Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (1): 138-147.DOI: 10.17521/cjpe.2024.0124 cstr: 32100.14.cjpe.2024.0124
• Research Articles • Previous Articles Next Articles
LIU Wei1, HAO Yi-Qing1,2, SUN Jia-Mei1, WANG Jing1, FAN Bing3, HAO Jian-Xi3, JIN Na-Shen4, PAN Qing-Min1,2,*()
Received:
2024-04-23
Accepted:
2024-09-28
Online:
2025-01-20
Published:
2025-03-08
Contact:
PAN Qing-Min
Supported by:
LIU Wei, HAO Yi-Qing, SUN Jia-Mei, WANG Jing, FAN Bing, HAO Jian-Xi, JIN Na-Shen, PAN Qing-Min. Theory and application of soil nutrient regulation for degraded steppe in Hulun Buir, China[J]. Chin J Plant Ecol, 2025, 49(1): 138-147.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0124
Fig. 3 Effects of different numbers of added nutrients on aboveground biomass in Hulun Buir steppe (mean ± SE). Eight nutrient factors are nitrogen, phosphorus, potassium, calcium, sulfur, magnesium, iron and micronutrients (iodine, boron, manganese, zinc, sodium, molybdenum, copper, cobalt and chlorine as one factor). N0P0, no nitrogen and phosphorus addition; N1P0, nitrogen addition; N1P1, nitrogen and phosphorus co-addition. The amount of nitrogen and phosphorus added is 20 and 2.95 g·m-2·a-1 (modified from Peng et al., 2022).
Fig. 4 Effects of different nitrogen to phosphorus ratio (N:P) on aboveground biomass in Hulun Buir steppe (mean ± SE, n = 12). Different lowercase letters indicate significant differences (p < 0.05).
Fig. 5 Aboveground biomass of all species (A), Leymus chinensis (B) and the density of Leymus chinensis (C) under different timing of nutrient addition in Hulun Buir steppe (mean ± SE, n = 6). CK stands for no fertilization. April and July stand for fertilization time. Nutrient additions are 10 and 3 g·m-2, respectively. Different lowercase letters indicate significant differences among different treatments (p < 0.05).
Fig. 6 Aboveground biomass (A), biomass proportion of Leymus chinensis (B) and species richness (C) under different nutrient addition treatments in Hulun Buir steppe (mean ± SE, n = 5). CK, N1P1, N2P2, N3P3, N4P4, N5P5 stand for no addition, addition of 4.8 g N·m-2 + 1.5 g P·m-2, 7.2 g N·m-2 + 2.25 g P·m-2, 9.6 g N·m-2 + 3.0 g P·m-2, 12.0 g N·m-2 + 3.75 g P·m-2, 14.4 g N·m-2 + 4.5 g P·m-2, respectively; N, nitrogen; P, phosphorus. Different lowercase letters indicate significant differences (p < 0.05); ns, p > 0.05.
土壤全氮含量 Soil total N content (g·kg-1) | 土壤全磷含量 Soil total P content (g·kg-1) | 氮施用量 N application rate (kg·hm-2) | 磷施用量 P application rate (kg·hm-2) |
---|---|---|---|
<1.5 | <0.3 | 80-100 | 20-25 |
1.5-2.5 | 0.3-0.4 | 60-80 | 15-20 |
≥2.5 | ≥0.4 | 40-60 | 10-15 |
Table 1 Soil nitrogen (N) and phosphorus (P) content in Hulun Buir degraded grassland and corresponding nitrogen and phosphorus application rates
土壤全氮含量 Soil total N content (g·kg-1) | 土壤全磷含量 Soil total P content (g·kg-1) | 氮施用量 N application rate (kg·hm-2) | 磷施用量 P application rate (kg·hm-2) |
---|---|---|---|
<1.5 | <0.3 | 80-100 | 20-25 |
1.5-2.5 | 0.3-0.4 | 60-80 | 15-20 |
≥2.5 | ≥0.4 | 40-60 | 10-15 |
Fig. 7 Effects of nutrient regulation and restoration technology on aboveground biomass (A), the ratio of high-quality forage (B), the density of Leymus chinensis (C), species richness (D) (mean ± SE, n = 5) and the aerial photography (E).
[1] | Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372. |
[2] | Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, et al. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735. |
[3] | Chen ZZ, Huang DH, Zhang HF (1985). The characteristics of element chemistry of 122 plant on the Xilin River velley, Inner Mongolia//Inner Mongolia grassland ecosystem research station, the Chinese Academy of Sciences. Research on Grassland Ecosystem. Science Press, Beijing. 112-131. |
[陈佐忠, 黄德华, 张鸿芳 (1985). 内蒙古锡林河流域122种植物的元素化学特征//中国科学院内蒙古草原生态系统定位研究站, 草原生态系统研究. 科学出版社, 北京. 112-131.] | |
[4] | Du E, de Vries W, Han W, Liu X, Yan Z, Jiang Y (2016). Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmospheric Chemistry and Physics, 16, 8571-8579. |
[5] | Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226. |
[6] |
Dudley N, Eufemia L, Fleckenstein M, Periago ME, Petersen I, Timmers JF (2020). Grasslands and savannahs in the UN decade on ecosystem restoration. Restoration Ecology, 28, 1313-1317.
DOI |
[7] | Fang JY, Geng XQ, Zhao X, Shen HH, Hu HF (2018). How many areas of grasslands are there in China? Chinese Science Bulletin, 63, 1731-1739. |
[方精云, 耿晓庆, 赵霞, 沈海花, 胡会峰 (2018). 我国草地面积有多大? 科学通报, 63, 1731-1739.] | |
[8] | Fang JY, Pan QM, Gao SQ, Jing HC, Zhang WH (2016). “Small vs. Large Area” principle: protecting and restoring a large area of natural grassland by establishing a small area of cultivated pasture. Pratacultural Science, 33, 1913-1916. |
[方精云, 潘庆民, 高树琴, 景海春, 张文浩 (2016). “以小保大”原理: 用小面积人工草地建设换取大面积天然草地的保护与修复. 草业科学, 33, 1913-1916.] | |
[9] | Giese M, Brueck H, Gao Y, Lin S, Steffens M, Kögel-Knabner I, Glindemann T, Susenbeth A, Taube F, Butterbach-Bahl K, Zheng X, Hoffmann C, Bai Y, Han X (2013). N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs, 83, 195-219. |
[10] |
Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011). Nutrient co-limitation of primary producer communities. Ecology Letters, 14, 852-862.
DOI PMID |
[11] | He JS, Liu ZP, Yao T, Sun SC, Lü Z, Hu XW, Cao GM, Wu XW, Li L, Bu HY, Zhu JX (2020). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38(17), 66-80. |
[贺金生, 刘志鹏, 姚拓, 孙书存, 吕植, 胡小文, 曹广民, 吴新卫, 李黎, 卜海燕, 朱剑霄 (2020). 青藏高原退化草地恢复的制约因子及修复技术. 科技导报, 38(17), 66-80.]
DOI |
|
[12] | He NP, Yu Q, Wu L, Wang YS, Han XG (2008). Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of Northern China. Soil Biology & Biochemistry, 40, 2952-2959. |
[13] | Humbert JY, Dwyer JM, Andrey A, Arlettaz R (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Global Change Biology, 22, 110-120. |
[14] | Jiang Y, Li TP, Feng X, Wang RZ, Zhang YG (2019). Effects of exogenous sulfur input on nutrient availability in soil-plant system of grassland. Chinese Journal of Ecology, 38, 1192-1201. |
[姜勇, 李天鹏, 冯雪, 王汝振, 张玉革 (2019). 外源硫输入对草地土壤-植物系统养分有效性的影响. 生态学杂志, 38, 1192-1201.] | |
[15] | Korfanta NM, Mobley ML, Burke IC (2015). Fertilizing western rangelands for ungulate conservation: an assessment of benefits and risks. Wildlife Society Bulletin, 39, 1-8. |
[16] | Lemus RW (2012). Strategies for better management of pasture fertilization. [2024-08-28]. https://extension.msstate.edu/publications/strategies-for-better-management-pasture-fertilization. |
[17] | Li B, Sun HL, Zeng SD, Pu HX (1980). Discussion on grassland vegetation resources and their utilization direction in Hulunbeier pastoral area. Natural Resources, 2(4), 30-36. |
[李博, 孙鸿良, 曾泗弟, 浦汉昕 (1980). 呼伦贝尔牧区草场植被资源及其利用方向的探讨. 自然资源, 2(4), 30-36.] | |
[18] | Li SL, Chen YJ, Jia SH, Wang FJ (1993). Study on the water regime of dark chestnut soil and the aboveground biomass forecast of an Eurolepidium chinese community. Chinese Bulletin of Botany, (S1), 3. |
[李绍良, 陈有君, 贾树海, 王芳玖 (1993). 羊草草原暗栗钙土的水分状况及植物群落地上生物量预报. 植物学通报, (S1), 3.] | |
[19] | Li W, Gan X, Jiang Y, Cao F, Lü XT, Ceulemans T, Zhao C (2022). Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. Environmental Pollution, 309, 119720. DOI: 10.1016/j.envpol.2022.119720. |
[20] | Li YH (1988). The divergence and convergence of an Eurolepidium chinense steppe and Stipa grandis steppe under the grazing influence in Xilin River valley, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica, 12, 189-196. |
[李永宏 (1988). 内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异和趋同. 植物生态学与地植物学学报, 12, 189-196.] | |
[21] | Liu JJ, Liu JH, Cui MM, Chen X, Liu JL, Chen JD, Chen AQ, Xu GH (2022). Investigate the effect of potassium on nodule symbiosis and uncover an HAK/KUP/KT member, GmHAK5, strongly responsive to root nodulation in soybean. Journal of Plant Biology, 65, 459-471. |
[22] | Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462. |
[23] | Liu ZL, Wang W, Hao DY, Liang CZ (2002). Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe. Journal of Arid Land Resources and Environment, 16, 84-91. |
[刘钟龄, 王炜, 郝敦元, 梁存柱 (2002). 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 16, 84-91.] | |
[24] | National Forestry and Grassland Administration(2021). 国务院新闻办就“十四五”林业草原保护发展规划举行发布会. [2024-08-28]. http://www.forestry.gov.cn/main/5927/20210823/085429109469114.html. |
[国家林业和草原局 (2021). The State Council Information Office held a press conference on the “14th Five-Year Plan” forestry and grassland protection and development plan. [2024-08-28]. http://www.forestry.gov.cn/main/5927/20210823/085429109469114.html.] | |
[25] | Niu SL, Jiang GM (2004). The importance of legume in China grassland ecosystem and the advances in physiology and ecology studies. Chinese Bulletin of Botany, 21, 9-18. |
[牛书丽, 蒋高明 (2004). 豆科植物在中国草原生态系统中的地位及其生理生态研究. 植物学通报, 21, 9-18.] | |
[26] | Pan QM, Xue JG, Tao J, Xu MY, Zhang WH (2018). Current status of grassland degradation and measures for grassland restoration in Northern China. Chinese Science Bulletin, 63, 1642-1650. |
[潘庆民, 薛建国, 陶金, 徐明月, 张文浩 (2018). 中国北方草原退化现状与恢复技术. 科学通报, 63, 1642-1650.] | |
[27] | Pan QM, Yang YH, Huang JH (2023). Limiting factors of degraded grassland restoration in China and related basic scientific issues. Bulletin of National Natural Science Foundation of China, 37, 571-579. |
[潘庆民, 杨元合, 黄建辉 (2023). 我国退化草原恢复的限制因子及需要解决的基础科学问题. 中国科学基金, 37, 571-579.] | |
[28] | Peng Y, Yang J, Leitch IJ, Guignard MS, Seabloom EW, Cao D, Zhao F, Li H, Han X, Jiang Y, Leitch AR, Wei CZ (2022). Plant genome size modulates grassland community responses to multi-nutrient additions. New Phytologist, 236, 2091-102. |
[29] | Peng YF, Chen HYH, Yang YH (2020). Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Functional Ecology, 34, 1979-1990. |
[30] |
Wang DL, Wang L, Xin XP, Li LH, Tang HJ (2020). Systematic restoration for degraded grasslands: concept, mechanisms and approaches. Scientia Agricultura Sinica, 53, 2532-2540.
DOI |
[王德利, 王岭, 辛晓平, 李凌浩, 唐华俊 (2020). 退化草地的系统性恢复: 概念、机制与途径. 中国农业科学, 53, 2532-2540.]
DOI |
|
[31] |
Wang HY, Chang JF, Wang ZW (2020). Responses of community species diversity and productivity to nitrogen and phosphorus addition during restoration of degraded grassland. Scientia Agricultura Sinica, 53, 2604-2613.
DOI |
[王洪义, 常继方, 王正文 (2020). 退化草地恢复过程中群落物种多样性及生产力对氮磷养分的响应. 中国农业科学, 53, 2604-2613.]
DOI |
|
[32] |
Wang J, Wang SS, Qiao XG, Li A, Xue JG, Hasi M, Zhang XY, Huang JH (2016). Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland. Chinese Journal of Plant Ecology, 40, 980-990.
DOI |
[王晶, 王姗姗, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉 (2016). 氮素添加对内蒙古退化草原生产力的短期影响. 植物生态学报, 40, 980-990.]
DOI |
|
[33] | Wilkinson S, Lowrey R (1973). Cycling of mineral nutrients in pasture ecosystems. Chemistry and Biochemistry of Herbage, 1, 247-351. |
[34] |
Zhang Y, Lü X, Isbell F, Stevens C, Han X, He N, Zhang G, Yu Q, Huang J, Han X (2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520-3529.
DOI PMID |
[1] | LI LIN Ding ZhongHao Ping PingGuo Bin YuanCai Hua ShiLi Qin YunLi min luo. The impact of increased inundation on the net ecosystem CO2 exchange in a Cyperus malaccensis tidal marsh [J]. Chin J Plant Ecol, 2025, 49(预发表): 1-0. |
[2] | XU Meng-Zhen, LU Zheng-Kuan, TAN Xing-Ru, WANG Yan-Bing, SU Tian-Cheng, DOU Shan-De, PAN Qing-Min, CHEN Shi-Ping. Identification of key factors and construction of a rapid diagnostic indicator system for evaluation of grassland degradation in Hulun Buir meadow grasslands [J]. Chin J Plant Ecol, 2025, 49(1): 42-58. |
[3] | LI Tian-Qi, CAO Ji-Rong, LIU Xiao-Ni, TIAN Si-Hui, LAN Bo-Lan, QIU Ying, XUE Jian-Guo, ZHANG Qian, CHU Jian-Min, ZHANG Shu-Min, HUANG Jian-Hui, LI Ling-Hao, WANG Qi-Bing. Response of soil enzyme stoichiometry to grazing and identification of soil limiting nutrients in typical steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2025, 49(1): 19-29. |
[4] | SUN Jia-Mei, AN Bing-Er, LIU Wei, WANG Jing, PAN Qing-Min. Propagule regulation technique in grasslands: cultivation and transplantation of “propagule island” [J]. Chin J Plant Ecol, 2025, 49(1): 129-137. |
[5] | NIU Ya-Ping, GAO Xiao-Xia, YAO Shi-Ting, YANG Yuan-He, PENG Yun-Feng. Linkages of plant diversity and functional groups to aboveground productivity upon alpine grassland degradation [J]. Chin J Plant Ecol, 2025, 49(1): 83-92. |
[6] | FANG Kai, WANG Ying-Xin, HUANG Jian-Hui, DUAN Jun-Guang, ZHANG Qi, ZHANG Qian, GAN Hong-Hao, CHU Jian-Min. Deciphering the nutrient factors limiting vegetation restoration under different degradation stages in typical steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2025, 49(1): 7-18. |
[7] | ZHANG Meng-Di, XIANG Guan-Hai, WEN Yi-Yao, WANG Huan, Hugejile , BAI Yong-Fei, WANG Zhong-Wu, ZHENG Shu-Xia. Response of carbon exchange between shrub and grass patches to increased seasonal precipitation: a comparative analysis based on aboveground net primary productivity and leaf area index standardization [J]. Chin J Plant Ecol, 2024, 48(8): 1035-1049. |
[8] | BAI Hao-Ran, HOU Meng, LIU Yan-Jie. Mechanisms of the invasion of Cenchrus spinifex and drought effects on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[9] | YANG Yu-Meng, LAI Quan, LIU Xin-Yi. Quantitative analysis of climate change and human activities on vegetation gross primary productivity in Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(3): 306-316. |
[10] | YUAN He-Yang, HAO Min-Hui, HE Huai-Jiang, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact of species richness and composition on productivity and its changes with forest succession in Changbai Mountains, China [J]. Chin J Plant Ecol, 2024, 48(12): 1602-1611. |
[11] | LI Lin, SUN Yi, YANG Xiao-Qiong, FANG Hai-Dong, YAN Bang-Guo. Response of endophytes in root nodules of Arachis hypogaea ‘Qicai’ to nitrogen addition and its relationship with plant stoichiometry characteristics [J]. Chin J Plant Ecol, 2024, 48(10): 1374-1384. |
[12] | HUANG Li-Cheng, MO Xing-Guo. Response and resilience of net primary productivity of the Hai River Basin ecosystems under meteorological droughts [J]. Chin J Plant Ecol, 2024, 48(10): 1256-1273. |
[13] | DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, XIN Xiao-Ping, YAN Yu-Chun, YAN Rui-Rui. Dynamic response of functional traits to fertilization in Leymus chinensis [J]. Chin J Plant Ecol, 2023, 47(7): 943-953. |
[14] | LI Wei, ZHANG Rong. Case verification of community structure determining community productivity in subalpine meadow [J]. Chin J Plant Ecol, 2023, 47(5): 713-723. |
[15] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn