Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (11): 1294-1302.DOI: 10.3773/j.issn.1005-264x.2010.11.006
• Research Articles • Previous Articles Next Articles
YAN Bang-Guo1, WEN Wei-Quan2, ZHANG Jian1,*(), YANG Wan-Qin1, LIU Yang1, HUANG Xu1, LI Ze-Bo1
Received:
2009-11-16
Accepted:
2010-08-14
Online:
2010-11-16
Published:
2010-10-31
Contact:
ZHANG Jian
YAN Bang-Guo, WEN Wei-Quan, ZHANG Jian, YANG Wan-Qin, LIU Yang, HUANG Xu, LI Ze-Bo. Plant community assembly rules across a subalpine grazing gradient in western Sichuan, China[J]. Chin J Plant Ecol, 2010, 34(11): 1294-1302.
样地编号 Site No. | 植被类型 Vegetation type | 坡度 Gradient (°) | 坡向 Slope aspect | 郁闭度 Canopy density (%) | 优势木本植物 Dominance woody species |
---|---|---|---|---|---|
1 | 草甸 Meadow | 28 | 西偏北21° West by North 21° | 8 | 窄叶鲜卑花 Sibiraea angustata 金露梅 Potentilla fruticosa |
2 | 矮灌丛 Short shrub | 26 | 西偏北30° West by North 30° | 50 | 杯腺柳 Salix cupularis 鹧鸪杜鹃 Rhododendron zheguense |
3 | 灌丛 Shrub | 30 | 西偏北35° West by North 35° | 60 | 华西花楸 Sorbus wilsoniana 细枝绣线菊 Spiraea myrtilloides |
4 | 高大灌丛 Tall shrub | 30 | 西偏北42° West by North 42° | 75 | 华西花楸 Sorbus wilsoniana 越桔叶忍冬 Lonicera myrtillus 柳叶忍冬 L. lanceolata |
5 | 阔叶林 Deciduous forest | 28 | 西偏北30° West by North 30° | 70 | 红桦 Betula albo-sinensis 糙皮桦 B. utilis |
6 | 针叶林 Coniferous forest | 32 | 西偏北28° West by North 28° | 85 | 岷江冷杉 Abies faxoniana 大理杜鹃 R. taliense |
Table 1 Outline of research sites
样地编号 Site No. | 植被类型 Vegetation type | 坡度 Gradient (°) | 坡向 Slope aspect | 郁闭度 Canopy density (%) | 优势木本植物 Dominance woody species |
---|---|---|---|---|---|
1 | 草甸 Meadow | 28 | 西偏北21° West by North 21° | 8 | 窄叶鲜卑花 Sibiraea angustata 金露梅 Potentilla fruticosa |
2 | 矮灌丛 Short shrub | 26 | 西偏北30° West by North 30° | 50 | 杯腺柳 Salix cupularis 鹧鸪杜鹃 Rhododendron zheguense |
3 | 灌丛 Shrub | 30 | 西偏北35° West by North 35° | 60 | 华西花楸 Sorbus wilsoniana 细枝绣线菊 Spiraea myrtilloides |
4 | 高大灌丛 Tall shrub | 30 | 西偏北42° West by North 42° | 75 | 华西花楸 Sorbus wilsoniana 越桔叶忍冬 Lonicera myrtillus 柳叶忍冬 L. lanceolata |
5 | 阔叶林 Deciduous forest | 28 | 西偏北30° West by North 30° | 70 | 红桦 Betula albo-sinensis 糙皮桦 B. utilis |
6 | 针叶林 Coniferous forest | 32 | 西偏北28° West by North 28° | 85 | 岷江冷杉 Abies faxoniana 大理杜鹃 R. taliense |
Fig. 1 Functional group evenness changing along a grazing gradient. A, Functional group evenness index of plots Jp. B, Functional group evenness indexes of subplots (50 cm × 50 cm) Jsub.
样地 Site | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样方 Plot | 1L | 1M | 1H | 2L | 2M | 2H | 3L | 3M | 3H | 4L | 4M | 4H | 5L | 5M | 5H | 6L | 6M | 6H |
物种丰富度 Species richness | 80 | 75 | 76 | 78 | 79 | 72 | 68 | 68 | 63 | 52 | 51 | 48 | 50 | 54 | 51 | 45 | 40 | 40 |
Rc | 945 | 957 | 913 | 991 | 990 | 989 | 905 | 683 | 818 | 390 | 297 | 455 | 516 | 228 | 418 | 324 | 240 | 248 |
Tc | 983 | 993 | 958 | 998 | 985 | 992 | 961 | 755 | 913 | 487 | 311 | 421 | 527 | 289 | 436 | 471 | 392 | 393 |
Jc | 55 | 27 | 4 | 71 | 38 | 33 | 25 | 19 | 888 | 763 | 778 | 812 | 959 | 950 | 994 | 877 | 995 | 990 |
Table 2 The times of cases in which net relatedness index (NRI), nearest taxon index (NTI) and functional group evenness (Jp ) in random communities are lower than the observational communities (999 simulated replications).
样地 Site | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
样方 Plot | 1L | 1M | 1H | 2L | 2M | 2H | 3L | 3M | 3H | 4L | 4M | 4H | 5L | 5M | 5H | 6L | 6M | 6H |
物种丰富度 Species richness | 80 | 75 | 76 | 78 | 79 | 72 | 68 | 68 | 63 | 52 | 51 | 48 | 50 | 54 | 51 | 45 | 40 | 40 |
Rc | 945 | 957 | 913 | 991 | 990 | 989 | 905 | 683 | 818 | 390 | 297 | 455 | 516 | 228 | 418 | 324 | 240 | 248 |
Tc | 983 | 993 | 958 | 998 | 985 | 992 | 961 | 755 | 913 | 487 | 311 | 421 | 527 | 289 | 436 | 471 | 392 | 393 |
Jc | 55 | 27 | 4 | 71 | 38 | 33 | 25 | 19 | 888 | 763 | 778 | 812 | 959 | 950 | 994 | 877 | 995 | 990 |
Fig. 4 The trends of species richness of each functional group on sites across the grazing gradient (mean ± SE). BF, basal forbs; BG, bunch grasses; DW, deciduous woody plants; EF, erect leafy forbs; EW, evergreen woody plants; FE, ferns; RG, rhizome grasses; SF, semi-basal forbs.
[1] |
Bai Y, Han X, Wu J, Chen Z, Li L (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[2] |
Cadotte MW, Cardinale BJ, Oakley TH (2008). Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America, 105, 17012-17017.
URL PMID |
[3] |
Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009). Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE, 4, e5695.
DOI URL PMID |
[4] | Chen Y (陈英 ) (2009). Detecting effect of phylogenetic diversity on seedling mortality in an evergreen broad- leaved forest in China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1084-1089. (in Chinese with English abstract) |
[5] | Cornelissen JHC, Lavorel S, Garnier E, Díaz SM, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[6] | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
[7] |
Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071.
DOI URL PMID |
[8] |
de Deyn GB, Cornelissen JH, Bardgett RD (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516-531.
DOI URL PMID |
[9] | Díaz SD, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rusch G, Sternberg M, Noy-meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing―a global synthesis. Global Change Biology, 13, 313-341. |
[10] | Emerson BC, Gillespie RG (2008). Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution, 23, 619-630. |
[11] |
Faith DP (2008). Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conservation Biology, 22, 1461-1470.
DOI URL PMID |
[12] |
Fargione J, Brown CS, Tilman D (2003). Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the United States of America, 100, 8916-8920.
DOI URL PMID |
[13] |
Fargione J, Tilman D (2005). Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia, 143, 598-606
URL PMID |
[14] |
Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760.
DOI URL PMID |
[15] | Fornara DA, Tilman D (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96, 314-322. |
[16] |
Fornara DA, Tilman D, Hobbie SE (2009). Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. Journal of Ecology, 97, 48-56.
DOI URL PMID |
[17] | Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Doležal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quétier F, Robson M, Sternberg M, Theau JP, Thébault A, Zarovali M (2009). Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology, 90, 598-611. |
[18] |
Gilbert GS, Webb CO (2007). Phylogenetic signal in plant pathogen-host range. Proceedings of the National Academy of Sciences of the United States of America, 104, 4979-4983.
DOI URL PMID |
[19] |
Helmus MR, Keller WB, Paterson MJ, Yan ND, Cannon CH, Rusak JA (2009). Communities contain closely related species during ecosystem disturbance. Ecology Letters, 13, 162-174.
DOI URL PMID |
[20] | Holdaway RJ, Sparrow AD (2006). Assembly rules operating along a primary riverbed-grassland successional sequence. Journal of Ecology, 94, 1092-1102. |
[21] | Hubbell S (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey, USA. |
[22] | Hubbell SP (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166-172. |
[23] | Jiang YX (蒋有绪 ) (1981). Phytocenological role of forest floor in subalpine fir forests in western Sichuan Province. Acta Phytoecologia et Geobotanica Sinica (植物生态学与地植物学丛刊), 5, 89-98. (in Chinese with English abstract) |
[24] |
Kraft NJ, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
URL PMID |
[25] | Kunin WE (1998). Biodiversity at the edge: a test of the importance of spatial “mass effects” in the Rothamsted Park Grass experiments. Proceedings of the National Academy of Sciences of the United States of America, 95, 207-212. |
[26] | Ma KP (马克平), Liu YM (刘玉明 ) (1994). Measurement of biotic community diversity. I. α diversity (Part 2). Chinese Biodiversity (生物多样性), 2, 231-239. (in Chinese with English abstract) |
[27] | MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. |
[28] |
McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
URL PMID |
[29] | Meng TT (孟婷婷), Ni J (倪健), Wang GH (王国宏 ) (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 150-165. (in Chinese with English abstract) |
[30] | Mokany K, Ash J, Roxburgh S (2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893. |
[31] |
Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005). A brief history of seed size. Science, 307, 576-580.
URL PMID |
[32] |
Packer A, Clay K (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278-281.
DOI URL PMID |
[33] |
Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminee JH, van Groenendael JM (2008). Less lineages―more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecology Letters, 11, 809-819.
DOI URL PMID |
[34] | R Development Core Team (2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Cited 26 Jun. 2009. |
[35] | Schamp B, Chau J, Aarssen L (2008). Dispersion of traits related to competitive ability in an old-field plant community. Journal of Ecology, 96, 204-212. |
[36] | Stubbs WJ, Wilson JB (2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557-567. |
[37] | Suding KN, Lavorel S, ChapinIII FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14, 1125-1140. |
[38] |
Valiente-Banuet A, Rumebe AV, Verdu M, Callaway RM (2006). Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences of the United States of America, 103, 16812-16817.
URL PMID |
[39] | Wang ZW (王正文), Xing F (邢福), Zhu TC (祝廷成), Li XC (李宪长 ) (2002). The responses of functional group composition and species diversity of Aneurolepidium chinensis grassland to flooding disturbance on Songnen Plain, Northeastern China. Acta Phytoecologica Sinica (植物生态学报), 26, 708-716. (in Chinese with English abstract) |
[40] |
Webb CO (2000). Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 145-155.
DOI URL PMID |
[41] |
Webb CO, Ackerly DD, Kembel SW (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
URL PMID |
[42] |
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
DOI URL |
[43] | Weiher E, Keddy P (1995). Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos, 74, 159-164. |
[44] | Wikstrom N, Savolainen V, Chase MW (2001). Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268, 2211-2220 |
[45] |
Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105, 17029-17033.
URL PMID |
[46] | Wilson JB, Roxburgh SH (1994). A demonstration of guild-based assembly rules for a plant community, and determination of intrinsic guilds. Oikos, 69, 267-276. |
[1] | DONG Shao-Qiong, HOU Dong-Jie, QU Xiao-Yun, GUO Ke. A plot-based dataset of plant communities on the Qaidam Basin, China [J]. Chin J Plant Ecol, 2024, 48(4): 534-540. |
[2] | XIAO Lan, DONG Biao, ZHANG Lin-Ting, DENG Chuan-Yuan, LI Xia, JIANG De-Gang, LIN Yong-Ming. Characteristics of main plant communities on uninhabited islands in Bohai Sea, China [J]. Chin J Plant Ecol, 2024, 48(1): 127-134. |
[3] | LIU Cong-Cong, HE Nian-Peng, LI Ying, ZHANG Jia-Hui, YAN Pu, WANG Ruo-Meng, WANG Rui-Li. Current and future trends of plant functional traits in macro-ecology [J]. Chin J Plant Ecol, 2024, 48(1): 21-40. |
[4] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[5] | BAI Yue, LIU Chen, HUANG Yue, DONG Ya-Nan, WANG Lu. Response of spatial heterogeneity of plant community height to different herbivore assemblages in Horqin sandy grassland [J]. Chin J Plant Ecol, 2022, 46(4): 394-404. |
[6] | Qin ZHU, Pan NING, Lin HOU, Jia-Tian HAO, Yun-Yun HU. Characteristics of Juniperus community types in the Three-River-Source Region [J]. Chin J Plant Ecol, 2022, 46(1): 114-122. |
[7] | ZHANG Huan, ZHANG Yun-Ling, ZHANG Yan-Cai, YAN Ping. Main plant communities and characteristics of Desert Grassland Nature Reserve in Qitai, Xinjiang, China [J]. Chin J Plant Ecol, 2021, 45(8): 918-924. |
[8] | ZHU Wan-Wan, WANG Pan, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition [J]. Chin J Plant Ecol, 2021, 45(3): 309-320. |
[9] | HE Lu-Yan, HOU Man-Fu, TANG Wei, LIU Yu-Ting, ZHAO Jun. Vegetation types and their characteristics in karst forests of Junzi Mountain in East Yunnan, China [J]. Chin J Plant Ecol, 2021, 45(12): 1380-1390. |
[10] | YU Yan-Mei, HUANG Lin-Juan, XUE Yue-Gui. Characteristics of different plant communities in the Dashiwei Tiankeng group, Guangxi, China [J]. Chin J Plant Ecol, 2021, 45(1): 96-103. |
[11] | FANG Jing-Yun, GUO Ke, WANG Guo-Hong, TANG Zhi-Yao, XIE Zong-Qiang, SHEN Ze-Hao, WANG Ren-Qing, QIANG Sheng, LIANG Cun-Zhu, DA Liang-Jun, YU Dan. Vegetation classification system and classification of vegetation types used for the compilation of vegetation of China [J]. Chin J Plant Ecol, 2020, 44(2): 96-110. |
[12] | DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43. |
[13] | WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32. |
[14] | CHAI Yong-Fu, XU Jin-Shi, LIU Hong-Yan, LIU Quan-Ru, ZHENG Cheng-Yang, KANG Mu-Yi, LIANG Cun-Zhu, WANG Ren-Qing, GAO Xian-Ming, ZHANG Feng, SHI Fu-Chen, LIU Xiao, YUE Ming. Species composition and phylogenetic structure of major shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 793-805. |
[15] | TANG Li-Li, YANG Tong, LIU Hong-Yan, KANG Mu-Yi, WANG Ren-Qing, ZHANG Feng, GAO Xian-Ming, YUE Ming, ZHANG Mei, ZHENG Pu-Fan, SHI Fu-Chen. Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 825-833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn