xiao Y, Cai J, Pan X, Wang L (2023). Experimental impacts of grazing on grassland biodiversity and function are explained by aridity. Nature Communications, 14, 5040. DOI: 10.1038/s41467-023-40809-6. |
[33] | Zhang WJ, Xue X, Peng F, You QG, Hao AH (2019). Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 20, e00774. DOI: 10.1016/j.gecco.2019.e00774. |
[34] | Zhao XQ (2011). Degraded Grassland Ecosystem Restoration and Sustainable Management for Three-River Source Area. Science Press, Beijing. |
[赵新全 (2011). 三江源区退化草地生态系统恢复与可持续管理. 科学出版社, 北京.] | |
[35] | Zhou HK, Yao BQ, Yu L (2016). Degraded Succession and Ecological Restoration of Alpine Grassland in the Three-River Source Region. Science Press, Beijing. |
[周华坤, 姚步青, 于龙 (2016). 三江源区高寒草地退化演替与生态恢复. 科学出版社, 北京.] | |
[36] | Zhou TC, Hou G, Sun J, Zong N, Shi PL (2021). Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Science of the Total Environment, 800, 149572. DOI: 10.1016/j.scitotenv.2021.149572. |
[37] | Zhu QA, Chen H, Peng CH, Liu JX, Piao SL, He JS, Wang SP, Zhao XQ, Zhang J, Fang XQ, Jin JX, Yang QE, Ren LL, Wang YF (2023). An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nature Communications, 14, 6406. DOI: 10.1038/s41467-023-42099-4. |
[1] | Dongmei Li Long Sun Yu Han Tong-xin HU Guang Yang Huiying Cai. Impact of prescribed burning on the relationships of biodiversity and ecosystem multifunctionality of Pinus koraiensis Plantation [J]. Chin J Plant Ecol, 2025, 49(3): 0-0. |
[2] | LI Tian-Qi, CAO Ji-Rong, LIU Xiao-Ni, TIAN Si-Hui, LAN Bo-Lan, QIU Ying, XUE Jian-Guo, ZHANG Qian, CHU Jian-Min, ZHANG Shu-Min, HUANG Jian-Hui, LI Ling-Hao, WANG Qi-Bing. Response of soil enzyme stoichiometry to grazing and identification of soil limiting nutrients in typical steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2025, 49(1): 19-29. |
[3] | WANG Wen-Ying, XIAO Yuan-Ming, WANG Xiao-Yun, XU Jia-Xin, MA Yu-Hua, LI Qiang-Feng, ZHOU Guo-Ying. Relationship between plant diversity and ecosystem multifunctionality in degraded alpine meadows under multifunctional group species combination models [J]. Chin J Plant Ecol, 2025, 49(1): 103-117. |
[4] | SUN Jia-Mei, AN Bing-Er, LIU Wei, WANG Jing, PAN Qing-Min. Propagule regulation technique in grasslands: cultivation and transplantation of “propagule island” [J]. Chin J Plant Ecol, 2025, 49(1): 129-137. |
[5] | LIU Wei, HAO Yi-Qing, SUN Jia-Mei, WANG Jing, FAN Bing, HAO Jian-Xi, JIN Na-Shen, PAN Qing-Min. Theory and application of soil nutrient regulation for degraded steppe in Hulun Buir, China [J]. Chin J Plant Ecol, 2025, 49(1): 138-147. |
[6] | FANG Kai, WANG Ying-Xin, HUANG Jian-Hui, DUAN Jun-Guang, ZHANG Qi, ZHANG Qian, GAN Hong-Hao, CHU Jian-Min. Deciphering the nutrient factors limiting vegetation restoration under different degradation stages in typical steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2025, 49(1): 7-18. |
[7] | XU Meng-Zhen, LU Zheng-Kuan, TAN Xing-Ru, WANG Yan-Bing, SU Tian-Cheng, DOU Shan-De, PAN Qing-Min, CHEN Shi-Ping. Identification of key factors and construction of a rapid diagnostic indicator system for evaluation of grassland degradation in Hulun Buir meadow grasslands [J]. Chin J Plant Ecol, 2025, 49(1): 42-58. |
[8] | ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping, LI Long. Advances in the role of plant diversity in soil organic carbon content and stability [J]. Chin J Plant Ecol, 2024, 48(11): 1393-1405. |
[9] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[10] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[11] | LIN Ma-Zhen, HUANG Yong, LI Yang, SUN Jian. Geographical distribution characteristics and influencing factors of plant survival strategies in an alpine grassland [J]. Chin J Plant Ecol, 2023, 47(1): 41-50. |
[12] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
[13] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[14] | WANG Shu-Wen, LI Wen-Huai, LI Yan-Long, YAN Hui, LI Yong-Hong. Effects of different livestock types on plant diversity and community structure of a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(8): 941-950. |
[15] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn