Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (11): 1422-1433.DOI: 10.17521/cjpe.2023.0278 cstr: 32100.14.cjpe.2023.0278
• Research Articles • Previous Articles Next Articles
ZHANG Yu, DU Ting, CHEN Yu-Lian, ZHU He-Meng, TAN Bo, YOU Cheng-Ming, ZHANG Li, XU Zhen-Feng, LI Han*()
Received:
2023-09-27
Accepted:
2024-04-08
Online:
2024-11-20
Published:
2024-04-09
Contact:
*LI Han (hannahlisc@163.com)
Supported by:
ZHANG Yu, DU Ting, CHEN Yu-Lian, ZHU He-Meng, TAN Bo, YOU Cheng-Ming, ZHANG Li, XU Zhen-Feng, LI Han. Contribution of litter-derived carbon to soil organic carbon fractions and its response to freezing-thaw cycling in a subalpine forest[J]. Chin J Plant Ecol, 2024, 48(11): 1422-1433.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0278
分类 Classification | 胞外酶 Extracellular enzyme | 酶底物浓度 Enzyme substrate concentration |
---|---|---|
水解酶 Hydrolase | 酸性磷酸酶 Acid phosphatase | 5 mmol·L-1 pNP-phosphate |
β-葡萄糖苷酶 β-glucosidase | 5 mmol·L-1 pNP-β-glucopyranoside | |
纤维二糖水解酶 Cellobiohydrolase | 5 mmol·L-1 pNP-cellobioside | |
β-N-乙酰氨基葡萄糖苷酶 β-N-acetylglucosaminidase | 5 mmol·L-1 pNP-β-N-acetylglucosaminide | |
亮氨酸氨基肽酶 Leucine aminopeptidase | 5 mmol·L-1 Leucine p-nitroanilide | |
氧化酶 Oxidase | 多酚氧化酶 Polyphenol oxidase | 5 mmol·L-1 Dihydroxy-phenylalanine |
过氧化物酶 Peroxidase | 5 mmol·L-1 Dihydroxy-phenylalanine + 0.3% H2O2 |
Table 1 Substrate concentration of soil extracellular enzymes
分类 Classification | 胞外酶 Extracellular enzyme | 酶底物浓度 Enzyme substrate concentration |
---|---|---|
水解酶 Hydrolase | 酸性磷酸酶 Acid phosphatase | 5 mmol·L-1 pNP-phosphate |
β-葡萄糖苷酶 β-glucosidase | 5 mmol·L-1 pNP-β-glucopyranoside | |
纤维二糖水解酶 Cellobiohydrolase | 5 mmol·L-1 pNP-cellobioside | |
β-N-乙酰氨基葡萄糖苷酶 β-N-acetylglucosaminidase | 5 mmol·L-1 pNP-β-N-acetylglucosaminide | |
亮氨酸氨基肽酶 Leucine aminopeptidase | 5 mmol·L-1 Leucine p-nitroanilide | |
氧化酶 Oxidase | 多酚氧化酶 Polyphenol oxidase | 5 mmol·L-1 Dihydroxy-phenylalanine |
过氧化物酶 Peroxidase | 5 mmol·L-1 Dihydroxy-phenylalanine + 0.3% H2O2 |
变异来源 Source of variance | δ13C-DOC (‰) | δ13C-MBC (‰) | δ13C-POC (‰) | δ13C-MAOC (‰) | δ13C-HC (‰) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
冻融 Freeze-thaw | 2 076.98 | 0.000 | 79.32 | 0.000 | 4.97 | 0.035 | 6.82 | 0.015 | 16.67 | 0.000 |
器官 Organ | 1 156.73 | 0.000 | 286.93 | 0.000 | 1.39 | 0.267 | 0.32 | 0.728 | 1.58 | 0.226 |
培养时间 Period | 0.38 | 0.542 | 1.24 | 0.277 | 27.79 | 0.000 | 3.83 | 0.062 | 59.67 | 0.000 |
冻融×器官 Freeze-thaw × organ | 674.11 | 0.000 | 10.36 | 0.001 | 4.10 | 0.029 | 14.55 | 0.000 | 12.85 | 0.000 |
冻融×培养时间 Freeze-thaw × period | 1 460.01 | 0.000 | 85.15 | 0.000 | 1.26 | 0.273 | 95.91 | 0.000 | 2.62 | 0.119 |
器官×培养时间 Organ × period | 636.85 | 0.000 | 22.63 | 0.000 | 1.24 | 0.306 | 21.60 | 0.000 | 2.78 | 0.082 |
冻融×器官×培养时间 Freeze-thaw × organ × period | 353.77 | 0.000 | 14.85 | 0.000 | 1.76 | 0.194 | 2.61 | 0.094 | 0.34 | 0.716 |
Table 2 Effects of freeze-thaw cycle, litter organ and decomposition period on δ13C of various soil organic carbon fractions in a subalpine forest
变异来源 Source of variance | δ13C-DOC (‰) | δ13C-MBC (‰) | δ13C-POC (‰) | δ13C-MAOC (‰) | δ13C-HC (‰) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
冻融 Freeze-thaw | 2 076.98 | 0.000 | 79.32 | 0.000 | 4.97 | 0.035 | 6.82 | 0.015 | 16.67 | 0.000 |
器官 Organ | 1 156.73 | 0.000 | 286.93 | 0.000 | 1.39 | 0.267 | 0.32 | 0.728 | 1.58 | 0.226 |
培养时间 Period | 0.38 | 0.542 | 1.24 | 0.277 | 27.79 | 0.000 | 3.83 | 0.062 | 59.67 | 0.000 |
冻融×器官 Freeze-thaw × organ | 674.11 | 0.000 | 10.36 | 0.001 | 4.10 | 0.029 | 14.55 | 0.000 | 12.85 | 0.000 |
冻融×培养时间 Freeze-thaw × period | 1 460.01 | 0.000 | 85.15 | 0.000 | 1.26 | 0.273 | 95.91 | 0.000 | 2.62 | 0.119 |
器官×培养时间 Organ × period | 636.85 | 0.000 | 22.63 | 0.000 | 1.24 | 0.306 | 21.60 | 0.000 | 2.78 | 0.082 |
冻融×器官×培养时间 Freeze-thaw × organ × period | 353.77 | 0.000 | 14.85 | 0.000 | 1.76 | 0.194 | 2.61 | 0.094 | 0.34 | 0.716 |
Fig. 1 Carbon isotopic ratio (δ13C) of various soil organic carbon fractions in a subalpine forest (mean ± SE). DOC, dissolved organic carbon; HC, humus carbon; MAOC, mineral associated organic carbon; MBC, microbial biomass carbon; POC, particulate organic carbon. * indicates significant differences between freeze-thaw cycle and control (p < 0.05).
Fig. 2 Contribution of litter-derived carbon to various soil organic carbon fractions in a subalpine forest (mean ± SE). DOC, dissolved organic carbon; HC, humus carbon; MAOC, mineral associated organic carbon; MBC, microbial biomass carbon; POC, particulate organic carbon. * indicates significant differences between freeze-thaw cycle and control; different uppercase letters indicates significant differences among different litter organs in the same incubation day (p < 0.05).
Fig. 3 Average contribution of litter-derived carbon in a subalpine forest (mean ± SE). A, Average contribution of various soil organic carbon fractions. B, Various litter organs average contribution. DOC, dissolved organic carbon; HC, humus carbon; MAOC, mineral associated organic carbon; MBC, microbial biomass carbon; POC, particulate organic carbon. * indicates significant difference between freeze-thaw cycle and control; different uppercase letters indicated significant differences among different litter organs and different soil organic carbon in the same incubation day (p < 0.05).
变异来源 Source of variance | DOC贡献率 Contribution to DOC (%) | MBC贡献率 Contribution to MBC (%) | POC贡献率 Contribution to POC (%) | MAOC贡献率 Contribution to MAOC (%) | HC贡献率 Contribution to HC (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
冻融 Freeze-thaw | 5 119.84 | 0.000 | 931.05 | 0.000 | 120.60 | 0.000 | 3.76 | 0.132 | 96.44 | 0.000 |
器官 Organ | 229.66 | 0.000 | 848.32 | 0.000 | 110.39 | 0.000 | 190.35 | 0.000 | 87.50 | 0.000 |
培养时间 Period | 462.55 | 0.000 | 4.11 | 0.054 | 5.75 | 0.025 | 42.83 | 0.000 | 8.03 | 0.011 |
冻融×器官 Freeze-thaw × organ | 940.69 | 0.000 | 77.77 | 0.000 | 23.01 | 0.000 | 44.47 | 0.000 | 56.92 | 0.000 |
冻融×培养时间 Freeze-thaw × period | 7 860.27 | 0.000 | 127.08 | 0.000 | 75.22 | 0.000 | 165.64 | 0.000 | 6.56 | 0.006 |
器官×培养时间 Organ × period | 1 601.80 | 0.000 | 677.13 | 0.000 | 5.60 | 0.010 | 58.45 | 0.000 | 7.67 | 0.003 |
冻融×器官×培养时间 Freeze-thaw × organ × period | 57.48 | 0.000 | 133.02 | 0.000 | 24.35 | 0.000 | 26.40 | 0.000 | 2.80 | 0.074 |
Table 3 Effects of freeze-thaw cycle, litter organ and decomposition period on contribution of litter-derived carbon to different soil organic carbon fractions in a subalpine forest
变异来源 Source of variance | DOC贡献率 Contribution to DOC (%) | MBC贡献率 Contribution to MBC (%) | POC贡献率 Contribution to POC (%) | MAOC贡献率 Contribution to MAOC (%) | HC贡献率 Contribution to HC (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
冻融 Freeze-thaw | 5 119.84 | 0.000 | 931.05 | 0.000 | 120.60 | 0.000 | 3.76 | 0.132 | 96.44 | 0.000 |
器官 Organ | 229.66 | 0.000 | 848.32 | 0.000 | 110.39 | 0.000 | 190.35 | 0.000 | 87.50 | 0.000 |
培养时间 Period | 462.55 | 0.000 | 4.11 | 0.054 | 5.75 | 0.025 | 42.83 | 0.000 | 8.03 | 0.011 |
冻融×器官 Freeze-thaw × organ | 940.69 | 0.000 | 77.77 | 0.000 | 23.01 | 0.000 | 44.47 | 0.000 | 56.92 | 0.000 |
冻融×培养时间 Freeze-thaw × period | 7 860.27 | 0.000 | 127.08 | 0.000 | 75.22 | 0.000 | 165.64 | 0.000 | 6.56 | 0.006 |
器官×培养时间 Organ × period | 1 601.80 | 0.000 | 677.13 | 0.000 | 5.60 | 0.010 | 58.45 | 0.000 | 7.67 | 0.003 |
冻融×器官×培养时间 Freeze-thaw × organ × period | 57.48 | 0.000 | 133.02 | 0.000 | 24.35 | 0.000 | 26.40 | 0.000 | 2.80 | 0.074 |
Fig. 4 Correlation analysis of contribution of litter-derived carbon to various soil organic carbon fractions with soil extracellular enzymes activity and microbial biomass in a subalpine forest. AP, acid phosphatase; BG, β-Glucosidase; CBH, cellulose hydrolase; LAP, leucine aminopeptidase; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; NAG, β-N-Acetylglucosaminidase; POD, peroxidase; PPO, polyphenol oxidase. *, p < 0.05; **, p < 0.01.
[1] | Abiven S, Recous S, Reyes V, Oliver R (2005). Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality. Biology and Fertility of Soils, 42, 119-128. |
[2] | Ahrens B, Braakhekke MC, Guggenberger G, Schrumpf M, Reichstein M (2015). Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model. Soil Biology & Biochemistry, 88, 390-402. |
[3] | Allison SD, Vitousek PM (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944. |
[4] | Atere CT, Gunina A, Zhu Z, Xiao M, Liu S, Kuzyakov Y, Chen L, Deng Y, Wu J, Ge T (2020). Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: tracing of pathways by 13C natural abundance. Soil Biology & Biochemistry, 149, 107931. DOI: 10.1016/j.soilbio.2020.107931. |
[5] | Bird JA, Torn MS (2006). Fine roots vs. needles: a comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry, 79, 361-382. |
[6] | Chen XY, Zhang HJ, Yao XD, Zeng WJ, Wang W (2021). Latitudinal and depth patterns of soil microbial biomass carbon, nitrogen, and phosphorus in grasslands of an agro-pastoral ecotone. Land Degradation and Development, 32, 3833-3846. |
[7] | Chivenge P, Vanlauwe B, Gentile R, Six J (2011). Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology & Biochemistry, 43, 657-666. |
[8] | Clemente JS, Simpson MJ, Simpson AJ, Yanni SF, Whalen JK (2013). Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems. Geoderma, 192, 86-96. |
[9] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
[10] | Dang N, Ma W, Dai ZC, Hu YX, Wang ZR, Wang ZW, Jiang Y, Li H (2024). Impact of changes in snow cover characteristics on plant community and soil carbon and nitrogen processes. Acta Ecologica Sinica, 44, 18-35. |
[党宁, 马望, 代泽成, 胡玉香, 王志瑞, 王正文, 姜勇, 李慧 (2024). 积雪变化对陆地生态系统植被特征和土壤碳氮过程的影响. 生态学报, 44, 18-35.] | |
[11] | Diao HY, Wang AZ, Yuan FH, Guan DX, Yin H, Wu JB (2019). Stable carbon isotopic characteristics of plant- litter-soil continuum along a successional gradient of broadleaved Korean pine forests in Changbai Mountain, China. Chinese Journal of Applied Ecology, 30, 1435-1444. |
[刁浩宇, 王安志, 袁凤辉, 关德新, 尹航, 吴家兵 (2019). 长白山阔叶红松林演替序列植物-凋落物-土壤碳同位素特征. 应用生态学报, 30, 1435-1444.]
DOI |
|
[12] |
Du T, Chen YL, Bi JH, Yang YT, Zhang L, You CM, Tan B, Xu ZF, Wang LX, Liu SN, Li H (2023). Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China. Chinese Journal of Plant Ecology, 47, 660-671.
DOI |
[杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗 (2023). 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响. 植物生态学报, 47, 660-671.]
DOI |
|
[13] | Du T, Liu YL, Yang YT, Zhang Y, You CM, Zhang L, Tan B, Xu ZF, Li H (2021). Effects of forest gaps on cellulose degradation during foliar litter decomposition in a subalpine forest of western Sichuan. Chinese Journal of Applied and Environmental Biology, 27, 617-624. |
[杜婷, 刘一霖, 杨玉婷, 张玉, 游成铭, 张丽, 谭波, 徐振锋, 李晗 (2021). 林窗对川西亚高山6种植物凋落叶纤维素降解的影响. 应用与环境生物学报, 27, 617-624.] | |
[14] | Gan ZY, Wang H, Ding C, Lei M, Yang XG, Cai JY, Qiu QY, Hu YL (2022). Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms. Chinese Journal of Plant Ecology, 46, 797-810. |
[甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林 (2022). 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理. 植物生态学报, 46, 797-810.]
DOI |
|
[15] | Hansson K, Kleja DB, Kalbitz K, Larsson H (2010). Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots. Soil Biology & Biochemistry, 42, 178-185. |
[16] | Huang WZ, Schoenau JJ (1996). Distribution of water-soluble organic carbon in an aspen forest soil. Canadian Journal of Forest Research, 26, 1266-1272. |
[17] | IPCC The Intergovernmental Panel on Climate Change (2022). Climate change 2022:impacts, adaptation and vulnerability// The Working Group II Contribution to the IPCC Sixth Assessment Report. Cambridge University Press, Cambridge. |
[18] | Jia BR (2019). Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 43, 648-657. |
[贾丙瑞 (2019). 凋落物分解及其影响机制. 植物生态学报, 43, 648-657.]
DOI |
|
[19] | Kammer A, Hagedorn F (2011). Mineralisation, leaching and stabilisation of 13C-labelled leaf and twig litter in a beech forest soil. Biogeosciences, 8, 2195-2208. |
[20] | Lei LG, Jiang CS, Hao QJ (2015). Impacts of land use changes on soil light fraction and particulate organic carbon and nitrogen in Jinyun Mountain. Environmental Science, 36, 2669-2677. |
[雷利国, 江长胜, 郝庆菊 (2015). 缙云山土地利用方式对土壤轻组及颗粒态有机碳氮的影响. 环境科学, 36, 2669-2677.] | |
[21] | Li F, Zang SY, Liu YN, Wu XW, Ni HW (2019). Effects of freezing and thawing on soil active organic carbon and enzyme activity in the Sanjiang Plain wetlands. Acta Ecologica Sinica, 39, 7938-7949. |
[李富, 臧淑英, 刘赢男, 吴祥文, 倪红伟 (2019). 冻融作用对三江平原湿地土壤活性有机碳及酶活性的影响. 生态学报, 39, 7938-7949.] | |
[22] | Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105. |
[23] | Liu B, Yang WQ, Wu FZ (2010). Advances in the subalpine forest ecosystem processes. Acta Ecologica Sinica, 30, 4476-4483. |
[刘彬, 杨万勤, 吴福忠 (2010). 亚高山森林生态系统过程研究进展. 生态学报, 30, 4476-4483.] | |
[24] |
Liu Q, Zhuang LY, Yang WQ, Ni XY, Li TT, Xu ZF (2017). Accumulation of humic acid and fulvic acid during root humification of three diameters of two dominant subalpine trees in western Sichuan, China. Chinese Journal of Plant Ecology, 41, 1251-1261.
DOI |
[刘群, 庄丽燕, 杨万勤, 倪祥银, 李婷婷, 徐振锋 (2017). 川西亚高山两种树木不同径级根系腐殖化过程中胡敏酸和富里酸的累积特征. 植物生态学报, 41, 1251-1261.]
DOI |
|
[25] |
Liu Y, Jiao ZB, Tan B, Li H, Wang LX, Liu SN, You CM, Xu ZF, Zhang L (2022). Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan, China. Chinese Journal of Plant Ecology, 46, 330-339.
DOI |
[刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽 (2022). 川西亚高山森林凋落物去除对土壤腐殖质动态的影响. 植物生态学报, 46, 330-339.]
DOI |
|
[26] | Luo XZ, Hou EQ, Zhang LL, Zang XW, Yi YF, Zhang GH, Wen DZ (2019). Effects of forest conversion on carbon-degrading enzyme activities in subtropical China. Science of the Total Environment, 696, 133968. DOI: 10.1016/j.scitotenv.2019.133968. |
[27] | Park HJ, Baek N, Lim SS, Jeong YJ, Seo BS, Kwak JH, Lee SM, Yun SI, Kim HY, Arshad MA, Choi WJ (2023). Coupling of δ13C and δ15N to understand soil organic matter sources and C and N cycling under different land-uses and management: a review and data analysis. Biology and Fertility of Soils, 59, 487-499. |
[28] | Parton WJ, Schimel DS, Cole CV, Ojima DS (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173-1179. |
[29] | Paul EA (2016). The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biology & Biochemistry, 98, 109-126. |
[30] | Sang CP, Xia ZW, Sun LF, Sun H, Jiang P, Wang C, Bai E (2021). Responses of soil microbial communities to freeze-thaw cycles in a Chinese temperate forest. Ecological Processes, 10, 66. DOI: 10.1186/s13717-021-00337-x. |
[31] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al.(2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[32] |
Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 221, 233-246.
DOI PMID |
[33] | Steffens C, Helfrich M, Joergensen RG, Eissfeller V, Flessa H (2015). Translocation of 13C-labeled leaf or root litter carbon of beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) during decomposition—A laboratory incubation experiment. Soil Biology & Biochemistry, 83, 125-137. |
[34] | Strosser E (2010). Methods for determination of labile soil organic matter: an overview. Journal of Agrobiology, 27, 49-60. |
[35] | Su ZX, Su BQ, Shangguan ZP (2022). Advances in effects of plant litter decomposition on the stability of soil organic carbon. Research of Soil and Water Conservation, 29, 406-413. |
[苏卓侠, 苏冰倩, 上官周平 (2022). 植物凋落物分解对土壤有机碳稳定性影响的研究进展. 水土保持研究, 29, 406-413.] | |
[36] |
Wang HY, Wu JQ, Li G, Yan LJ (2020). Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecology and Evolution, 10, 12211-12223.
DOI PMID |
[37] | Wang JY, Song CC, Hou AX, Miao YQ, Yang GS, Zhang J (2014). Effects of freezing-thawing cycle on peatland active organic carbon fractions and enzyme activities in the Da Xingʼanling Mountains, Northeast China. Environmental Earth Sciences, 72, 1853-1860. |
[38] | Wang LX, Deng DZ, Feng QH, Xu ZJR, Pan HL, Li HC (2022). Changes in litter input exert divergent effects on the soil microbial community and function in stands of different densities. Science of the Total Environment, 845, 157297. DOI: 10.1016/j.scitotenv.2022.157297. |
[39] | Wang SJ, Guo YF, Cui XY (2021). Changes of active organic carbon in frozen thawed soil under different forest types in cold temperate forest region. Journal of Beijing Forestry University, 43(12), 65-72. |
[王世佳, 郭亚芬, 崔晓阳 (2021). 寒温带林区不同林型下冻融土壤活性有机碳的变化. 北京林业大学学报, 43(12), 65-72.] | |
[40] | Wei XY, Ni XY, Shen Y, Chen ZH, Yang YL, Wu FZ (2021). Effects of litterfall on soil humification in three subalpine forests. Acta Ecologica Sinica, 41, 8266-8275. |
[卫芯宇, 倪祥银, 谌亚, 陈子豪, 杨玉莲, 吴福忠 (2021). 三种不同类型亚高山森林凋落物输入对土壤腐殖化的影响. 生态学报, 41, 8266-8275.] | |
[41] | Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA, Buegger F, Pouteau V, Chenu C, Mueller CW (2021). Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12, 4115. DOI: 10.1038/s41467-021-24192-8. |
[42] | Wu GH, Chen ZH, Jiang DQ, Jiang N, Jiang H, Chen LJ (2021). Oxidases and hydrolases mediate soil organic matter accumulation in chernozem of northeastern China. Geoderma, 403, 115206. DOI: 10.1016/j.geoderma.2021.115206. |
[43] | Wu QQ, Wu FZ, Yang WQ, Zhao YY, He W, He M, Zhu JX (2015). Effect of snow cover on phosphorus release from leaf litter in the alpine forest in eastern Qinghai-Tibet Plateau. Acta Ecologica Sinica, 35, 4115-4127. |
[武启骞, 吴福忠, 杨万勤, 赵野逸, 何伟, 何敏, 朱剑霄 (2015). 冬季雪被对青藏高原东缘高海拔森林凋落叶P元素释放的影响. 生态学报, 35, 4115-4127.] | |
[44] | Xiong J, Wang GX, Sun SQ (2023). Roots exert greater influence on soil respiration than aboveground litter in a subalpine Cambisol. Geoderma Regional, 34, e00705. DOI: 10.1016/j.geodrs.2023.e00705. |
[45] | Xu CY, Du C, Jian JS, Hou L, Wang ZK, Wang Q, Geng ZC (2021). The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons. Scientific Reports, 11, 5002. DOI: 10.1038/s41598-021-84217-6. |
[46] | Xu MP, Zhi RC, Jian JN, Feng YZ, Han XH, Zhang W (2023). Changes in soil organic C fractions and C pool stability are mediated by C-degrading enzymes in litter decomposition of Robinia pseudoacacia plantations. Microbial Ecology, 86, 1189-1199. |
[47] | Xu YD, Sun LJ, Wang Y, Gao XD, Li SY, Wang JK (2020). Characteristics of microbial utilization of maize root and straw derived carbon. China Environmental Science, 40, 4504-4513. |
[徐英德, 孙良杰, 王阳, 高晓丹, 李双异, 汪景宽 (2020). 土壤微生物群落对玉米根茬和茎叶残体碳的利用特征. 中国环境科学, 40, 4504-4513.] | |
[48] | Yang WQ, Wang KY, Seppo KK (2003). Relationships between biodiversity and processes of coniferous1 forest ecosystem. World Sciences-Technology Research & Development, 25(5), 47-55. |
[杨万勤, 王开运, Seppo KK (2003). 生物多样性与针叶林生态系统过程的关系. 世界科技研究与发展, 25(5), 47-55.] | |
[49] | Yang YT, Yang HY, Liu JC, Qu WC, Du T, Zhang Y, Zhang L, You CM, Tan B, Xu ZF, Li H (2023). A study on 13C distribution characteristics of Picea asperata and Larix masteriana seedlings using pulse labeling. Journal of Sichuan Agricultural University, 41, 225-229. |
[杨玉婷, 杨红艳, 刘金超, 曲炜辰, 杜婷, 张玉, 张丽, 游成铭, 谭波, 徐振锋, 李晗 (2023). 应用脉冲标记粗枝云杉和四川红杉幼苗的13C分配特征研究. 四川农业大学学报, 41, 225-229.] | |
[50] | Yao YF, Shao MA, Fu XL, Wang X, Wei XR (2019). Effect of grassland afforestation on soil N mineralization and its response to soil texture and slope position. Agriculture, Ecosystems & Environment, 276, 64-72. |
[51] | Yao Z, Jiao PY, Wu XS, Yan Q, Liu X, Hu YL, Wang YZ (2023). Effect of fire-deposited charcoal on soil organic carbon pools and associated enzyme activities in a recently harvested Pinus massoniana plantation subjected to broadcast burning. Environmental Science, 44, 4201-4210. |
[姚智, 焦鹏宇, 吴晓生, 严强, 刘先, 胡亚林, 王玉哲 (2023). 马尾松采伐迹地火烧黑炭对土壤有机碳组分和碳转化酶活性的影响. 环境科学, 44, 4201-4210.] | |
[52] |
Yu H, Xu C, Zhang WQ, Zhou JC, Chen SD, Xiong DC, Liu XF, Yang ZJ (2022). Effects of management on the content and spectral characteristics of soil dissolved organic carbon in a subtropical forest. Chinese Journal of Applied Ecology, 33, 2146-2152.
DOI |
[余恒, 胥超, 张文强, 周嘉聪, 陈仕东, 熊德成, 刘小飞, 杨智杰 (2022). 经营方式对亚热带森林土壤可溶性有机碳含量和光谱学特征的影响. 应用生态学报, 33, 2146-2152.]
DOI |
|
[53] | Zhang BG, Cai YJ, Hu SJ, Chang SX (2021). Plant mixture effects on carbon-degrading enzymes promote soil organic carbon accumulation. Soil Biology & Biochemistry, 163, 108478. DOI: 10.1016/j.soilbio.2021.108457. |
[54] | Zhang CF, Cai YM, Zhang T, He TB, Li J, Li XY, Zhao QX (2022). Litter removal increases the plant carbon input to soil in a Pinus massoniana plantation. European Journal of Forest Research, 141, 833-843. |
[55] | Zhang TL, Cai ZL, Zhao HB, Wu ZM, Zhou GY, Qiu ZJ (2021). Priming effect on soil organic carbon by abnormal litter following 13C pulse-labeling. Ecology and Environmental Sciences, 30, 1797-1804. |
[张天霖, 蔡章林, 赵厚本, 吴仲民, 周光益, 邱治军 (2021). 13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应. 生态环境学报, 30, 1797-1804.]
DOI |
[1] | shuhui du Jian MinCHU junguang duan 薛 建国 lei xu XU XIAOQING Jian-Hui HUANG Qian Zhang. The impact of soil lignin phenols content on organic carbon in typical grassland with different degrees of degradation [J]. Chin J Plant Ecol, 2025, 49(1): 1-0. |
[2] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[3] | WANG Xiao-Ying, SUN Zhi-Gao, CHEN Bing-Bing, WU Hui-Hui, ZHANG Dang-Yu. Ex situ decomposition and phosphorus release characteristics of Spartina alterniflora litter in Minjiang estuary [J]. Chin J Plant Ecol, 2024, 48(7): 844-857. |
[4] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[5] | WANG Liang, ZHAO Xue-Chao, YANG Shao-Bo, WANG Qing-Kui. Priming effect of soil organic carbon decomposition induced by Cunninghamia lanceolate leaf litter and fine root and its response to nitrogen addition in subtropical forests [J]. Chin J Plant Ecol, 2024, 48(11): 1434-1444. |
[6] | ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping, LI Long. Advances in the role of plant diversity in soil organic carbon content and stability [J]. Chin J Plant Ecol, 2024, 48(11): 1393-1405. |
[7] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[8] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[9] | GUO Min, LUO Lin, LIANG Jin, WANG Yan-Jie, ZHAO Chun-Zhang. Effects of freeze-thaw changes on soil physicochemical properties and enzyme activities in root zone of Picea asperata and Fargesia nitida under subalpine forests of southwest China [J]. Chin J Plant Ecol, 2023, 47(6): 882-894. |
[10] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[11] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[12] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[13] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[14] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[15] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn