Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (5): 788-800.DOI: 10.17521/cjpe.2024.0089 cstr: 32100.14.cjpe.2024.0089
• Research Articles • Previous Articles Next Articles
SHANGGUAN Yao-Yao1, SU Shi-Ping1, GU Xue-Dan1, ZHANG Zheng-Zhong1,*(), ZHAO Hu2, LI Yi1, WEI Xing-Yu1
Received:
2024-04-01
Accepted:
2024-09-28
Online:
2025-05-20
Published:
2024-10-11
Contact:
ZHANG Zheng-Zhong
Supported by:
SHANGGUAN Yao-Yao, SU Shi-Ping, GU Xue-Dan, ZHANG Zheng-Zhong, ZHAO Hu, LI Yi, WEI Xing-Yu. Response of Reaumuria songorica seedlings to photoperiod and light quality ratio[J]. Chin J Plant Ecol, 2025, 49(5): 788-800.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0089
Fig. 2 Effect of different photoperiod and light quality ratio on high growth rate of Reaumuria songorica seedlings (mean ± SE, n = 3). L is the light processing time and D is the dark processing time (h·d-1). W represents white light, R represents red light, B represents blue light. Different uppercase letters indicate significant difference between different light qualities under the same photoperiods treatment, and different lowercase letters indicate significant difference between different photoperiods under the same light quality treatment (p < 0.05).
Fig. 3 Effect of different photoperiod and light quality ratio on the number of primary branch (A) and secondary branch (B) of Reaumuria songorica seedlings (mean ± SE, n = 3). L is the light processing time and D is the dark processing time (h·d-1). B represents blue light, R represents red light, W represents white light. Different uppercase letters indicate significant difference between different light qualities under the same photoperiod treatment, and different lowercase letters indicate significant difference between different photoperiods under the same light quality treatment (p < 0.05).
Fig. 4 Effect of different photoperiod and light quality ratio on biomass distribution of Reaumuria songorica seedlings (mean ± SE, n = 3). L is the light processing time and D is the dark processing time (h·d-1). B represents blue light, R represents red light, W represents white light. Different uppercase letters indicate significant difference between different light qualities under the same photoperiod treatment, and different lowercase letters indicate significant difference between different photoperiods under the same light quality treatment (p < 0.05).
处理 Treatment | 光周期 Photoperiod (h·d-1) | 光质配比 Light quality ratio | 叶绿素a含量 Chlorophyll a content (mg·g-1) | 叶绿素b含量 Chlorophyll b content (mg·g-1) | 类胡萝卜素含量 Carotenoid content (mg·g-1) | 叶绿素a+b含量 Chlorophyll a+b content (mg·g-1) | 叶绿素a/b Chlorophyll a/b |
---|---|---|---|---|---|---|---|
T1 | 12 h (L)/12 h (D) | W | 1.325 ± 0.036Bb | 0.364 ± 0.012Aa | 0.316 ± 0.007Cb | 1.690 ± 0.048ABab | 3.644 ± 0.031Ca |
T2 | 12 h (L)/12 h (D) | R:B = 4:1 | 1.425 ± 0.019Bb | 0.592 ± 0.052ABb | 0.285 ± 0.030BCa | 2.017 ± 0.033Bb | 2.453 ± 0.263ABa |
T3 | 12 h (L)/12 h (D) | R:B = 3:1 | 0.997 ± 0.023Aa | 0.381 ± 0.009Aa | 0.218 ± 0.005Aa | 1.378 ± 0.032Aa | 2.618 ± 0.003ABab |
T4 | 12 h (L)/12 h (D) | R:B = 1:3 | 1.309 ± 0.027Bb | 0.453 ± 0.011Aa | 0.282 ± 0.006ABa | 1.762 ± 0.039ABb | 2.896 ± 0.015B |
T5 | 12 h (L)/12 h (D) | R:B = 1:4 | 1.387 ± 0.074Bb | 0.595 ± 0.136ABa | 0.249 ± 0.022ABa | 1.982 ± 0.209Bb | 2.500 ± 0.367AB |
T6 | 14 h (L)/10 h (D) | W | 1.020 ± 0.058Aa | 0.489 ± 0.172Aa | 0.159 ± 0.072Aa | 1.508 ± 0.115ABa | 2.634 ± 0.783Aa |
T7 | 14 h (L)/10 h (D) | R:B = 4:1 | 1.409 ± 0.015Cb | 0.467 ± 0.008Aab | 0.279 ± 0.024ABa | 1.876 ± 0.022Eb | 3.019 ± 0.025Ac |
T8 | 14 h (L)/10 h (D) | R:B = 3:1 | 1.356 ± 0.006Cc | 0.495 ± 0.011Ab | 0.288 ± 0.003Bb | 1.852 ± 0.004DEc | 2.741 ± 0.069Ab |
T9 | 14 h (L)/10 h (D) | R:B = 1:3 | 1.194 ± 0.031Bab | 0.442 ± 0.032Aa | 0.246 ± 0.020ABa | 1.636 ± 0.027BCab | 2.734 ± 0.233Aa |
T10 | 14 h (L)/10 h (D) | R:B = 1:4 | 1.057 ± 0.017Aa | 0.342 ± 0.009Aa | 0.244 ± 0.005ABa | 1.399 ± 0.009Aa | 3.094 ± 0.128Aa |
T11 | 16 h (L)/8 h (D) | W | 1.419 ± 0.047Cb | 0.464 ± 0.017ABa | 0.294 ± 0.016Bab | 1.883 ± 0.065Bb | 3.055 ± 0.012Ca |
T12 | 16 h (L)/8 h (D) | R:B = 4:1 | 1.180 ± 0.088ABa | 0.42 ± 0.0370ABa | 0.253 ± 0.021ABa | 1.605 ± 0.125Aa | 2.782 ± 0.038BCab |
T13 | 16 h (L)/8 h (D) | R:B = 3:1 | 1.101 ± 0.042Ab | 0.491 ± 0.020Bb | 0.211 ± 0.022Aa | 1.592 ± 0.022Ab | 2.260 ± 0.182Aa |
T14 | 16 h (L)/8 h (D) | R:B = 1:3 | 1.154 ± 0.060ABa | 0.402 ± 0.016Aa | 0.257 ± 0.012ABa | 1.556 ± 0.075Aa | 2.866 ± 0.073BCa |
T15 | 16 h (L)/8 h (D) | R:B = 1:4 | 1.322 ± 0.024BCb | 0.431 ± 0.012ABa | 0.285 ± 0.004Ba | 1.753 ± 0.036ABab | 3.068 ± 0.028Ca |
Table 1 Effect of different photoperiod and light quality ratio on photosynthetic pigment of Reaumuria songorica seedlings (mean ± SE)
处理 Treatment | 光周期 Photoperiod (h·d-1) | 光质配比 Light quality ratio | 叶绿素a含量 Chlorophyll a content (mg·g-1) | 叶绿素b含量 Chlorophyll b content (mg·g-1) | 类胡萝卜素含量 Carotenoid content (mg·g-1) | 叶绿素a+b含量 Chlorophyll a+b content (mg·g-1) | 叶绿素a/b Chlorophyll a/b |
---|---|---|---|---|---|---|---|
T1 | 12 h (L)/12 h (D) | W | 1.325 ± 0.036Bb | 0.364 ± 0.012Aa | 0.316 ± 0.007Cb | 1.690 ± 0.048ABab | 3.644 ± 0.031Ca |
T2 | 12 h (L)/12 h (D) | R:B = 4:1 | 1.425 ± 0.019Bb | 0.592 ± 0.052ABb | 0.285 ± 0.030BCa | 2.017 ± 0.033Bb | 2.453 ± 0.263ABa |
T3 | 12 h (L)/12 h (D) | R:B = 3:1 | 0.997 ± 0.023Aa | 0.381 ± 0.009Aa | 0.218 ± 0.005Aa | 1.378 ± 0.032Aa | 2.618 ± 0.003ABab |
T4 | 12 h (L)/12 h (D) | R:B = 1:3 | 1.309 ± 0.027Bb | 0.453 ± 0.011Aa | 0.282 ± 0.006ABa | 1.762 ± 0.039ABb | 2.896 ± 0.015B |
T5 | 12 h (L)/12 h (D) | R:B = 1:4 | 1.387 ± 0.074Bb | 0.595 ± 0.136ABa | 0.249 ± 0.022ABa | 1.982 ± 0.209Bb | 2.500 ± 0.367AB |
T6 | 14 h (L)/10 h (D) | W | 1.020 ± 0.058Aa | 0.489 ± 0.172Aa | 0.159 ± 0.072Aa | 1.508 ± 0.115ABa | 2.634 ± 0.783Aa |
T7 | 14 h (L)/10 h (D) | R:B = 4:1 | 1.409 ± 0.015Cb | 0.467 ± 0.008Aab | 0.279 ± 0.024ABa | 1.876 ± 0.022Eb | 3.019 ± 0.025Ac |
T8 | 14 h (L)/10 h (D) | R:B = 3:1 | 1.356 ± 0.006Cc | 0.495 ± 0.011Ab | 0.288 ± 0.003Bb | 1.852 ± 0.004DEc | 2.741 ± 0.069Ab |
T9 | 14 h (L)/10 h (D) | R:B = 1:3 | 1.194 ± 0.031Bab | 0.442 ± 0.032Aa | 0.246 ± 0.020ABa | 1.636 ± 0.027BCab | 2.734 ± 0.233Aa |
T10 | 14 h (L)/10 h (D) | R:B = 1:4 | 1.057 ± 0.017Aa | 0.342 ± 0.009Aa | 0.244 ± 0.005ABa | 1.399 ± 0.009Aa | 3.094 ± 0.128Aa |
T11 | 16 h (L)/8 h (D) | W | 1.419 ± 0.047Cb | 0.464 ± 0.017ABa | 0.294 ± 0.016Bab | 1.883 ± 0.065Bb | 3.055 ± 0.012Ca |
T12 | 16 h (L)/8 h (D) | R:B = 4:1 | 1.180 ± 0.088ABa | 0.42 ± 0.0370ABa | 0.253 ± 0.021ABa | 1.605 ± 0.125Aa | 2.782 ± 0.038BCab |
T13 | 16 h (L)/8 h (D) | R:B = 3:1 | 1.101 ± 0.042Ab | 0.491 ± 0.020Bb | 0.211 ± 0.022Aa | 1.592 ± 0.022Ab | 2.260 ± 0.182Aa |
T14 | 16 h (L)/8 h (D) | R:B = 1:3 | 1.154 ± 0.060ABa | 0.402 ± 0.016Aa | 0.257 ± 0.012ABa | 1.556 ± 0.075Aa | 2.866 ± 0.073BCa |
T15 | 16 h (L)/8 h (D) | R:B = 1:4 | 1.322 ± 0.024BCb | 0.431 ± 0.012ABa | 0.285 ± 0.004Ba | 1.753 ± 0.036ABab | 3.068 ± 0.028Ca |
Fig. 5 Growth indices correlation of Reaumuria songorica seedlings under different photoperiod and light quality ratio. AbB, aboveground biomass; Car, carotenoid content; Chl a, chlorophyll a content; Chl a/b, chlorophyll a/b; Chl a+b, total chlorophyll content; Chl b, chlorophyll b content; FirB, first-order branching number; LeB, leaf biomass; SecB, second-order branching number; StB, stem biomass; UnB, underground biomass; ∆G, growth rate of plant height. *, p < 0.05; **, p < 0.01.
指标 Index | 主成分载荷系数 Loading coefficient of component | 主成分特征向量 Eigenvector component | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | PC3 | PC4 | PC5 | |
∆G | 0.098 | -0.055 | -0.115 | 0.052 | 0.953 | 0.045 | ||||
FirB | 0.536 | 0.334 | 0.463 | 0.154 | -0.004 | 0.247 | 0.220 | 0.365 | 0.154 | -0.004 |
SecB | 0.072 | 0.027 | 0.921 | 0.014 | -0.068 | 0.033 | 0.018 | 0.725 | 0.014 | -0.072 |
StB | 0.184 | 0.855 | -0.028 | 0.198 | 0.211 | 0.085 | 0.564 | -0.022 | 0.198 | 0.223 |
LeB | -0.008 | 0.595 | 0.744 | -0.006 | -0.116 | -0.004 | 0.392 | 0.586 | -0.006 | -0.122 |
AbB | 0.105 | 0.726 | 0.596 | 0.048 | -0.231 | 0.048 | 0.479 | 0.469 | 0.048 | -0.244 |
UnB | 0.220 | 0.675 | 0.258 | 0.192 | -0.295 | 0.101 | 0.445 | 0.203 | 0.192 | -0.311 |
Chl a | 0.752 | 0.076 | 0.374 | 0.487 | 0.124 | 0.347 | 0.050 | 0.294 | 0.488 | 0.131 |
Chl b | 0.894 | 0.180 | -0.052 | -0.300 | 0.056 | 0.412 | 0.119 | -0.041 | -0.301 | 0.059 |
Car | 0.288 | 0.102 | -0.033 | 0.921 | -0.094 | 0.133 | 0.067 | -0.026 | 0.923 | -0.099 |
Chl a+b | 0.923 | 0.103 | -0.002 | 0.332 | 0.016 | 0.426 | 0.068 | -0.002 | 0.333 | 0.017 |
Chl a/b | 0.067 | -0.204 | -0.065 | -0.882 | -0.129 | 0.031 | -0.135 | -0.051 | -0.884 | -0.136 |
特征值 Eigenvalue | 4.701 | 2.299 | 1.613 | 0.995 | 0.899 | |||||
方差贡献率 Variance contribution rate (%) | 39.176 | 19.157 | 13.443 | 8.294 | 7.491 | |||||
累积方差贡献率 Cumulative variance contribution rate (%) | 39.176 | 58.333 | 71.775 | 80.070 | 87.561 |
Table 2 Principal component (PC) analysis of growth indexes of Reaumuria songorica seedlings
指标 Index | 主成分载荷系数 Loading coefficient of component | 主成分特征向量 Eigenvector component | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | PC1 | PC2 | PC3 | PC4 | PC5 | |
∆G | 0.098 | -0.055 | -0.115 | 0.052 | 0.953 | 0.045 | ||||
FirB | 0.536 | 0.334 | 0.463 | 0.154 | -0.004 | 0.247 | 0.220 | 0.365 | 0.154 | -0.004 |
SecB | 0.072 | 0.027 | 0.921 | 0.014 | -0.068 | 0.033 | 0.018 | 0.725 | 0.014 | -0.072 |
StB | 0.184 | 0.855 | -0.028 | 0.198 | 0.211 | 0.085 | 0.564 | -0.022 | 0.198 | 0.223 |
LeB | -0.008 | 0.595 | 0.744 | -0.006 | -0.116 | -0.004 | 0.392 | 0.586 | -0.006 | -0.122 |
AbB | 0.105 | 0.726 | 0.596 | 0.048 | -0.231 | 0.048 | 0.479 | 0.469 | 0.048 | -0.244 |
UnB | 0.220 | 0.675 | 0.258 | 0.192 | -0.295 | 0.101 | 0.445 | 0.203 | 0.192 | -0.311 |
Chl a | 0.752 | 0.076 | 0.374 | 0.487 | 0.124 | 0.347 | 0.050 | 0.294 | 0.488 | 0.131 |
Chl b | 0.894 | 0.180 | -0.052 | -0.300 | 0.056 | 0.412 | 0.119 | -0.041 | -0.301 | 0.059 |
Car | 0.288 | 0.102 | -0.033 | 0.921 | -0.094 | 0.133 | 0.067 | -0.026 | 0.923 | -0.099 |
Chl a+b | 0.923 | 0.103 | -0.002 | 0.332 | 0.016 | 0.426 | 0.068 | -0.002 | 0.333 | 0.017 |
Chl a/b | 0.067 | -0.204 | -0.065 | -0.882 | -0.129 | 0.031 | -0.135 | -0.051 | -0.884 | -0.136 |
特征值 Eigenvalue | 4.701 | 2.299 | 1.613 | 0.995 | 0.899 | |||||
方差贡献率 Variance contribution rate (%) | 39.176 | 19.157 | 13.443 | 8.294 | 7.491 | |||||
累积方差贡献率 Cumulative variance contribution rate (%) | 39.176 | 58.333 | 71.775 | 80.070 | 87.561 |
处理 Treatment | 在各个主成分中的得分 Scores in each principal component | 综合得分 Synthesis score | 名次 Rank | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F | ||
T1 | -0.168 | -0.072 | -0.451 | 2.236 | 0.034 | 0.054 | 7 |
T2 | 2.590 | 4.312 | 2.908 | 2.261 | -1.510 | 2.634 | 1 |
T3 | -1.830 | 0.032 | 0.163 | -1.790 | -2.192 | -1.144 | 12 |
T4 | -0.459 | -3.079 | -2.618 | 0.112 | -0.022 | -1.272 | 13 |
T5 | 2.687 | 1.565 | 2.817 | 1.114 | 0.744 | 2.146 | 2 |
T6 | -1.432 | -2.596 | -1.860 | -7.292 | -0.640 | -2.240 | 15 |
T7 | 0.986 | 0.529 | 2.373 | 1.533 | -0.833 | 0.995 | 4 |
T8 | 0.966 | 1.279 | 0.563 | 1.562 | -1.139 | 0.849 | 5 |
T9 | -0.675 | 0.190 | -0.083 | -0.500 | 0.219 | -0.302 | 8 |
T10 | -1.233 | 1.402 | 3.433 | 0.045 | -0.785 | 0.219 | 6 |
T11 | 1.260 | 0.755 | -0.113 | 2.292 | 2.127 | 1.111 | 3 |
T12 | -0.905 | -0.567 | -1.984 | -0.254 | 1.418 | -0.736 | 11 |
T13 | -0.843 | -2.171 | -3.161 | -2.123 | 2.786 | -1.300 | 14 |
T14 | -0.695 | -0.082 | -0.291 | 0.062 | -0.490 | -0.409 | 9 |
T15 | -0.249 | -1.496 | -1.696 | 0.740 | 0.284 | -0.604 | 10 |
Table 3 Main scores and comprehensive ranking of different photoperiod and light quality ratio on growth indexes of Reaumuria songorica seedlings
处理 Treatment | 在各个主成分中的得分 Scores in each principal component | 综合得分 Synthesis score | 名次 Rank | ||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F | ||
T1 | -0.168 | -0.072 | -0.451 | 2.236 | 0.034 | 0.054 | 7 |
T2 | 2.590 | 4.312 | 2.908 | 2.261 | -1.510 | 2.634 | 1 |
T3 | -1.830 | 0.032 | 0.163 | -1.790 | -2.192 | -1.144 | 12 |
T4 | -0.459 | -3.079 | -2.618 | 0.112 | -0.022 | -1.272 | 13 |
T5 | 2.687 | 1.565 | 2.817 | 1.114 | 0.744 | 2.146 | 2 |
T6 | -1.432 | -2.596 | -1.860 | -7.292 | -0.640 | -2.240 | 15 |
T7 | 0.986 | 0.529 | 2.373 | 1.533 | -0.833 | 0.995 | 4 |
T8 | 0.966 | 1.279 | 0.563 | 1.562 | -1.139 | 0.849 | 5 |
T9 | -0.675 | 0.190 | -0.083 | -0.500 | 0.219 | -0.302 | 8 |
T10 | -1.233 | 1.402 | 3.433 | 0.045 | -0.785 | 0.219 | 6 |
T11 | 1.260 | 0.755 | -0.113 | 2.292 | 2.127 | 1.111 | 3 |
T12 | -0.905 | -0.567 | -1.984 | -0.254 | 1.418 | -0.736 | 11 |
T13 | -0.843 | -2.171 | -3.161 | -2.123 | 2.786 | -1.300 | 14 |
T14 | -0.695 | -0.082 | -0.291 | 0.062 | -0.490 | -0.409 | 9 |
T15 | -0.249 | -1.496 | -1.696 | 0.740 | 0.284 | -0.604 | 10 |
处理 Treatment | 得分 Score | 隶属函数值 Membership function | D | 名次 Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X(1) | X(2) | X(3) | X(4) | X(5) | μ(1) | μ(2) | μ(3) | μ(4) | μ(5) | |||
T1 | 0.068 | 0.477 | -1.245 | -0.259 | -0.229 | 0.470 | 0.759 | 0.000 | 0.492 | 0.420 | 0.459 | 7 |
T2 | 2.018 | -0.244 | 0.745 | 0.889 | -1.773 | 1.000 | 0.542 | 0.528 | 0.829 | 0.000 | 0.725 | 2 |
T3 | -0.550 | -1.665 | -0.641 | -0.124 | -1.041 | 0.302 | 0.114 | 0.160 | 0.531 | 0.199 | 0.252 | 15 |
T4 | -1.006 | 1.186 | -0.302 | -1.932 | -0.396 | 0.178 | 0.972 | 0.250 | 0.000 | 0.374 | 0.363 | 13 |
T5 | 1.409 | 0.544 | 1.637 | -0.507 | 1.333 | 0.835 | 0.779 | 0.765 | 0.419 | 0.845 | 0.773 | 1 |
T6 | -1.661 | -1.089 | 2.524 | -0.154 | -0.339 | 0.000 | 0.287 | 1.000 | 0.522 | 0.390 | 0.299 | 14 |
T7 | 0.791 | -0.154 | 0.086 | -1.659 | 0.839 | 0.667 | 0.569 | 0.353 | 0.080 | 0.710 | 0.545 | 4 |
T8 | 0.691 | 0.170 | -0.084 | -0.253 | -1.343 | 0.639 | 0.666 | 0.308 | 0.493 | 0.117 | 0.536 | 5 |
T9 | -0.190 | -0.416 | -0.313 | 0.734 | 0.174 | 0.400 | 0.490 | 0.247 | 0.783 | 0.529 | 0.444 | 9 |
T10 | 0.407 | -2.044 | -0.997 | 0.035 | 1.904 | 0.562 | 0.000 | 0.066 | 0.578 | 1.000 | 0.402 | 12 |
T11 | 0.598 | 1.279 | -0.124 | 1.018 | 0.768 | 0.614 | 1.000 | 0.297 | 0.867 | 0.691 | 0.680 | 3 |
T12 | -0.630 | 0.416 | -0.617 | 1.472 | -0.045 | 0.280 | 0.740 | 0.167 | 1.000 | 0.470 | 0.448 | 8 |
T13 | -1.230 | 0.998 | 0.451 | 1.423 | 0.828 | 0.117 | 0.915 | 0.450 | 0.986 | 0.708 | 0.476 | 6 |
T14 | -0.216 | -0.319 | -0.607 | 0.042 | -0.369 | 0.393 | 0.519 | 0.169 | 0.580 | 0.382 | 0.403 | 11 |
T15 | -0.498 | 0.860 | -0.515 | -0.725 | -0.311 | 0.316 | 0.874 | 0.194 | 0.355 | 0.398 | 0.430 | 10 |
权重 Weight | 0.447 | 0.219 | 0.154 | 0.095 | 0.086 |
Table 4 Comprehensive index value (X(x)), membership function value (μ(x)), weight and comprehensive score value (D) of photosynthetic growth index of Reaumuria songorica under different photoperiod and light quality ratio
处理 Treatment | 得分 Score | 隶属函数值 Membership function | D | 名次 Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X(1) | X(2) | X(3) | X(4) | X(5) | μ(1) | μ(2) | μ(3) | μ(4) | μ(5) | |||
T1 | 0.068 | 0.477 | -1.245 | -0.259 | -0.229 | 0.470 | 0.759 | 0.000 | 0.492 | 0.420 | 0.459 | 7 |
T2 | 2.018 | -0.244 | 0.745 | 0.889 | -1.773 | 1.000 | 0.542 | 0.528 | 0.829 | 0.000 | 0.725 | 2 |
T3 | -0.550 | -1.665 | -0.641 | -0.124 | -1.041 | 0.302 | 0.114 | 0.160 | 0.531 | 0.199 | 0.252 | 15 |
T4 | -1.006 | 1.186 | -0.302 | -1.932 | -0.396 | 0.178 | 0.972 | 0.250 | 0.000 | 0.374 | 0.363 | 13 |
T5 | 1.409 | 0.544 | 1.637 | -0.507 | 1.333 | 0.835 | 0.779 | 0.765 | 0.419 | 0.845 | 0.773 | 1 |
T6 | -1.661 | -1.089 | 2.524 | -0.154 | -0.339 | 0.000 | 0.287 | 1.000 | 0.522 | 0.390 | 0.299 | 14 |
T7 | 0.791 | -0.154 | 0.086 | -1.659 | 0.839 | 0.667 | 0.569 | 0.353 | 0.080 | 0.710 | 0.545 | 4 |
T8 | 0.691 | 0.170 | -0.084 | -0.253 | -1.343 | 0.639 | 0.666 | 0.308 | 0.493 | 0.117 | 0.536 | 5 |
T9 | -0.190 | -0.416 | -0.313 | 0.734 | 0.174 | 0.400 | 0.490 | 0.247 | 0.783 | 0.529 | 0.444 | 9 |
T10 | 0.407 | -2.044 | -0.997 | 0.035 | 1.904 | 0.562 | 0.000 | 0.066 | 0.578 | 1.000 | 0.402 | 12 |
T11 | 0.598 | 1.279 | -0.124 | 1.018 | 0.768 | 0.614 | 1.000 | 0.297 | 0.867 | 0.691 | 0.680 | 3 |
T12 | -0.630 | 0.416 | -0.617 | 1.472 | -0.045 | 0.280 | 0.740 | 0.167 | 1.000 | 0.470 | 0.448 | 8 |
T13 | -1.230 | 0.998 | 0.451 | 1.423 | 0.828 | 0.117 | 0.915 | 0.450 | 0.986 | 0.708 | 0.476 | 6 |
T14 | -0.216 | -0.319 | -0.607 | 0.042 | -0.369 | 0.393 | 0.519 | 0.169 | 0.580 | 0.382 | 0.403 | 11 |
T15 | -0.498 | 0.860 | -0.515 | -0.725 | -0.311 | 0.316 | 0.874 | 0.194 | 0.355 | 0.398 | 0.430 | 10 |
权重 Weight | 0.447 | 0.219 | 0.154 | 0.095 | 0.086 |
[1] |
Alba R, Cordonnier-Pratt MM, Pratt LH (2000). Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiology, 123, 363-370.
DOI PMID |
[2] | Ali HE, Tong YX (2023). Volatile oil concentration and growth of thyme (Thymus vulgaris L.) plants responded to red to blue light ratios. Technology in Horticulture, 3, 1-7. |
[3] | Bimolata W, Bhattacharya R, Goswami A, Dey PK, Mitra A (2023). Spectral light treatment influenced morpho-physiological properties and carvacrol accumulation in Indian borage. Journal of Plant Growth Regulation, 42, 7515-7529. |
[4] |
Boccalandro HE, Giordano CV, Ploschuk EL, Piccoli PN, Bottini R, Casal JJ (2012). Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiology, 158, 1475-1484.
DOI PMID |
[5] | Chen JC, Li Y, Zhang YM, Li CQ, Li M (2024). Pollen characteristics of Reaumuria songarica from different provenances. Journal of Northwest A&F University (Natural Science Edition), 52(5), 69-79. |
[ 陈君婵, 李毅, 张咏梅, 李超群, 李蒙 (2024). 不同种源红砂的花粉形态特征研究. 西北农林科技大学学报(自然科学版), 52(5), 69-79.] | |
[6] | Chu QW, Qin YM, Li CY, Cheng SB, Su LH, He ZQ, Zhou XT, Shao DL, Guo X (2023). Effects of different photoperiods on the growth and nutritional characteristics of two celery cultivars in plant factory. Agronomy, 13, 3039. DOI: 10.3390/agronomy13123039. |
[7] | Elkins C, van Iersel MW (2020). Longer photoperiods with the same daily light integral improve growth of Rudbeckia seedlings in a greenhouse. HortScience, 55, 1676-1682. |
[8] | Elmardy NA, Yousef AF, Lin K, Zhang XW, Ali MM, Lamlom SF, Kalaji HM, Kowalczyk K, Xu Y (2021). Photosynthetic performance of rocket (Eruca sativa. Mill.) grown under different regimes of light intensity, quality, and photoperiod. PLoS ONE, 16, e0257745. DOI: 10.1371/journal.pone.0257745. |
[9] | Fan XX, Yang YN, Xu ZG (2021). Effects of different ratio of red and blue light on flowering and fruiting of tomato. IOP Conference Series: Earth and Environmental Science, 705, 012002. DOI: 10.1088/1755-1315/705/1/012002. |
[10] |
Franklin KA, Larner VS, Whitelam GC (2005). The signal transducing photoreceptors of plants. International Journal of Developmental Biology, 49, 653-664.
DOI PMID |
[11] |
Gao YZ, Xiang J, Ye TC, Sun KX, Chen HZ, Zhang YP, Zhang YK, Wang YL, Zhang YB (2024). Effects of LED light supplementation with different light quality ratios on growth and development of the Machine-transplanted rice seedlings. China Rice, 30(1), 58-62.
DOI |
[12] | Gao Z, Lei HS, Wu YF, Wan JH, Dong F, Wang HQ (2016). Effects of different proportions red and blue light on the growth and photosynthetic characteristics of strawberry. Journal of China Agricultural University, 21(12), 20-27. |
[ 高振, 雷恒树, 吴雨霏, 万继花, 董飞, 王红清 (2016). 不同比例红蓝光对草莓生长和叶片光合特性的影响. 中国农业大学学报, 21(12), 20-27.] | |
[13] | Gu XD, Lv D, Zhao H, Chen G, Zhang T, Wang L, Chu M (2023a). Influence of shading on growth and photosynthetic characteristics of Reaumuria soongorica seedlings. Journal of Arid Land Resources and Environment, 37(8), 145-152. |
[ 顾雪丹, 吕东, 赵祜, 陈刚, 张涛, 王立, 褚敏 (2023a). 遮阴对红砂幼苗生长及光合特性的影响. 干旱区资源与环境, 37(8), 145-152.] | |
[14] | Gu XD, Zhang ZZ, Lyu D, Zhao H, Wang L, Che B, Cao R, Yan KL, Zhang HB (2023b). Effects of photoperiod and light quality on the growth and chlorophyll fluorescence of Reaumuria soongorica seedlings. Acta Agrestia Sinica, 31(6), 1720-1727. |
[ 顾雪丹, 张正中, 吕东, 赵祜, 王立, 车波, 曹蓉, 闫克林, 张宏斌 (2023b). 光周期和光质对红砂幼苗生长及光化学反应的影响. 草地学报, 31(6), 1720-1727.] | |
[15] | Guo XL, Xue XZ, Chen LL, Li JY, Wang ZM, Zhang YH (2023a). Effects of LEDs light spectra on the growth, yield, and quality of winter wheat (Triticum aestivum L.) cultured in plant factory. Journal of Plant Growth Regulation, 42, 2530-2544. |
[16] | Guo YX, Zhong YF, Mo LW, Zhang W, Chen YZ, Wang YC, Chen H, Wang ZF, Song XQ, Meng XY (2023b). Different combinations of red and blue LED light affect the growth, physiology metabolism and photosynthesis of in vitro-cultured Dendrobium nobile ‘Zixia’. Horticulture, Environment, and Biotechnology, 64, 393-407. |
[17] | Hernández-Adasme C, Palma-Dias R, Escalona VH (2023). The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae, 9, 493. DOI: 10.3390/horticulturae9040493. |
[18] | Iqbal Z, Munir M, Sattar MN (2022). Morphological, biochemical, and physiological response of butterhead lettuce to photo-thermal environments. Horticulturae, 8, 515. DOI: 10.3390/horticulturae8060515. |
[19] | Izzo LG, Mickens MA, Aronne G, Gómez C (2021). Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiologia Plantarum, 172, 2191-2202. |
[20] | Jin DZ, Su XF, Li YF, Shi MM, Yang BB, Wan WC, Wen X, Yang SJ, Ding XT, Zou J (2023). Effect of red and blue light on cucumber seedlings grown in a plant factory. Horticulturae, 9, 124. DOI: 10.3390/horticulturae9020124. |
[21] | Kim SJ, Hahn EJ, Heo JW, Paek KY (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101, 143-151. |
[22] |
Kong Y, Schiestel K, Zheng YB (2019). Pure blue light effects on growth and morphology are slightly changed by adding low-level UVA or far-red light: a comparison with red light in four microgreen species. Environmental and Experimental Botany, 157, 58-68.
DOI |
[23] | Kreslavski VD, Lyubimov VY, Shirshikova GN, Shmarev AN, Kosobryukhov AA, Schmitt FJ, Friedrich T, Allakhverdiev SI (2013). Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A. Journal of Photochemistry and Photobiology B: Biology, 122, 1-6. |
[24] | Li HS (2000). Principles and Techniques of Plant Physiological Biochemical Experiment. Higher Education Press, Beijing. |
[ 李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.] | |
[25] | Li WY, Zhang GH, Li YF, Liang XP, Yin J (2023). Effects of different light qualities and photoperiods on the growth, leaf pigment and color of Aglaonema commutatum. Guihaia, 43, 1725-1736. |
[ 李文杨, 张光辉, 李月凤, 梁祥鹏, 尹娟 (2023). 不同光质与光周期对粗肋草生长、叶片色素和颜色的影响. 广西植物, 43, 1725-1736.] | |
[26] | Li Y, Xin GF, Shi QH, Yang FJ, Wei M (2023). Response of photomorphogenesis and photosynthetic properties of sweet pepper seedlings exposed to mixed red and blue light. Frontiers in Plant Science, 13, 984051. DOI: 10.3389/fpls.2022.984051. |
[27] | Li YN, Liu N, Ji F, He DX (2022). Optimal red: blue ratio of full spectrum LEDs for hydroponic pakchoi cultivation in plant factory. International Journal of Agricultural and Biological Engineering, 15, 72-77. |
[28] | Liu HH, Chong PF, Liu ZH, Bao XG, Tan BB (2023). Exogenous hydrogen sulfide improves salt stress tolerance of Reaumuria soongorica seedlings by regulating active oxygen metabolism. PeerJ, 11, e15881. DOI: 10.7717/peerj.15881. |
[29] | Liu KZ, Gao MF, Jiang HZ, Ou SY, Li XP, He R, Li YM, Liu HC (2022). Light intensity and photoperiod affect growth and nutritional quality of Brassica microgreens. Molecules, 27, 883. DOI: 10.3390/molecules27030883. |
[30] | Liu Q, Lian HF, Liu SQ, Sun YL, Yu XH, Guo HP (2015). Effects of different LED light qualities on photosynthetic characteristics, fruit production and quality of strawberry. Chinese Journal of Applied Ecology, 26, 1743-1750. |
[ 刘庆, 连海峰, 刘世琦, 孙亚丽, 于新会, 郭会平 (2015). 不同光质LED光源对草莓光合特性, 产量及品质的影响. 应用生态学报, 26, 1743-1750.] | |
[31] | Park Y, Sethi R, Temnyk S (2023). Growth, flowering, and fruit production of strawberry ‘Albion’ in response to photoperiod and photosynthetic photon flux density of sole-source lighting. Plants, 12, 731. DOI: 10.3390/plants12040731. |
[32] | Pawłowska B, Żupnik M, Szewczyk-Taranek B, Cioć M (2018). Impact of LED light sources on morphogenesis and levels of photosynthetic pigments in Gerbera jamesonii grown in vitro. Horticulture, Environment, and Biotechnology, 59, 115-123. |
[33] | Popov VN, Deryabin AN (2023). Effect of photoperiod duration on efficiency of low-temperature hardening of Arabidopsis thaliana Heynh. (L.). Russian Journal of Plant Physiology, 70, 56. DOI: 10.1134/S1021443722603093. |
[34] | Rengasamy N, Othman RY, Che HS, Harikrishna JA (2022). Artificial lighting photoperiod manipulation approach to improve productivity and energy use efficacies of plant factory cultivated Stevia rebaudiana. Agronomy, 12, 1787. DOI: 10.3390/agronomy12081787. |
[35] | Shibaeva TG, Rubaeva AA, Sherudilo EG, Titov AF (2023). Continuous lighting increases yield and nutritional value and decreases nitrate content in Brassicaceae microgreens. Russian Journal of Plant Physiology, 70, 118. DOI: 10.31857/S0015330323600262. |
[36] | Silva LM, Cruz LP, Pacheco VS, Machado EC, Purquerio LFV, Ribeiro RV (2022). Energetic efficiency of biomass production is affected by photoperiod in indoor lettuce cultivation. Theoretical and Experimental Plant Physiology, 34, 265-276. |
[37] | Xie CJ, He FY, Liu L, Wei QM, Yang M (2023). Effects of light quality and photoperiod on growth and physiology of Michelia baillonii seedlings. Guihaia, 43, 2362-2373. |
[ 谢慈江, 何福英, 刘莉, 韦秋梅, 杨梅 (2023). 光质和光周期对山白兰苗木生长、生理的影响. 广西植物, 43, 2362-2373.] | |
[38] | Xu DQ, Gao W, Ruan J (2015). Effects of light quality on plant growth and development. Plant Physiology Journal, 51, 1217-1234. |
[ 许大全, 高伟, 阮军 (2015). 光质对植物生长发育的影响. 植物生理学报, 51, 1217-1234.] | |
[39] | Xu YY, Yang M, Cheng F, Liu SN, Liang YY (2020). Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biology, 20, 269. DOI: 10.1186/s12870-020-02480-7. |
[40] | Yan SP, Chong PF, Zhao M, Liu HM (2022). Physiological response and proteomics analysis of Reaumuria soongorica under salt stress. Scientific Reports, 12, 2539. DOI: 10.1038/s41598-022-06502-2. |
[41] | Yan XF, Wang Y, Shang XH (2003). Effects of greenhouse light intensity and quality on biomass and salidroside content in roots of Rhodiola sachalinensis. Acta Ecologica Sinica, 23, 841-849. |
[ 阎秀峰, 王洋, 尚辛亥 (2003). 温室栽培光强和光质对高山红景天生物量和红景天甙含量的影响. 生态学报, 23, 841-849.] | |
[42] | Yang JW, Bao EC, Zhang KJ, Pan TH, Cao YF, Zhang J, Zou ZR (2018). Effects of different ratios of red and blue light on anatomic structure and photosynthetic characteristics of tomato leaf. Acta Agriculturae Boreali-occidentalis Sinica, 27, 716-726. |
[ 杨俊伟, 鲍恩财, 张珂嘉, 潘铜华, 曹晏飞, 张静, 邹志荣 (2018). 不同红蓝光比例对番茄幼苗叶片结构及光合特性的影响. 西北农业学报, 27, 716-726.] | |
[43] | Yang YT, Cheng RF, Yang QC, Xiao P (2010). Effects of LED light quality R/B ratio to quality of sweet potato plantlets in vitro and energy saving. Chinese Journal of Agrometeorology, 31, 546-550. |
[ 杨雅婷, 程瑞峰, 杨其长, 肖平 (2010). Led光源不同R/B处理对甘薯组培苗品质及节能效果的影响. 中国农业气象, 31, 546-550.] | |
[44] | Yao N, Liu JF, Jiang ZP, Chang EM, Zhao XL, Xie R, Wang Q (2022). Effects of photoperiod and light quality on seedling growth and chlorophyll fluorescence kinetics of Quercus L. Forestry Scientific Research, 35, 59-69. |
[45] |
Yorio NC, Goins GD, Kagie HR, Wheeler RM, Sager JC (2001). Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. Hortscience, 36, 380-383.
PMID |
[46] | Zha LY, Liu WK (2018). Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. Horticulture, Environment, and Biotechnology, 59, 511-518. |
[47] | Zhang GW, Luo LP, Tian KL, Ning FJ, Wu D, Sun QF, Yu WJ, Yi SX, Hao YB (2024). Metabolomics analysis of Dendrobium officinale tissue-cultured seedlings under red-blue composed light by using HPLC and UPLC-Q/TOF-MS. Plant Cell, Tissue and Organ Culture (PCTOC), 156, 49. DOI: 10.1007/s11240-023-02678-1. |
[48] | Zhang T, Shi Y, Piao FZ, Sun ZQ (2018a). Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell, Tissue and Organ Culture (PCTOC), 134, 231-240. |
[49] | Zhang X, He DX, Niu GH, Yan ZN, Song JX (2018b). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. International Journal of Agricultural and Biological Engineering, 11, 33-40. |
[50] | Zhang Y, Liang Y, Han J, Hu XH, Li XJ, Zhao HL, Bai LQ, Shi Y, Ahammed GJ (2023). Interactive effects of iron and photoperiods on tomato plant growth and fruit quality. Journal of Plant Growth Regulation, 42, 376-389. |
[51] | Zhang YT, Ji JZ, Song SW, Su W, Liu HC (2020). Growth, nutritional quality and health-promoting compounds in Chinese kale grown under different ratios of red: blue LED lights. Agronomy, 10, 1248. DOI: 10.3390/agronomy10091248. |
[52] | Zhou CB, Zhang X, Cui QQ, Li M, Zhang WD, Ai XZ, Bi HG, Liu BB, Li QM (2017). Effects of supplementary light quality on growth and photosynthesis of pakchoi (Brassica campestris). Plant Physiology Journal, 53, 1030-1038. |
[ 周成波, 张旭, 崔青青, 李曼, 张文东, 艾希珍, 毕焕改, 刘彬彬, 李清明 (2017). LED补光光质对小白菜生长及光合作用的影响. 植物生理学报, 53, 1030-1038.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn