Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (1): 30-41.DOI: 10.17521/cjpe.2024.0072 cstr: 32100.14.cjpe.2024.0072
• Research Articles • Previous Articles Next Articles
DU Shu-Hui1, CHU Jian-Min2, DUAN Jun-Guang2, XUE Jian-Guo3, XU Lei4, XU Xiao-Qing2, WANG Qi-Bing3, HUANG Jian-Hui3, ZHANG Qian2,*()
Received:
2024-03-14
Accepted:
2024-08-23
Online:
2025-01-20
Published:
2025-03-08
Contact:
ZHANG Qian
Supported by:
DU Shu-Hui, CHU Jian-Min, DUAN Jun-Guang, XUE Jian-Guo, XU Lei, XU Xiao-Qing, WANG Qi-Bing, HUANG Jian-Hui, ZHANG Qian. Influence of lignin phenols on soil organic carbon in degraded grassland in Nei Mongol, China[J]. Chin J Plant Ecol, 2025, 49(1): 30-41.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0072
物种丰富度 Species richness | 地上生物量 Above ground biomass (g·m-2) | 盖度 Coverage (%) | 密度(株·m-2) Density (No.·m-2) | |
---|---|---|---|---|
未退化 Non-degradation | 9 ± 1.4ab | 400.13 ± 20.86a | 81.7 ± 6.3a | 799 ± 292.9a |
轻度退化 Lightly degradation | 5 ± 0.8c | 252.55 ± 26.37b | 51.7 ± 2.4b | 402 ± 176.5ab |
中度退化 Moderately degradation | 6 ± 2.1bc | 156.16 ± 10.09c | 37.7 ± 2.0c | 309 ± 31.4b |
重度退化 Severely degradation | 11 ± 1.4a | 65.72 ± 24.46d | 20.0 ± 4.1d | 193 ± 31.4c |
Table 1 Plant community characteristics of grasslands with different degradation severities (mean ± SD)
物种丰富度 Species richness | 地上生物量 Above ground biomass (g·m-2) | 盖度 Coverage (%) | 密度(株·m-2) Density (No.·m-2) | |
---|---|---|---|---|
未退化 Non-degradation | 9 ± 1.4ab | 400.13 ± 20.86a | 81.7 ± 6.3a | 799 ± 292.9a |
轻度退化 Lightly degradation | 5 ± 0.8c | 252.55 ± 26.37b | 51.7 ± 2.4b | 402 ± 176.5ab |
中度退化 Moderately degradation | 6 ± 2.1bc | 156.16 ± 10.09c | 37.7 ± 2.0c | 309 ± 31.4b |
重度退化 Severely degradation | 11 ± 1.4a | 65.72 ± 24.46d | 20.0 ± 4.1d | 193 ± 31.4c |
自由度 df | 平方和 Sum of squares | 复相关系数 r | F检验计算值 F value | p | |
---|---|---|---|---|---|
退化程度 Degradation severity | 3 | 1.03 | 0.71 | 24.39 | 0.001*** |
土壤深度 Soil depth | 1 | 0.10 | 0.07 | 7.25 | 0.007*** |
交互效应 Interactive effect | 3 | 0.09 | 0.06 | 2.26 | 0.050* |
残差 Residual | 16 | 0.22 | 0.16 | ||
总计 Total | 23 | 1.45 | 1.00 |
Table 2 PERMANOVA analysis on soil lignin phenols composition of grasslands with different degradation severities
自由度 df | 平方和 Sum of squares | 复相关系数 r | F检验计算值 F value | p | |
---|---|---|---|---|---|
退化程度 Degradation severity | 3 | 1.03 | 0.71 | 24.39 | 0.001*** |
土壤深度 Soil depth | 1 | 0.10 | 0.07 | 7.25 | 0.007*** |
交互效应 Interactive effect | 3 | 0.09 | 0.06 | 2.26 | 0.050* |
残差 Residual | 16 | 0.22 | 0.16 | ||
总计 Total | 23 | 1.45 | 1.00 |
Fig. 1 Content of lignin phenols in different soil depth of different degradation severity grasslands (mean ± SD). Different lowercase letters indicate significant differences among different degradation severities in the same soil layer; different uppercase letters indicate significant differences between different soil layers at the same degradation severity (p < 0.05).
Fig. 2 Normalized content of lignin phenols of different degradation severity grasslands. SOC, soil organic carbon content (mean ± SD). Different lowercase letters indicate significant differences among different degradation severities in the same soil layer; different uppercase letters indicate significant differences between different soil layers at the same degradation severity (p < 0.05).
Fig. 4 Abundance of catA gene (A) and cis,cis-muconic acid (B) in different degradation severity grasslands (mean ± SD). Different lowercase letters indicate significant differences among different degradation severities in the same soil layer, and different uppercase letters indicate significant differences between different soil layers at the same degradation severity (p < 0.05).
Fig. 5 Correlation between the abundance of catA and cis,cis-muconic acid (A) and the content of lignin phenols (B) of different degraded grasslands soil depth.
Fig. 6 Correlation between the abundance of catA (A) and cis,cis-muconic acid (B) and the soil organic carbon (SOC) content of different degraded grasslands soil depth.
Fig. 7 Correlation between the abundance of catA and the acid-aldehyde ratio of vanillyl (A) and eugenol (B) of different degraded grasslands in different degraded grasslands soil depth. Ad/Al, acid-aldehyde ratio; s, eugenol; v, vanillyl.
[1] | Abiven S, Heim A, Schmidt MWI (2011). Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: consequences for assessing lignin dynamics in soil. Plant and Soil, 343, 369-378. |
[2] | Akiyama T, Kawamura K (2007). Grassland degradation in China: methods of monitoring, management and restoration. Grassland Science, 53, 1-17. |
[3] | An H, Tang Z, Keesstra S, Shangguan Z (2019). Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Scientific Reports, 9, 9422. DOI: 10.1038/s41598-019-45927-0. |
[4] | Aravind MK, Kappen J, Varalakshmi P, John SA, Ashokkumar B (2020). Bioengineered graphene oxide microcomposites containing metabolically versatile Paracoccus sp. MKU1 for enhanced catechol degradation. ACS Omega, 5, 16752-16761. |
[5] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[6] | Bai YF, Pan QM, Xing Q (2016). Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chinese Science Bulletin, 61, 201-212. |
[白永飞, 潘庆民, 邢旗 (2016). 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 61, 201-212.] | |
[7] | Bell C, Stromberger M, Wallenstein M (2014). New insights into enzymes in the environment. Biogeochemistry, 117, 1-4. |
[8] |
Benton HP, Wong DM, Trauger SA, Siuzdak G (2008). XCMS2: processing tandem mass spectrometry data for metabolite identification and structural characterization. Analytical Chemistry, 80, 6382-6389.
DOI PMID |
[9] | Conti G, Kowaljow E, Baptist F, Rumpel C, Cuchietti A, Pérez Harguindeguy N, Díaz S (2016). Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil, 403, 375-387. |
[10] | de Baets S, van Oost K, Baumann K, Meersmans J, Vanacker V, Rumpel C (2012). Lignin signature as a function of land abandonment and erosion in dry luvisols of SE Spain. Catena, 93, 78-86. |
[11] | Derenne S, Largeau C (2001). A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Science, 166, 833-847. |
[12] | Dong L, Liang C, Li F, Zhao L, Ma W, Wang L, Wen L, Zheng Y, Li Z, Zhao C, Tuvshintogtokh I (2019). Community phylogenetic structure of grasslands and its relationship with environmental factors on the Mongolian Plateau. Journal of Arid Land, 11, 595-607. |
[13] | Du ZY, Cong N (2024). Responses of vegetation and soil characteristics to degraded grassland under different degrees on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 44, 2504-2516. |
[杜志勇, 丛楠 (2024). 植被与土壤特征对青藏高原不同程度退化草地的响应. 生态学报, 44, 2504-2516.] | |
[14] | Feng XJ, Wang YY, Liu T, Jia J, Dai GH, Ma T, Liu ZG (2020). Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 44, 384-394. |
[冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广 (2020). 生物标志物及其在生态系统研究中的应用. 植物生态学报, 44, 384-394.]
DOI |
|
[15] | Han X (2014). Effects of Nitrogen Deposition on the Stoichiometric Characteristics of Dominant Plants in Typical Grassland. PhD dissertation, University of Chinese Academy of Sciences, Beijing. 73-77. |
[韩旭 (2014). 氮沉降对典型草原优势植物化学计量特征的影响. 博士学位论文, 中国科学院大学, 北京. 73-77.] | |
[16] | He W, Wu FZ, Yang WQ, Tan B, Zhao YY, Wu QQ, He M (2016). Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems, 19, 115-128. |
[17] | Hedges JI, Mann DC (1979). The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta, 43, 1803-1807. |
[18] | Jex CN, Pate GH, Blyth AJ, Spencer RGM, Hernes PJ, Khan SJ, Baker A (2014). Lignin biogeochemistry: from modern processes to Quaternary archives. Quaternary Science Reviews, 87, 46-59. |
[19] | Jiang ZY, Hu ZM, Lai DYF, Han DR, Wang M, Liu M, Zhang M, Guo MY (2020). Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: a meta-analysis. Global Change Biology, 26, 7186-7197. |
[20] |
Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S (2019). Advances in microbial lignin degradation and its applications. Current Opinion in Biotechnology, 56, 179-186.
DOI PMID |
[21] |
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai EJ (2017). Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environmental Microbiology Reports, 9, 679-705.
DOI PMID |
[22] |
Keller AA, Goldstein RA (1998). Impact of carbon storage through restoration of drylands on the global carbon cycle. Environmental Management, 22, 757-766.
PMID |
[23] |
Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008). ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics, 24, 2534-2536.
DOI PMID |
[24] | Kiem R, Kögel-Knabner I (2003). Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology & Biochemistry, 35, 101-118. |
[25] |
Kirk TK, Farrell RL (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annual Review of Microbiology, 41, 465-505.
PMID |
[26] | Klotzbücher T, Kalbitz K, Cerli C, Hernes PJ, Kaiser K (2016). Gone or just out of sight? The apparent disappearance of aromatic litter components in soils. Soil, 2, 325-335. |
[27] | Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008). Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61-82. |
[28] | Kong YH, Yao FJ, Peng S, Liu Y, Dong WX, Bai L (2010). Study on the characteristics of soil carbon accumulation and conversion of carbon sink and source of grassland under different land use types. Pratacultural Science, 27(4), 40-45. |
[孔玉华, 姚风军, 鹏爽, 刘艳, 董文轩, 白龙 (2010). 不同利用方式下草地土壤碳积累及汇/源功能转换特征研究. 草业科学, 27(4), 40-45.] | |
[29] | Kumar A, Kumar S, Kumar S (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22, 151-159. |
[30] |
Langmead B, Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357-359.
DOI PMID |
[31] | Larralde M (2022). Pyrodigal: Python bindings and interface to Prodigal, an efficient method for gene prediction in prokaryotes. Journal of Open Source Software, 72, 4296. DOI: 10.21105/joss.04296. |
[32] |
Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31, 1674-1676.
DOI PMID |
[33] | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Tan B, Hu Y (2016a). Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 7, 27. DOI: 10.3390/f7020027. |
[34] | Li MY (2021). Study on Sensitive Indices to Vegetation and Soil and Succession Characteristics in Degradation Grass/White Clover Grasslands. Master degree dissertation, Lanzhou University, Lanzhou. 28-29. |
[李梦瑶 (2021). 退化禾草/白三叶草地敏感草土指标及演变特征研究. 硕士学位论文, 兰州大学, 兰州. 28-29.] | |
[35] |
Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43, 174-184.
DOI |
[李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43, 174-184.]
DOI |
|
[36] | Li YM, Wang SP, Jiang LL, Zhang LR, Cui SJ, Meng FD, Wang Q, Li XE, Zhou Y (2016b). Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213-222. |
[37] | Liu KQ, Zhang YH (2023). Biological degradation and utilization of lignin. Synthetic Biology Journal, 5, 1264-1278. |
[刘宽庆, 张以恒 (2023). 木质素的生物降解和生物利用. 合成生物学, 5, 1264-1278.] | |
[38] | Ma T, Zhu SS, Wang ZH, Chen DM, Dai GH, Feng BW, Su XY, Hu HF, Li KH, Han WX, Liang C, Bai YF, Feng XJ (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. DOI: 10.1038/s41467-018-05891-1. |
[39] | Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366. |
[40] | Murakami A (1997). Quantitative analysis of 77K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries. Photosynthesis Research, 53, 141-148. |
[41] | Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, Wagai R, Bowden RD (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial-and mineral-controlled soil organic matter stabilization. Biogeochemistry, 96, 209-231. |
[42] | Thevenot M, Dignac MF, Rumpel C (2010). Fate of lignins in soils: a review. Soil Biology & Biochemistry, 42, 1200-1211. |
[43] | Wang MM, Liu XP, He YH, Zhang TH, Wei J, Che LMG, Sun SS (2019). How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land. Chinese Journal of Plant Ecology, 43, 672-684. |
[王明明, 刘新平, 何玉惠, 张铜会, 魏静, 车力木格, 孙姗姗 (2019). 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素. 植物生态学报, 43, 672-684.]
DOI |
|
[44] | Wang XX, Dong SK, Yang B, Li YY, Su XK (2014). The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environmental Monitoring and Assessment, 186, 6903-6917. |
[45] | Xu XQ (2023). Evaluation and Influencing Factors of Vegetation Degradation in Typical Steppe of Xilin Gol. Master degree dissertation, Chinese Academy of Forestry, Beijing. 37. |
[徐晓庆 (2023). 锡林郭勒典型草原植被退化状况及影响因素. 硕士学位论文, 中国林业科学研究院, 北京. 37.] | |
[46] | Yang LM, Han M, Li JD (2001). Plant diversity change in grassland communities along a grazing disturbance gradient in the Northeast China transect. Acta Phytoecologica Sinica, 25, 110-114. |
[杨利民, 韩梅, 李建东 (2001). 中国东北样带草地群落放牧干扰植物多样性的变化. 植物生态学报, 25, 110-114.] | |
[47] | Zeng XH, Du H, Zhao HM, Xiang L, Feng NX, Li H, Li YW, Cai QY, Mo CH, Wong MH, He ZL (2020). Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view. Journal of Hazardous Materials, 391, 122211. DOI: 10.1016/j.jhazmat.2020.122211. |
[48] | Zhang G, Kang Y, Han G, Mei H, Sakurai K (2011). Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 61, 356-364. |
[49] | Zhang JH (2023). Microbial Regulation Mechanism of Soil Organic Carbon in Grassland of Different Restoration Years on the Loess Plateau. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. 5-6. |
[张君红 (2023). 黄土高原不同退耕恢复年限草地土壤有机碳的微生物调控机制. 硕士学位论文, 西北农林科技大学, 陕西杨凌. 5-6.] | |
[50] | Zhang Q, Xu X, Duan J, Koide RT, Xu L, Chu J (2023). Variation in microbial CAZyme families across degradation severity in a steppe grassland in northern China. Frontiers in Environmental Science, 11, 1080505. DOI: 10.3389/fenvs.2023.1080505. |
[51] | Zhang YJ, Zhu JT, Shen RN, Wang L (2020). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 44, 553-564. |
[张扬建, 朱军涛, 沈若楠, 王荔 (2020). 放牧对草地生态系统影响的研究进展. 植物生态学报, 44, 553-564.]
DOI |
|
[52] | Zhang YL (2022). Effects of Different Mowing Intensities on Soil Srganic Carbon Dynamics of Stipa grandis Steppe. Master degree dissertation, Inner Mongolia University, Hohhot. 35-38. |
[张艳丽 (2022). 不同刈割强度对大针茅草原土壤有机碳动态的影响. 硕士学位论文, 内蒙古大学, 呼和浩特. 35-38.] | |
[53] | Zheng DF, Qiu XQ, Lou HM (2005). The structure of lignin and its chemical modification. Fine Chemicals, 22, 249-252. |
[郑大锋, 邱学青, 楼宏铭 (2005). 木质素的结构及其化学改性进展. 精细化工, 22, 249-252.] | |
[54] | Zhou XH (2023). Characteristics and Influencing Factors of Soil Organic Carbon Turnover and Molecular Composition in Alpine Grassland of Southwest Tibetan Plateau. Master degree dissertation, Lanzhou University, Lanzhou. 11-13. |
[周晓荷 (2023). 藏西南高寒草地土壤有机碳周转和分子组成特征及其影响因素. 硕士学位论文, 兰州大学, 兰州. 11-13.] | |
[55] | Zou LG, Yao YT, Wen FF, Zhang X, Liu BT, Li DW, Yang YF, Yang WD, Balamurugan S, Li HY (2023). Bioremediation of catechol and concurrent accumulation of biocompounds by the microalga Crypthecodinium cohnii. Journal of Agricultural and Food Chemistry, 71, 10065-10074. |
[1] | XIA Min-Chang, LI Qian-Qian, QIAN Qing-Qing, REN Shu-Jun, LIANG Ying-Chong, CHEN Ting-Ying, LI Ying-Jia, MOU Zong-Min, CHEN Sui-Yun. Effect of dry mycelium of Penicillium chrysogenum on the growth and physiological performance of Trifolium repens and Lolium perenne [J]. Chin J Plant Ecol, 2025, 49(1): 189-198. |
[2] | HAO Yi-Qing, LIU Wei, YANG Yang, AN Bing-Er, FAN Bing, LI Chao, CUI Jiu-Hui, CHENG Yan-Bin, SUN Jia-Mei, PAN Qing-Min. Effects of organic and inorganic fertilizers on density and individual biomass of Leymus chinensis in degraded grasslands [J]. Chin J Plant Ecol, 2025, 49(1): 148-158. |
[3] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[4] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[5] | ZHANG Yu, DU Ting, CHEN Yu-Lian, ZHU He-Meng, TAN Bo, YOU Cheng-Ming, ZHANG Li, XU Zhen-Feng, LI Han. Contribution of litter-derived carbon to soil organic carbon fractions and its response to freezing-thaw cycling in a subalpine forest [J]. Chin J Plant Ecol, 2024, 48(11): 1422-1433. |
[6] | WANG Liang, ZHAO Xue-Chao, YANG Shao-Bo, WANG Qing-Kui. Priming effect of soil organic carbon decomposition induced by Cunninghamia lanceolate leaf litter and fine root and its response to nitrogen addition in subtropical forests [J]. Chin J Plant Ecol, 2024, 48(11): 1434-1444. |
[7] | ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping, LI Long. Advances in the role of plant diversity in soil organic carbon content and stability [J]. Chin J Plant Ecol, 2024, 48(11): 1393-1405. |
[8] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[9] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[10] | WANG De-Li, LIANG Cun-Zhu. Restoration state of degraded grasslands: climate climax or disturbance climax? [J]. Chin J Plant Ecol, 2023, 47(10): 1464-1470. |
[11] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[12] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[13] | SUN Jian, WANG Yi, LIU Guo-Hua. Linkages of aboveground plant carbon accumulation rate with ecosystem multifunctionality in alpine grassland, Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 496-506. |
[14] | DONG Li-Jun, LI Jin-Hua, CHEN Shan, ZHANG Rui, SUN Jian, MA Miao-Jun. Changes in soil organic carbon content and their causes during the degradation of alpine meadows in Zoigê Wetland [J]. Chin J Plant Ecol, 2021, 45(5): 507-515. |
[15] | WANG Yi-Dan, LI Liang, LIU Qi-Jing, MA Ze-Qing. Lifespan and morphological traits of absorptive fine roots across six typical tree species in subtropical China [J]. Chin J Plant Ecol, 2021, 45(4): 383-393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn