For the universal grassland degradation and associated human utilization in the world, authors expound ecosystem restoration, climate climax in ecological succession, environment change and grassland state transition, grazing and disturbance climax, restoration by human intervention, thereby put forward the restoration path and state model of the degraded grassland ecosystem. This paper emphasizes that the restoration of degraded grassland should be carried out from the perspective of ecosystem, rather than only vegetation or soil processes, because there will be multiple alternative restoration states for grasslands in the context of environmental change or human disturbance. Three basic restoration modes of degraded grassland and possible restoration states are described as the followings: (1) Gradual restoration according to natural succession: based on the theory of ecological succession, grasslands from light to moderate degradation under favorable environments might reach the climax or near climax state for a long time by the systematical self-organization. (2) Intervention restoration by human activity: for those severely or extremely degraded grasslands, it needs to break through a series of abiotic (soil structure, nutrients, etc.) and biotic (plant colonization, species interaction, etc.) restrictions, and restore to a certain equilibrium or stable state, even climax state by using engineering, physical, chemical or biological-ecological methods or practices. It will take a long-time. (3) Restoration by grazing disturbance: grassland ecosystem structure (species composition and diversity), productivity and nutrient processes could be regulated through light to moderate livestock grazing, thereby maintaining and promoting grassland ecosystem multifunctionality and stability. This restoration method can be selected for medium-mild degraded grasslands. In conclusion, the holistic goal of grassland restoration is to achieve its long-term stable ecosystem multifunctionality.
The compiling protocols of Vegegraphy of China published earlier provided standards and guidelines for the compilation of Vegegraphy of China. In this study, we interpreted, revised and supplemented the protocols in view of some specific issues and deficiencies encountered during the subsequent compilation processes. We reaffirmed the term “Vegetation type” as a way to identify Volumes and Issues of the Vegegraphy of China. We emphasized the description of quantitative characteristics of the medium- and/or lower-level vegetation classification units, and we proposed to review and accept the community types recorded in literatures. In addition, we further elucidated the importance of the quantitative classification method as a way to support the vegetation classification scheme. These supplements and revisions, together with the previous protocols, constitute the basis and standard for compiling the Vegegraphy of China.
On the basis of a brief discussion of the definitions of alien plants, we summarized the investigation and research status of China’s naturalized alien plants, and made corrections of the data regarding naturalized alien plants on two papers in 2019 and 2021.
The vegetation classification in China was updated by referring to recent advances for vegetation classification worldwide and on the basis of our former paper Recognition and Proposal on the Vegetation Classification System of China (hereafter, “Recognition and Proposal”). In this revision, the criteria for vegetation classification were discussed and unified, and a quantified standard for high, medium, and low level units in a new hierarchical classification scheme was supplemented. Compared with the old classification scheme in “Recognition and Proposal”, the units at the level of vegetation type were substantially changed. Finally, in order to improve mutual communication among international peers, a comparison was carried out between the new revised scheme and each of International Classification and Mapping of Vegetation of UNESCO, The National Vegetation Classification Standard of United States, and The Braun-Blanquet Classification Scheme.
We discuss standards for the data analysis portion of the materials and methods section of ecology theses. We also comment on statistical questions frequently encountered in ecological theses, including: more effective statistical approaches, correlated dependent variables, heteroscedasticity, statistical significance vs. biology/ecology significance, and pseudo-replication.
Aims Phytolacca americana is a serious invasive plant species, which has harmed biodiversity and arboreal regeneration in coastal protective forests in Shandong Province. Our objective was to reveal its mechanism of reproduction and dispersal in order to provide guidance for controlling its invasion.
Methods To study the spatial and temporal pattern of seed rain of P. americana, we conducted field surveys under Robinia pseudoacacia forest in Lingshan Bay National Forest Park from September to December 2008. We established five transects at 15 m intervals from forest edge to forest interior and within each transect set up 30 samples (1 m × 1 m) to survey seed densities. We also chose eight mother plants of P. americana at 10 m intervals in each transect and placed seed traps (30 cm × 30 cm × 10 cm) at 11 sample points at every 30 cm surrounding them. We collected fallen seeds one or two days. One-way ANOVA was used to test the diversity.
Important findings The quantities and densities of seed rain were 1 846-2 273 seeds and 621-1 382 seeds per square meter, respectively, and values decreased from forest edge to interior. In five transects, the average seed rain densities were 33.64%-60.80% of reproduction, and the total average seed rain density accounted for 49.52% of seed reproduction densities; the rest was removed by firewood collecting and seed predation by animals. Seed rain began in mid September and ended in late December, and it occurred on forest edges before forest interiors. There were two seed-rain peaks in late October and mid December, and maximum intensities were 32 and 59 seeds per square meter per day, respectively. The dispersal distance of seed rain decreased from forest edge to forest interior. The same pattern existed with increasing distance from mother plant. The maximal dispersal and weighted mean distances were 210-180 cm and 94.32-63.03 cm, respectively; the average weighted mean distance was 81.00 cm. Phytolacca americana seed rain had obvious spatio-temporal heterogeneity. Findings were important to predict the invasive potential of P. americana and the trend in community structure.
Aims Ecological restoration is one of the most active and key activities in contemporary ecology. But, it has been translated in Chinese as “ecological recovery”. By means of checking its English meaning and evolved processes, it is suggested that, instead of “recovery”, change it in Chinese as “ecological reestablishment”. Because ecological restoration must involve human intention or agency, it is fundamentally about assisted recovery that works to accelerate natural processes. But, in case where ecological processes have worked unassisted or something that can happen by nature itself without human agency, the term, “recovery” should be used.
Important findings There are at least three time scales for natural recovery and ecological restoration. They are the geologic period scale (103, 106, 109 a), ecosystem regeneration and succession scale (10, 102, 103 a), and ecological restoration scale (1, 10, 102 a). The 1st and 2nd scale are time scales for natural recovery, they are 10-102-103times longer than ecological restoration periods. Humans could not over-scaled depending on the capacity of natural recovery. The incompatibility of natural recovery and restoration in time scales is the basic cause of why natural recovery cannot meet the ecological demands of human society. The author raises doubt to the statement of “put the natural recovery as the major objective”, and “transfer the major objective from the ecological restoration to natural recovery”. The author beliefs that to shift responsibility of restoration onto nature itself and recovery at long-last recovery is the logic of lazybones and unwilling to be responsible. That is violation of the acknowledged global environmental truth that “who destroys who should compensate; who pollutes who should eliminate; who enjoys, who should pay”. Besides recovery and restoration natural ecosystems, designed ecological solutions will go beyond restoring a past ecosystem, but creat a kind of coupled natural-artificial ecosystems that will be part of a future sustainable world.
JIPB
Journal of Plant Ecology
Journal of Systematics and Evolution
Biodiversity Science
Bulletin of Botany