Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (3): 298-308.DOI: 10.17521/cjpe.2020.0217
• Research Articles • Previous Articles Next Articles
HU Yuan-Liu1,2, CHEN Guo-Yin1,2, CHEN Jing-Wen1,2, SUN Lian-Wei1,2, LI Jian-Ling1, DOU Ning1, ZHANG De-Qiang1, DENG Qi1,*()
Received:
2020-06-29
Accepted:
2020-09-27
Online:
2021-03-20
Published:
2021-05-17
Contact:
DENG Qi
Supported by:
HU Yuan-Liu, CHEN Guo-Yin, CHEN Jing-Wen, SUN Lian-Wei, LI Jian-Ling, DOU Ning, ZHANG De-Qiang, DENG Qi. Effects of long-term simulated acid rain on soil microbial community structure in a monsoon evergreen broad-leaved forest in southern China[J]. Chin J Plant Ecol, 2021, 45(3): 298-308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2020.0217
微生物类群 Microbial type | 磷脂脂肪酸标志物 Phospholipid fatty acid signatures | |
---|---|---|
细菌 Bacteria | 常见细菌 Common bacteria | 12:0, 14:0, 15:0, 17:0, 20:0 |
革兰氏阳性菌 Gram-positive bacteria | 16:0, 18:0, 16:0 2OH, a13:0, a15:0, a17:0, i13:0, i14:0, i15:0, i16:0 | |
放线菌 Actinomycetes | 10Me 16:0, 10Me 17:0, 10Me18:0, i17:0 | |
革兰氏阴性菌 Gram-negative bacteria | 14:1w5c, 16:1w7c, 18:1w7c, 18:1w9c, cy17:0, 10Me17:1w7c | |
真菌 Fungi | 常见真菌 Common fungi | 18:1 w9c, 18:2w6c, 18:3 w3c |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 16:1w5c |
Table 1 Identifier of phospholipid fatty acids
微生物类群 Microbial type | 磷脂脂肪酸标志物 Phospholipid fatty acid signatures | |
---|---|---|
细菌 Bacteria | 常见细菌 Common bacteria | 12:0, 14:0, 15:0, 17:0, 20:0 |
革兰氏阳性菌 Gram-positive bacteria | 16:0, 18:0, 16:0 2OH, a13:0, a15:0, a17:0, i13:0, i14:0, i15:0, i16:0 | |
放线菌 Actinomycetes | 10Me 16:0, 10Me 17:0, 10Me18:0, i17:0 | |
革兰氏阴性菌 Gram-negative bacteria | 14:1w5c, 16:1w7c, 18:1w7c, 18:1w9c, cy17:0, 10Me17:1w7c | |
真菌 Fungi | 常见真菌 Common fungi | 18:1 w9c, 18:2w6c, 18:3 w3c |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 16:1w5c |
土层 Soil layer (cm) | 处理 Treatment | 土壤pH Soil pH | 含水量 SWC (%) | 有机碳含量 SOC content (g·kg-1) | 氨态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) | 总氮含量 TN content (g·kg-1) | 有效磷含量 AP content (mg·kg-1) | 总磷含量 TP content (g·kg-1) | 总氮:总磷 TC:TN |
---|---|---|---|---|---|---|---|---|---|---|
0-10 | CK | 4.18a (0.03) | 43.76a (1.20) | 35.25 (1.22) | 1.36 (0.16) | 15.85a (1.02) | 2.37 (0.01) | 1.68a (0.12) | 0.24a (0.01) | 14.93bc (0.25) |
T1 | 4.05b (0.03) | 41.68a (1.14) | 37.71 (2.60) | 1.16 (0.25) | 10.94ab (0.90) | 2.66 (0.13) | 1.47ab (0.15) | 0.19b (0.01) | 14.11c (0.40) | |
T2 | 3.89c (0.06) | 35.42b (1.15) | 40.43 (3.90) | 1.68 (0.24) | 9.82b (1.12) | 2.50 (0.19) | 0.95b (0.16) | 0.19b (0.01) | 16.00ab (0.42) | |
T3 | 3.90c (0.03) | 37.34b (2.17) | 41.26 (2.32) | 1.94 (0.30) | 12.55ab (1.94) | 2.44 (0.14) | 1.20ab (0.07) | 0.16c (0.01) | 16.94a (0.23) | |
10-20 | CK | 4.22a (0.01) | 36.31a (0.85) | 25.36 (0.93) | 1.18 (0.14) | 8.85 (0.61) | 1.68 (0.06) | 0.69 (0.05) | 0.19a (0.01) | 15.13b (0.31) |
T1 | 4.14a (0.03) | 36.19a (0.89) | 24.60 (1.98) | 0.75 (0.09) | 6.57 (0.66) | 1.76 (0.11) | 0.79 (0.12) | 0.15bc (0.01) | 13.95b (0.36) | |
T2 | 3.98b (0.04) | 31.06b (0.68) | 26.64 (2.13) | 1.58 (0.41) | 6.87 (0.77) | 1.83 (0.14) | 0.47 (0.11) | 0.16b (0.01) | 14.57b (0.44) | |
T3 | 4.03b (0.02) | 32.26b (1.25) | 28.66 (1.67) | 1.56 (0.30) | 7.31 (0.87) | 1.74 (0.11) | 0.72 (0.08) | 0.13c (0.01) | 16.60a (0.47) |
Table 2 Soil properties in the four simulated acid rain treatments in a monsoon evergreen broad-leaved forest in southern China
土层 Soil layer (cm) | 处理 Treatment | 土壤pH Soil pH | 含水量 SWC (%) | 有机碳含量 SOC content (g·kg-1) | 氨态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) | 总氮含量 TN content (g·kg-1) | 有效磷含量 AP content (mg·kg-1) | 总磷含量 TP content (g·kg-1) | 总氮:总磷 TC:TN |
---|---|---|---|---|---|---|---|---|---|---|
0-10 | CK | 4.18a (0.03) | 43.76a (1.20) | 35.25 (1.22) | 1.36 (0.16) | 15.85a (1.02) | 2.37 (0.01) | 1.68a (0.12) | 0.24a (0.01) | 14.93bc (0.25) |
T1 | 4.05b (0.03) | 41.68a (1.14) | 37.71 (2.60) | 1.16 (0.25) | 10.94ab (0.90) | 2.66 (0.13) | 1.47ab (0.15) | 0.19b (0.01) | 14.11c (0.40) | |
T2 | 3.89c (0.06) | 35.42b (1.15) | 40.43 (3.90) | 1.68 (0.24) | 9.82b (1.12) | 2.50 (0.19) | 0.95b (0.16) | 0.19b (0.01) | 16.00ab (0.42) | |
T3 | 3.90c (0.03) | 37.34b (2.17) | 41.26 (2.32) | 1.94 (0.30) | 12.55ab (1.94) | 2.44 (0.14) | 1.20ab (0.07) | 0.16c (0.01) | 16.94a (0.23) | |
10-20 | CK | 4.22a (0.01) | 36.31a (0.85) | 25.36 (0.93) | 1.18 (0.14) | 8.85 (0.61) | 1.68 (0.06) | 0.69 (0.05) | 0.19a (0.01) | 15.13b (0.31) |
T1 | 4.14a (0.03) | 36.19a (0.89) | 24.60 (1.98) | 0.75 (0.09) | 6.57 (0.66) | 1.76 (0.11) | 0.79 (0.12) | 0.15bc (0.01) | 13.95b (0.36) | |
T2 | 3.98b (0.04) | 31.06b (0.68) | 26.64 (2.13) | 1.58 (0.41) | 6.87 (0.77) | 1.83 (0.14) | 0.47 (0.11) | 0.16b (0.01) | 14.57b (0.44) | |
T3 | 4.03b (0.02) | 32.26b (1.25) | 28.66 (1.67) | 1.56 (0.30) | 7.31 (0.87) | 1.74 (0.11) | 0.72 (0.08) | 0.13c (0.01) | 16.60a (0.47) |
Fig. 1 Effects of simulated acid rain treatments on soil microbial biomass carbon (MBC), nitrogen (MBN), phosphorus (MBP) content and microbial stoichiometric ratio (mean ± SE). CK, control, pH = 4.5; T1, pH = 4.0; T2, pH = 3.5; T3, pH = 3.0. Different lowercase letters indicate significant difference between treatments in the same soil layer (p < 0.05); ns indicates no significant difference (p > 0.05).
土层 Soil layer (cm) | 处理 Treatment | 总量 Total | 细菌 B | 革兰氏 阳性菌 G+ | 革兰氏 阴性菌 G- | 放线菌 A | 真菌 F | 丛枝菌根 真菌 AMF | 真菌:细菌 F:B | 革兰氏阳性 菌:阴性菌 G+:G- |
---|---|---|---|---|---|---|---|---|---|---|
0-10 | CK | 34.07 (1.70) | 29.74 (1.51) | 24.29 (1.25) | 4.15 (0.24) | 6.52 (0.35) | 4.33 (0.19) | 1.05 (0.07) | 0.15b (0.01) | 5.89 (0.18) |
T1 | 36.25 (1.76) | 31.55 (1.57) | 25.83 (1.31) | 4.15 (0.19) | 6.76 (0.34) | 4.69 (0.23) | 0.97 (0.06) | 0.15b (0.01) | 6.21 (0.13) | |
T2 | 31.54 (1.78) | 26.76 (1.47) | 21.87 (1.28) | 3.60 (0.19) | 5.68 (0.30) | 4.77 (0.32) | 0.89 (0.06) | 0.18a (0.01) | 6.14 (0.32) | |
T3 | 31.90 (2.70) | 27.70 (2.31) | 22.43 (1.87) | 3.87 (0.37) | 5.95 (0.49) | 4.20 (0.40) | 0.83 (0.07) | 0.15b (0.01) | 5.92 (0.29) | |
10-20 | CK | 20.72 (1.58) | 18.45 (1.37) | 14.86 (1.14) | 2.79 (0.18) | 4.29 (0.31) | 2.27c (0.21) | 0.51b (0.05) | 0.12c (0.01) | 5.30 (0.13) |
T1 | 26.38 (1.72) | 23.09 (1.50) | 18.53 (1.23) | 3.46 (0.21) | 5.03 (0.30) | 3.29ab (0.25) | 0.60ab (0.05) | 0.14b (0.01) | 5.37 (0.26) | |
T2 | 26.73 (1.29) | 22.84 (1.07) | 18.64 (0.90) | 3.10 (0.21) | 4.98 (0.24) | 3.90a (0.25) | 0.69a (0.03) | 0.17a (0.01) | 6.16 (0.35) | |
T3 | 22.86 (1.74) | 19.94 (1.52) | 15.91 (1.23) | 3.02 (0.23) | 4.29 (0.32) | 2.92bc (0.25) | 0.54ab (0.05) | 0.15b (0.01) | 5.30 (0.21) |
Table 3 Effects of simulated acid rain treatments on the relative abundance of different microbial taxa
土层 Soil layer (cm) | 处理 Treatment | 总量 Total | 细菌 B | 革兰氏 阳性菌 G+ | 革兰氏 阴性菌 G- | 放线菌 A | 真菌 F | 丛枝菌根 真菌 AMF | 真菌:细菌 F:B | 革兰氏阳性 菌:阴性菌 G+:G- |
---|---|---|---|---|---|---|---|---|---|---|
0-10 | CK | 34.07 (1.70) | 29.74 (1.51) | 24.29 (1.25) | 4.15 (0.24) | 6.52 (0.35) | 4.33 (0.19) | 1.05 (0.07) | 0.15b (0.01) | 5.89 (0.18) |
T1 | 36.25 (1.76) | 31.55 (1.57) | 25.83 (1.31) | 4.15 (0.19) | 6.76 (0.34) | 4.69 (0.23) | 0.97 (0.06) | 0.15b (0.01) | 6.21 (0.13) | |
T2 | 31.54 (1.78) | 26.76 (1.47) | 21.87 (1.28) | 3.60 (0.19) | 5.68 (0.30) | 4.77 (0.32) | 0.89 (0.06) | 0.18a (0.01) | 6.14 (0.32) | |
T3 | 31.90 (2.70) | 27.70 (2.31) | 22.43 (1.87) | 3.87 (0.37) | 5.95 (0.49) | 4.20 (0.40) | 0.83 (0.07) | 0.15b (0.01) | 5.92 (0.29) | |
10-20 | CK | 20.72 (1.58) | 18.45 (1.37) | 14.86 (1.14) | 2.79 (0.18) | 4.29 (0.31) | 2.27c (0.21) | 0.51b (0.05) | 0.12c (0.01) | 5.30 (0.13) |
T1 | 26.38 (1.72) | 23.09 (1.50) | 18.53 (1.23) | 3.46 (0.21) | 5.03 (0.30) | 3.29ab (0.25) | 0.60ab (0.05) | 0.14b (0.01) | 5.37 (0.26) | |
T2 | 26.73 (1.29) | 22.84 (1.07) | 18.64 (0.90) | 3.10 (0.21) | 4.98 (0.24) | 3.90a (0.25) | 0.69a (0.03) | 0.17a (0.01) | 6.16 (0.35) | |
T3 | 22.86 (1.74) | 19.94 (1.52) | 15.91 (1.23) | 3.02 (0.23) | 4.29 (0.32) | 2.92bc (0.25) | 0.54ab (0.05) | 0.15b (0.01) | 5.30 (0.21) |
Fig. 2 Principal component analysis (PCA) of soil microbial community structure in soil layers 0-10 (A) and 10-20 cm (B). CK, control, pH = 4.5; T1, pH = 4.0; T2, pH = 3.5; T3, pH = 3.0.
Fig. 3 Redundant analysis (RDA) of the relationship between soil properties and microbial community structure in soil layers 0-10 (A) and 10-20 cm (B). AP, soil available phosphorus content; NH4+, soil ammoniacal nitrogen content; NO3-, soil nitrate nitrogen content; SOC, soil organic carbon content; SWC, soil water content; TC, soil total carbon content; TN, soil total nitrogen content; TP, soil total phosphorus content.
[1] |
Achat DL, Morel C, Bakker MR, Augusto L, Pellerin S, Gallet- Budynek A, Gonzalez M (2010). Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model. Soil Biology & Biochemistry, 42, 2231-2240.
DOI URL |
[2] |
Allison VJ, Condron LM, Peltzer DA, Richardson SJ, Turner BL (2007). Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology & Biochemistry, 39, 1770-1781.
DOI URL |
[3] |
Bååth E, Anderson TH (2003). Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA- based techniques. Soil Biology & Biochemistry, 35, 955-963.
DOI URL |
[4] |
Bardgett RD, McAlister E (1999). The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biology and Fertility of Soils, 29, 282-290.
DOI URL |
[5] | Bonan GB (2008). Forests and Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449. |
[6] |
Bouwman AF, van Vuuren DP, Derwent RG, Posch M (2002). A global analysis of acidification and eutrophication of terrestrial ecosystems. Water, Air, and Soil Pollution, 141, 349-382.
DOI URL |
[7] |
Chen D, Lan Z, Bai X, Grace JB, Bai Y (2013). Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. Journal of Ecology, 101, 1322-1334.
DOI URL |
[8] |
Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC, Parton W, del Grosso SJ, Running SW (2013). Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences of the United States of America, 110, 12733-12737.
DOI PMID |
[9] |
Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252.
DOI URL |
[10] |
Cui J, Zhou J, Peng Y, He YQ, Yang H, Mao JD (2014). Atmospheric wet deposition of nitrogen and sulfur to a typical red soil agroecosystem in Southeast China during the ten-year monsoon seasons (2003-2012). Atmospheric Environment, 82, 121-129.
DOI URL |
[11] |
DeForest JL, Scott LG (2010). Available organic soil phosphorus has an important influence on microbial community composition. Soil Science Society of America Journal, 74, 2059-2066.
DOI URL |
[12] |
Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE, Abu Al-Soud W, Sørensen S, Bardgett RD, Singh BK (2017). It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19, 1176-1188.
DOI PMID |
[13] |
Deng Q, Hui DF, Dennis S, Dennis S, Reddy KC (2017). Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 26, 713-728.
DOI URL |
[14] |
Frostegård A, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65.
DOI URL |
[15] |
Frostegård A, Bååth E, Tunlio A (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730.
DOI URL |
[16] |
Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001). Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biology & Biochemistry, 33, 533-551.
DOI URL |
[17] |
Guo Q, Yan L, Korpelainen H, Niinemets Ü, Li C (2019). Plant-plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biology & Biochemistry, 128, 127-138.
DOI URL |
[18] |
Högberg MN, Högberg P, Myrold DD (2007). Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 150, 590-601.
PMID |
[19] |
Hou E, Wen D, Kuang Y, Cong J, Chen C, He X, Heenan M, Lu H, Zhang Y (2018). Soil pH predominantly controls the forms of organic phosphorus in topsoils under natural broadleaved forests along a 2500 km latitudinal gradient. Geoderma, 315, 65-74.
DOI URL |
[20] |
Hu L, Zi H, Wu P, Wang Y, Lerdau M, Wu X, Wang C (2019). Soil bacterial communities in grasslands revegetated using Elymus nutans are largely influenced by soil pH and total phosphorus across restoration time. Land Degradation & Development, 30, 2243-2256.
DOI URL |
[21] |
Jansson JK, Hofmockel KS (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18, 35-46.
DOI URL |
[22] |
Jiang J, Wang YP, Yu MX, Cao NN, Yan JH (2018). Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chemical Geology, 501, 86-94.
DOI URL |
[23] |
Johnson AH, Frizano J, Vann DR (2003). Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia, 135, 487-499.
PMID |
[24] | Jones DL, Oburger E (2011). Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Springer, Berlin.169-198. |
[25] |
Kaiser EA, Mueller T, Joergensen RG, Insam H, Heinemeyer O (1992). Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biology & Biochemistry, 24, 675-683.
DOI URL |
[26] |
Kang HZ, Gao HH, Yu WJ, Yi Y, Wang Y, Ning ML (2018). Changes in soil microbial community structure and function after afforestation depend on species and age: case study in a subtropical alluvial island. Science of the Total Environment, 625, 1423-1432.
DOI URL |
[27] | Killham K, Firestone MK, Mc Coll JG (1983). Acid rain and soil microbial activity: effects and their mechanisms. Journal of Environmental Quality, 12, 133-137. |
[28] |
Kwak JH, Naeth MA, Chang SX (2018). Microbial activities and gross nitrogen transformation unaffected by ten-year nitrogen and sulfur addition. Soil Science Society of America Journal, 82, 362-370.
DOI URL |
[29] |
Lambers H, Mougel C, Jaillard B, Hinsinger P (2009). Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil, 321, 83-115.
DOI URL |
[30] |
Lauber CL, Strickland MS, Bradford MA, Fierer N (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology & Biochemistry, 40, 2407-2415.
DOI URL |
[31] | Li CY, Wang Y, Brookes P, Dang TH, Wang WZ (2013). Effect of soil pH on soil microbial carbon phosphorus ratio. Scientia Agricultura Sinica, 46, 2709-2716. |
[李春越, 王益, Philip Brookes, 党廷辉, 王万忠 (2013). pH对土壤微生物C/P比的影响. 中国农业科学, 46, 2709-2716.] | |
[32] |
Li W, Sheng H, Ekawati D, Jiang Y, Yang H (2019). Variations in the compositions of soil bacterial and fungal communities due to microhabitat effects induced by simulated nitrogen deposition of a bamboo forest in wetland. Forests, 10, 1098. DOI: 10.3390/f10121098.
DOI |
[33] |
Li Y, Sun J, Tian D, Tian DS, Wang JS, Ha DL, Qu YX, Jing GW, Niu SL (2018). Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Science of the Total Environment, 615, 1535-1546.
DOI URL |
[34] | Liang GH, Wu JP, Xiong X, Wu XY, Chu GW, Zhou GY, Zeng RS, Zhang DQ (2015). Responses of soil pH value and soil microbial biomass carbon and nitrogen to simulated acid rain in three successional subtropical forests at Dinghushan nature reserve. Ecology and Environmental Sciences, 24, 911-918. |
[梁国华, 吴建平, 熊鑫, 吴小映, 褚国伟, 周国逸, 曾任森, 张德强 (2015). 鼎湖山不同演替阶段森林土壤pH值和土壤微生物量碳氮对模拟酸雨的响应. 生态环境学报, 24, 911-918.] | |
[35] | Liu KH, Peng SL, Mo JM, Huang ZL, Fang YT (2005). The process and mechanism of rain deposition upon forest plants. Ecology and Environment, 14, 953-960. |
[刘可慧, 彭少麟, 莫江明, 黄忠良, 方运霆 (2005). 酸沉降对森林植物影响过程和机理. 生态环境, 14, 953-960.] | |
[36] | Liu X, Zhang B, Zhao WR, Wang L, Xie DJ, Huo WT, Wu YW, Zhang JC (2017). Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region. Science of the Total Environment, 601, 669-678. |
[37] |
Liu XC, Zhang ST (2019). Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil. Plant and Soil, 440, 11-24.
DOI URL |
[38] |
Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI URL |
[39] |
Liu Z, Li D, Zhang J, Saleem M, Zhang Y, Ma R, He Y, Yang J, Xiang H, Wei H (2020). Effect of simulated acid rain on soil CO2, CH 4 and N2O emissions and microbial communities in an agricultural soil. Geoderma, 366, 114222. DOI: 10.1016/j.geoderma.2020.114222.
DOI |
[40] |
Lv YN, Wang CY, Jia YY, Wang WW, Ma X, Du JJ, Pu GZ, Tian XJ (2014). Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China. Applied Soil Ecology, 79, 1-9.
DOI URL |
[41] |
Ma H, Zou W, Yang J, Hogan JA, Xu H, Chen J (2019). Dominant tree species shape soil microbial community via regulating assembly processes in planted subtropical forests. Forests, 10, 978. DOI: 10.3390/f10110978.
DOI URL |
[42] |
Maltz MR, Chen Z, Cao J, Arogyaswamy K, Shulman H, Aronson EL (2019). Inoculation with Pisolithus tinctorius may ameliorate acid rain impacts on soil microbial communities associated with Pinus massoniana seedlings. Fungal Ecology, 40, 50-61.
DOI |
[43] |
Meng C, Tian DS, Zeng H, Li ZL, Yi CX, Niu SL (2019). Global soil acidification impacts on belowground processes. Environmental Research Letters, 14, 074003. DOI: 10.1088/1748-9326/ab239c.
DOI URL |
[44] |
Mo J, Zhang W, Zhu W, Gundersen P, Fang Y, Li D, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412.
DOI URL |
[45] |
Nottingham AT, Hicks LC, Ccahuana AJQ, Salinas N, Bååth E, Meir P (2018). Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biology and Fertility of Soils, 54, 219-228.
DOI URL |
[46] |
Oberson A, Friesen DK, Morel C, Tiessen H (1997). Determination of phosphorus released by chloroform fumigation from microbial biomass in high P sorbing tropical soils. Soil Biology & Biochemistry, 29, 1579-1583.
DOI URL |
[47] | Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, OʼHara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018). vegan: Community ecology package. R package version 2.5-2. [2020-03-06]. https://CRAN.R-project.org/package=vegan. |
[48] | Pan GX (1990). Soil chemical analysis on the process of soil acidification. Journal of Ecology, 9(6), 48-52. |
[潘根兴 (1990). 土壤酸化过程的土壤化学分析. 生态学杂志, 9(6), 48-52.] | |
[49] |
Pennanen T, Fritze H, Vanhala P, Kiikkilä O, Neuvonen S, Bååth E (1998). Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Applied and Environmental Microbiology, 64, 2173-2180.
PMID |
[50] |
Qiao X, Xiao W, Jaffe D, Kota SH, Ying Q, Tang Y (2015). Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China. Science of the Total Environment, 511, 28-36.
DOI URL |
[51] | R Core Team (2016). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[52] |
Richardson AE, Simpson RJ (2011). Soil microorganisms mediating phosphorus availability. Plant Physiology, 156, 989-996.
DOI PMID |
[53] |
Spohn M, Klaus K, Wanek W, Richter A (2016). Microbial carbon use efficiency and biomass turnover times depending on soil depth—Implications for carbon cycling. Soil Biology & Biochemistry, 96, 74-81.
DOI URL |
[54] |
Strickland MS, Rousk J (2010). Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395.
DOI URL |
[55] |
Tomlinson GH (2003). Acidic deposition, nutrient leaching and forest growth. Biogeochemistry, 65, 51-81.
DOI URL |
[56] |
Treseder KK (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11, 1111-1120.
DOI URL |
[57] |
van der Heijden MGA, Bardgett RD, van Straalen NM (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
PMID |
[58] |
van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72.
DOI URL |
[59] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL |
[60] |
Wang XL, Zhang WX, Shao YH, Zhao J, Zhou LX, Zou XM, Fu SL (2019). Fungi to bacteria ratio: historical misinterpretations and potential implications. Acta Oecologica, 95, 1-11.
DOI URL |
[61] | Wang ZC, Ding LY, Liu W, Zhi SQ (2011). Current status and causes of acid rain in Guangzhou. Journal of Tropical Meteorology, 27, 717-722. |
[王志春, 丁凌云, 刘尉, 植石群 (2011). 广州酸雨现状及影响因素分析. 热带气象学报, 27, 717-722.] | |
[62] |
Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI URL |
[63] | Ware GW, Niggs HN, Bevenue A (1990). Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews . Springer, New York. |
[64] |
Wu JP, Liang GH, Hui DF, Deng Q, Xiong X, Qiu QY, Liu JX, Chu GW, Zhou GY, Zhang DQ (2016). Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China. Science of the Total Environment, 544, 94-102.
DOI URL |
[65] | Xie SY, Wang RB, Zheng HH (2012). Analysis on the acid rain from 2005 to 2011 in China. Environmental Monitoring and Forewarning, 4(5), 33-37. |
[解淑艳, 王瑞斌, 郑皓皓 (2012). 2005-2011年全国酸雨状况分析. 环境监控与预警, 4(5), 33-37.] | |
[66] |
Xu X, Thornton PE, Post WM (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749.
DOI URL |
[67] | Yang JL, Fu XL, Ma ZQ, Di YB, Liu QJ, Wang HM (2015). Characteristics of soil microbial community in five forest types in mid-subtropical China. Research of Environmental Sciences, 28, 720-727. |
[杨君珑, 付晓莉, 马泽清, 邸月宝, 刘琪璟, 王辉民 (2015). 中亚热带5种类型森林土壤微生物群落特征. 环境科学研究, 28, 720-727.] | |
[68] | Zhang HL, Wu JP, Xiong X, Chu GW, Zhou GY, Zhang DQ (2018). Effects of simulated acid rain on soil labile organic carbon and carbon management index in subtropical forests of China. Acta Ecologica Sinica, 38, 657-667. |
张慧玲, 吴建平, 熊鑫, 褚国伟, 周国逸, 张德强 (2018). 南亚热带森林土壤碳库稳定性与碳库管理指数对模拟酸雨的响应. 生态学报, 38, 657-667.]. | |
[69] | Zhang XM, Chai FH, Wang SL, Sun XZ, Han M (2010). Research progress of acid precipitation in China. Research of Environmental Sciences, 23, 527-532. |
[张新民, 柴发合, 王淑兰, 孙新章, 韩梅 (2010). 中国酸雨研究现状. 环境科学研究, 23, 527-532.] | |
[70] | Zhao D, Xiong J, Xu Y, Chan WH (1988). Acid rain in southwestern China. Atmospheric Environment, 22, 349-358. |
[71] | Zheng K, Zhao TL, Zhang L, Zeng N, Zheng XB, Yang QJ (2019). Characteristics of wet deposition of sulfate and nitrate in three typical cities in China in 2001-2017. Ecology and Environmental Sciences, 28, 2390-2397. |
[郑珂, 赵天良, 张磊, 曾宁, 郑小波, 杨清健 (2019). 2001-2017年中国3个典型城市硫酸盐和硝酸盐湿沉降特征. 生态环境学报, 28, 2390-2397.] | |
[72] |
Zheng S, Bian HF, Quan Q, Xu L, Chen Z, He NP (2018). Effect of nitrogen and acid deposition on soil respiration in a temperate forest in China. Geoderma, 329, 82-90.
DOI URL |
[73] |
Zhou GY, Peng CH, Li YL, Liu SZ, Zhang QM, Tang XL, Liu JX, Yan JH, Zhang DQ, Chu GW (2013). A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology, 19, 1197-1210.
DOI URL |
[74] |
Zhou XD, Xu ZF, Liu WJ, Wu Y, Zhao T, Jiang H, Zhang X, Zhang JY, Zhou L, Wang YC (2019). Chemical composition of precipitation in Shenzhen, a coastal mega-city in South China: influence of urbanization and anthropogenic activities on acidity and ionic composition. Science of the Total Environment, 662, 218-226.
DOI URL |
[75] |
Zhu Q, de Vries W, Liu X, Zeng M, Hao T, Du E, Zhang F, Shen J (2016). The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980. Atmospheric Environment, 146, 215-222.
DOI URL |
[76] |
Ziegler SE, Billings SA, Lane CS, Li JW, Fogel ML (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology & Biochemistry, 60, 23-32.
DOI URL |
[77] |
Zou S, Zhou GY, Zhang QM, Xu S, Xiong X, Xia YJ, Liu SZ, Meng Z, Chu GW (2018). Long-term (1992-2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve. Chinese Journal of Plant Ecology, 42, 442-452.
DOI URL |
[邹顺, 周国逸, 张倩媚, 徐姗, 熊鑫, 夏艳菊, 刘世忠, 孟泽, 褚国伟 (2018). 1992-2015年鼎湖山季风常绿阔叶林群落结构动态. 植物生态学报, 42, 442-452.]
DOI |
[1] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[2] | ZONG Ning, SHI Pei-Li, ZHAO Guang-Shuai, ZHENG Li-Li, NIU Ben, ZHOU Tian-Cai, HOU Ge. Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the Northern Xizang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 444-455. |
[3] | HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn