Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (1): 7-18.DOI: 10.17521/cjpe.2024.0082 cstr: 32100.14.cjpe.2024.0082
• Research Articles • Previous Articles Next Articles
FANG Kai1,2, WANG Ying-Xin3, HUANG Jian-Hui4, DUAN Jun-Guang1,2, ZHANG Qi1,2, ZHANG Qian1,2, GAN Hong-Hao1,2, CHU Jian-Min1,2,5,*()
Received:
2024-03-25
Accepted:
2024-08-23
Online:
2025-01-20
Published:
2025-03-08
Contact:
CHU Jian-Min
Supported by:
FANG Kai, WANG Ying-Xin, HUANG Jian-Hui, DUAN Jun-Guang, ZHANG Qi, ZHANG Qian, GAN Hong-Hao, CHU Jian-Min. Deciphering the nutrient factors limiting vegetation restoration under different degradation stages in typical steppe of Nei Mongol, China[J]. Chin J Plant Ecol, 2025, 49(1): 7-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0082
Fig. 1 Sampling sites in typical steppe of Nei Mongol. The map was obtained from China’s Vegetation Atlas with a scale of 1:1 000 000 (The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, 2001). See details of sampling sites in Supplement.
地上生物量 AGB | 盖度 Coverage | 密度 Density | 第一主成分 PC1 | |
---|---|---|---|---|
地上生物量 AGB | 1.000 | 0.825*** | 0.467*** | 0.888*** |
盖度 Coverage | 1.000 | 0.622*** | 0.945*** | |
密度 Density | 1.000 | 0.778*** | ||
第一主成分 PC1 | 1.000 |
Table 1 Pearson’s correlation coefficient among plant community above-ground biomass (AGB), coverage, density and principal component 1 (PC1) in typical steppe of Nei Mongol
地上生物量 AGB | 盖度 Coverage | 密度 Density | 第一主成分 PC1 | |
---|---|---|---|---|
地上生物量 AGB | 1.000 | 0.825*** | 0.467*** | 0.888*** |
盖度 Coverage | 1.000 | 0.622*** | 0.945*** | |
密度 Density | 1.000 | 0.778*** | ||
第一主成分 PC1 | 1.000 |
Fig. 2 Frequency distributions of plant community above-ground biomass (AGB) (A), coverage (B) and density (C) under different degradation stages in typical steppe of Nei Mongol.
未退化 Non-degradation | 轻度退化 Light degradation | 中度退化 Moderate degradation | 重度退化 Heavy degradation | |
---|---|---|---|---|
地上生物量 Above-ground biomass | 1.19 ± 0.07a | 0.25 ± 0.11b | -0.46 ± 0.09c | -0.99 ± 0.05d |
盖度 Coverage | 1.13 ± 0.08a | 0.31 ± 0.10b | -0.37 ± 0.09c | -1.07 ± 0.05d |
密度 Density | 0.77 ± 0.19a | 0.18 ± 0.21b | -0.24 ± 0.22bc | -0.71 ± 0.15c |
Table 2 Effects of degradations on standardized plant community properties in typical steppe of Nei Mongol (mean ± SE)
未退化 Non-degradation | 轻度退化 Light degradation | 中度退化 Moderate degradation | 重度退化 Heavy degradation | |
---|---|---|---|---|
地上生物量 Above-ground biomass | 1.19 ± 0.07a | 0.25 ± 0.11b | -0.46 ± 0.09c | -0.99 ± 0.05d |
盖度 Coverage | 1.13 ± 0.08a | 0.31 ± 0.10b | -0.37 ± 0.09c | -1.07 ± 0.05d |
密度 Density | 0.77 ± 0.19a | 0.18 ± 0.21b | -0.24 ± 0.22bc | -0.71 ± 0.15c |
Fig. 3 Frequency distributions of soil carbon (A), nitrogen (B-D) and phosphorus (E) contents under different degradation stages in typical steppe of Nei Mongol. AP, available phosphorus; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen; OC, organic carbon; TN, total nitrogen.
未退化 Non-degradation | 轻度退化 Light degradation | 中度退化 Moderate degradation | 重度退化 Heavy degradation | |
---|---|---|---|---|
有机碳含量 OC content | 0.35 ± 0.25a | 0.19 ± 0.23a | -0.06 ± 0.16ab | -0.48 ± 0.28b |
总氮含量 TN content | 0.46 ± 0.22a | 0.07 ± 0.21ab | 0.03 ± 0.20ab | -0.56 ± 0.27b |
铵态氮含量 NH4+-N content | 0.26 ± 0.20ns | 0.33 ± 0.23ns | -0.29 ± 0.21ns | -0.30 ± 0.28ns |
硝态氮含量 NO3--N content | 0.14 ± 0.27a | -0.51 ± 0.17b | -0.07 ± 0.23ab | 0.44 ± 0.23a |
速效磷含量 AP content | 0.38 ± 0.31a | 0.01 ± 0.23ab | -0.05 ± 0.20ab | -0.33 ± 0.19b |
Table 3 Effects of degradations on standardized soil nutrient properties in typical steppe of Nei Mongol (mean ± SE)
未退化 Non-degradation | 轻度退化 Light degradation | 中度退化 Moderate degradation | 重度退化 Heavy degradation | |
---|---|---|---|---|
有机碳含量 OC content | 0.35 ± 0.25a | 0.19 ± 0.23a | -0.06 ± 0.16ab | -0.48 ± 0.28b |
总氮含量 TN content | 0.46 ± 0.22a | 0.07 ± 0.21ab | 0.03 ± 0.20ab | -0.56 ± 0.27b |
铵态氮含量 NH4+-N content | 0.26 ± 0.20ns | 0.33 ± 0.23ns | -0.29 ± 0.21ns | -0.30 ± 0.28ns |
硝态氮含量 NO3--N content | 0.14 ± 0.27a | -0.51 ± 0.17b | -0.07 ± 0.23ab | 0.44 ± 0.23a |
速效磷含量 AP content | 0.38 ± 0.31a | 0.01 ± 0.23ab | -0.05 ± 0.20ab | -0.33 ± 0.19b |
Fig. 4 Correlations of plant community above-ground biomass (AGB), coverage and density with soil nutrient properties in typical steppe of Nei Mongol. All the data were standardized transformed (Z-score). Asterisk indicates significant relationships between variables (*, p < 0.05; **, p < 0.01; ***, p < 0.001). AP, available phosphorus content; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; OC, organic carbon content; TN, total nitrogen content.
Fig. 5 Results of redundancy analyses (RDA) showing the effects of soil nutrient properties on plant community above-ground biomass (AGB), coverage and density under the whole degradation sequence (A), non-degradation to light degradation (B), light degradation to moderate degradation (C) and moderate degradation to heavy degradation (D) in typical steppe of Nei Mongol. All the data were standardized transformed (Z-score). AP, available phosphorus content; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; OC, organic carbon content; PC1, first principal component; TN, total nitrogen content.
Fig. 6 Results of multiple linear regression analyses showing the relative importance of soil nutrient properties on plant community properties under the overall degradation sequence (A), non-degradation to light degradation (B), light degradation to moderate degradation (C) and moderate degradation to heavy degradation (D) in typical steppe of Nei Mongol. All the data were standardized transformed (Z-score). Plant properties (above-ground biomass (AGB), coverage and density) were represented by PC1 in the principal components analyses. Deep and light color columns represent soil nitrogen and phosphorus variables, respectively. AP, available phosphorus content; NH4+-N, ammonium nitrogen content; NO3--N, nitrate nitrogen content; TN, total nitrogen content.
[1] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[2] | Bai YF, Wu JG, Clark CM, Pan QM, Zhang LX, Chen SP, Wang QB, Han XG (2012). Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 49, 1204-1215. |
[3] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[4] | Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, et al. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735. |
[5] | Burnham KP, Anderson DR (2002). Model selection and multimodel inference: a practical information. The Journal of Wildlife Management, 67, 655-656. |
[6] |
Chang H, Sun HL, Liu YH, Qiu X, Shi L, Wen C (2020). Community structure and diversity under different degrees of degraded grassland in East Wuzhumuqin meadow. Acta Agrestia Sinica, 28, 184-192.
DOI |
[常虹, 孙海莲, 刘亚红, 邱晓, 石磊, 温超 (2020). 东乌珠穆沁草甸草原不同退化程度草地植物群落结构与多样性研究. 草地学报, 28, 184-192.]
DOI |
|
[7] | Chapin III FS, Matson PA, Vitousek PM (2011). Principles of Terrestrial Ecosystem Ecology. Springer, New York. |
[8] | Chen QL, Xie MJ, Li Z, Zhang YC, Zhang L, Wang ST (2020). Analysis of soil characteristics of different degraded grasslands in Bashang Plateau. Chinese Journal of Grassland, 42(5), 103-109. |
[陈奇乐, 谢梦姣, 李智, 张益琛, 张利, 王树涛 (2020). 坝上高原区不同退化草地土壤特征分析. 中国草地学报, 42(5), 103-109.] | |
[9] | Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, et al. (2013). Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672-676. |
[10] | Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226. |
[11] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[12] | Fang JY, Geng XQ, Zhao X, Shen HH, Hu HF (2018). How many areas of grasslands are there in China? Chinese Science Bulletin, 63, 1731-1739. |
[方精云, 耿晓庆, 赵霞, 沈海花, 胡会峰 (2018). 我国草地面积有多大? 科学通报, 63, 1731-1739.] | |
[13] | General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (2003). GB 19377-2003 Parameters for Degradation, Sandification and Salification of Rangelands. Standards Press of China, Beijing. |
[中华人民共和国国家质量监督检验检疫总局 (2003). GB 19377-2003天然草地退化、沙化、盐渍化的分级指标. 中国标准出版社, 北京.] | |
[14] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[15] |
Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011). Nutrient co-limitation of primary producer communities. Ecology Letters, 14, 852-862.
DOI PMID |
[16] | Hooper DU, Johnson L (1999). Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry, 46, 247-293. |
[17] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
PMID |
[18] | Li CY, Peng F, Xue X, Lai CM, Zhang WJ, You QG, Chen XJ, Zhang XQ, Wang T (2021). Degradation stage effects on vegetation and soil properties interactions in alpine steppe. Journal of Mountain Science, 18, 646-657. |
[19] |
Li JZ, Xin ZH, Xie X, Xue B, Ren WX (2024). Spatio-temporal variations of vegetation cover in semi-arid regions and its response to climate change: a case study of Xilin Gol, Inner Mongolia, China. Chinese Journal of Applied Ecology, 35, 80-86.
DOI |
[李京忠, 辛振华, 谢潇, 薛冰, 任婉侠 (2024). 半干旱区植被覆盖时空变化特征及其对气候变化的响应: 以锡林郭勒盟为例. 应用生态学报, 35, 80-86.]
DOI |
|
[20] | Li ZH, Bao YJ, Zhang J, Wang HM, Hu ZC (2015). Comparative analysis on degradation and its driving factors in Xilin Gol grassland and Hulun Buir grassland. Journal of Dalian Nationalities University, 17, 1-5. |
[李政海, 鲍雅静, 张靖, 王海梅, 胡志超 (2015). 内蒙古草原退化状况及驱动因素对比分析——以锡林郭勒草原与呼伦贝尔草原为研究区域. 大连民族学院学报, 17, 1-5.] | |
[21] | Li ZL, Zhang DY, Peng YF, Qin SQ, Wang L, Hou EQ, Yang YH (2022). Divergent drivers of various topsoil phosphorus fractions across Tibetan alpine grasslands. Journal of Geophysical Research: Biogeosciences, 127, e2022JG006795. DOI: 10.1029/2022JG006795. |
[22] | Lieth H (1978). Patterns of Primary Productivity in the Biosphere. Dowden, Hutchinson & Ross, Stroudsberg, New York. |
[23] | Lin Y, Hong M, Han GD, Zhao ML, Bai YF, Chang SX (2010). Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agriculture, Ecosystems & Environment, 138, 282-292. |
[24] | Liu DX, Lu XS, Li WH (2008). A study on vegetation succession of degradation grassland in Hulunbeier steppe. Journal of Arid Land Resources and Environment, 22, 103-110. |
[刘东霞, 卢欣石, 李文红 (2008). 呼伦贝尔退化草地植被演替特征研究. 干旱区资源与环境, 22, 103-110.] | |
[25] |
Liu M, Li CC, Xu XL, Wanek W, Jiang N, Wang HM, Yang XD (2017). Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests. Tree Physiology, 37, 1515-1526.
DOI PMID |
[26] | Liu ZL, Wang W, Hao DY, Liang CZ (2002). Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe. Journal of Arid Land Resources and Environment, 16, 84-91. |
[刘钟龄, 王炜, 郝敦元, 梁存柱 (2002). 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 16, 84-91.] | |
[27] | Lv YX, Qi ZY, Liu W, Sun JM, Pan QM (2021). Effects of nitrogen and phosphorus addition at early-spring and middle-summer on ecosystem carbon exchanges of a degraded community in Nei Mongol typical steppe. Chinese Journal of Plant Ecology, 45, 334-344. |
[吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民 (2021). 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响. 植物生态学报, 45, 334-344.]
DOI |
|
[28] | Ma WH, Yang YH, He JS, Zeng H, Fang JY (2008). Above and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C-Life Sciences (in Chinese), 38, 84-92. |
[马文红, 杨元合, 贺金生, 曾辉, 方精云 (2008). 内蒙古温带草地生物量及其与环境因子的关系. 中国科学: 生命科学, 38, 84-92.] | |
[29] | Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, Whittingham MJ, Fischer M (2018). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2, 427-436. |
[30] | Pan QM, Xue JG, Tao J, Xu MY, Zhang WH (2018). Current status of grassland degradation and measures for grassland restoration in northern China. Chinese Science Bulletin, 63, 1642-1650. |
[潘庆民, 薛建国, 陶金, 徐明月, 张文浩 (2018). 中国北方草原退化现状与恢复技术. 科学通报, 63, 1642-1650.] | |
[31] |
Schimel DS, Braswell BH, Parton WJ (1997). Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proceedings of the National Academy of Sciences of the United States of America, 94, 8280-8283.
DOI PMID |
[32] | Thamdrup B (2012). New pathways and processes in the global nitrogen cycle. Annual Review of Ecology, Evolution, and Systematics, 43, 407-428. |
[33] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences(2001). 1:1000000 Vegetation Atlas of China. Science Press, Beijing. |
[中国科学院中国植被图编辑委员会 (2001). 1:1000000中国植被图集. 科学出版社, 北京.] | |
[34] | Wang DL, Liang CZ (2023). Restoration state of degraded grasslands: climate climax or disturbance climax? Chinese Journal of Plant Ecology, 47, 1464-1470. |
[王德利, 梁存柱 (2023). 退化草原的恢复状态: 气候顶极或干扰顶极? 植物生态学报, 47, 1464-1470.] | |
[35] |
Wang DL, Wang L, Xin XP, Li LH, Tang HJ (2020). Systematic restoration for degraded grasslands: concept, mechanisms and approaches. Scientia Agricultura Sinica, 53, 2532-2540.
DOI |
[王德利, 王岭, 辛晓平, 李凌浩, 唐华俊 (2020). 退化草地的系统性恢复: 概念、机制与途径. 中国农业科学, 53, 2532-2540.]
DOI |
|
[36] | Wang R, Yang J, Liu H, Sardans J, Zhang Y, Wang X, Wei C, Lü X, Dijkstra FA, Jiang Y, Han X, Peñuelas J (2022). Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology, 103, e3616. DOI: 10.1002/ecy.3616. |
[37] | Wei JJ, Qin RM, Zhang ZH, Li YL, Deng YF, Ma L, Su HY, She YD, Chang T, Zhou CY, Yang XQ, Shao XQ, Sun J, Zhou HK (2022). Characteristics and interrelationship of plant community and soil properties in different degraded alpine grasslands. Acta Agrestia Sinica, 30, 3035-3045. |
[魏晶晶, 秦瑞敏, 张中华, 李永良, 邓艳芳, 马丽, 苏洪烨, 佘延娣, 常涛, 周宸宇, 杨旭芹, 邵新庆, 孙建, 周华坤 (2022). 不同退化程度高寒草地植物群落与土壤性质变化及相关性分析. 草地学报, 30, 3035-3045.]
DOI |
|
[38] | White R, Murray S, Rohweder M (2000). Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington D.C. |
[39] |
Wiesmeier M, Munro S, Barthold F, Steffens M, Schad P, Kögel-Knabner I (2015). Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China. Global Change Biology, 21, 3836-3845.
DOI PMID |
[40] | Xu HP, Zhang J, Pang XP, Wang Q, Zhang WN, Wang J, Guo ZG (2019). Responses of plant productivity and soil nutrient concentrations to different alpine grassland degradation levels. Environmental Monitoring and Assessment, 191, 678. DOI: 10.1007/s10661-019-7877-2. |
[41] |
Xu XL, Bai JB, Ouyang H (2011). Advances in studies on organic nitrogen uptake by terrestrial plants. Journal of Natural Resources, 26, 715-724.
DOI |
[徐兴良, 白洁冰, 欧阳华 (2011). 植物吸收土壤有机氮的研究进展. 自然资源学报, 26, 715-724.] | |
[42] | Yang XX, Ren F, Zhou HK, He JS (2014). Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 38, 159-166. |
[杨晓霞, 任飞, 周华坤, 贺金生 (2014). 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 38, 159-166.]
DOI |
|
[43] | Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, et al. (2022). Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 65, 861-895. |
[44] | Yuan ZQ, Jiang XJ, Liu GJ, Jin HJ, Chen J, Wu QB (2019). Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow. Catena, 178, 40-48. |
[45] | Zhang N (2020). Effects of Grazing Intensity on Vegetation Community Characteristics and Soil Physical and Chemical Properties of Typical Steppe. Master degree dissertation, Chinese Academy of Agricultural Sciences, Beijing. 35-39. |
[张娜 (2020). 不同放牧强度对典型草原植被群落特征及土壤理化性状的影响. 硕士学位论文, 中国农业科学院, 北京. 35-39.] | |
[46] |
Zhang YQ, Wu YX, Li Q, Zhang DG, Chen JG, Liu XN (2021). Characteristics and relationship between soil nitrogen and aggregates in alpine meadows with different degradation in eastern Qilian Mountains. Acta Agrestia Sinica, 29, 2286-2293.
DOI |
[张玉琪, 吴玉鑫, 李强, 张德罡, 陈建纲, 柳小妮 (2021). 东祁连山不同退化程度高寒草甸土壤氮素与团聚体特征及关系研究. 草地学报, 29, 2286-2293.]
DOI |
|
[47] | Zhou ZH, Liu L, Hou L (2022). Soil organic carbon stabilization and formation: mechanism and model. Journal of Beijing Forestry University, 44(10), 11-22. |
[周正虎, 刘琳, 侯磊 (2022). 土壤有机碳的稳定和形成: 机制和模型. 北京林业大学学报, 44(10), 11-22.] | |
[48] | Zuo X, Zhao H, Zhao X, Guo Y, Yun J, Wang S, Miyasaka T (2009). Vegetation pattern variation, soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land, northern China. Environmental Geology, 58, 1227-1237. |
[1] | XU Meng-Zhen, LU Zheng-Kuan, TAN Xing-Ru, WANG Yan-Bing, SU Tian-Cheng, DOU Shan-De, PAN Qing-Min, CHEN Shi-Ping. Identification of key factors and construction of a rapid diagnostic indicator system for evaluation of grassland degradation in Hulun Buir meadow grasslands [J]. Chin J Plant Ecol, 2025, 49(1): 42-58. |
[2] | NIU Ya-Ping, GAO Xiao-Xia, YAO Shi-Ting, YANG Yuan-He, PENG Yun-Feng. Linkages of plant diversity and functional groups to aboveground productivity upon alpine grassland degradation [J]. Chin J Plant Ecol, 2025, 49(1): 83-92. |
[3] | LI Tian-Qi, CAO Ji-Rong, LIU Xiao-Ni, TIAN Si-Hui, LAN Bo-Lan, QIU Ying, XUE Jian-Guo, ZHANG Qian, CHU Jian-Min, ZHANG Shu-Min, HUANG Jian-Hui, LI Ling-Hao, WANG Qi-Bing. Response of soil enzyme stoichiometry to grazing and identification of soil limiting nutrients in typical steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2025, 49(1): 19-29. |
[4] | SUN Jia-Mei, AN Bing-Er, LIU Wei, WANG Jing, PAN Qing-Min. Propagule regulation technique in grasslands: cultivation and transplantation of “propagule island” [J]. Chin J Plant Ecol, 2025, 49(1): 129-137. |
[5] | LIU Wei, HAO Yi-Qing, SUN Jia-Mei, WANG Jing, FAN Bing, HAO Jian-Xi, JIN Na-Shen, PAN Qing-Min. Theory and application of soil nutrient regulation for degraded steppe in Hulun Buir, China [J]. Chin J Plant Ecol, 2025, 49(1): 138-147. |
[6] | QIN Jia-Chen, WANG Huan, ZHU Jiang, WANG Yang, TIAN Chen, BAI Yong-Fei, YANG Pei-Zhi, ZHENG Shu-Xia. Grazing filtering effect based on intraspecific and interspecific trait variation and its scale effects [J]. Chin J Plant Ecol, 2024, 48(7): 858-871. |
[7] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[8] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[9] | LUO Na-Na, SHENG Mao-Yin, WANG Lin-Jiao, SHI Qing-Long, HE Yu. Effects of long-term vegetation restoration on soil active organic carbon fractions content and enzyme activities in karst rocky desertification ecosystem of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 867-881. |
[10] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[11] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
[12] | CUI Guang-Shuai, LUO Tian-Xiang, LIANG Er-Yuan, ZHANG Lin. Advances in the study of shrubland facilitation on herbs in arid and semi-arid regions [J]. Chin J Plant Ecol, 2022, 46(11): 1321-1333. |
[13] | DENG Meng-Da, YOU Jian-Rong, LI Jia-Xiang, LI Xiong, YANG Jing, DENG Chuang-Fa, LIU Ang, LIU Wen-Jian, DING Cong, XIE Yong, ZHOU Guo-Hui, YU Xun-Lin. Community characteristics of main vegetation types in the ecological “green-core” area of Changzhutan urban cluster [J]. Chin J Plant Ecol, 2020, 44(12): 1296-1304. |
[14] | XIONG Xing-Shuo, CAI Hong-Yu, LI Yao-Qi, MA Wen-Hong, NIU Ke-Chang, CHEN Di-Ma, LIU Na-Na, SU Xiang-Yan, JING He-Ying, FENG Xiao-Juan, ZENG Hui, WANG Zhi-Heng. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(11): 1138-1153. |
[15] | CHEN Chan, ZHANG Shi-Ji, LI Lei-Da, LIU Zhao-Dan, CHEN Jin-Lei, GU Xiang, WANG Liu-Fang, FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn