Please wait a minute...
IMAGE/TABLE DETAILS
Effects of climate change on net primary productivity in Larix olgensis plantations based on process modeling
Ya-Lin XIE, Hai-Yan WANG, Xiang-Dong LEI
Chin J Plan Ecolo    2017, 41 (8): 826-839.   DOI: 10.17521/cjpe.2016.0382
Abstract   (924 HTML129 PDF(pc) (1426KB)(1383)  

Aims Climate change has significant effects on net primary productivity (NPP) in forests, but there is a large uncertainty in the direction and magnitude of the effects. Process-based models are important tools for understanding the responses of forests to climate change. The objective of the study is to simulate changes in NPP of Larix olgensis plantations under future climate scenarios using 3-PG model in order to guide the management of L. olgensis plantations in the context of global climate change.Methods Data were obtained for 30 permanent plots of L. olgensis plantations in Siping, Linjiang, Baishan, etc. of Jilin Province, and a process model, 3-PG model, was applied to simulate changes in NPP over a rotation period of 40 years under different climate scenarios. Parameter sensitivity was also determined. Important findings The locally parameterized 3-PG model well simulates the changes in NPP against the measured NPP data, with values between 272.79-844.80 g·m-2·a-1 and both mean relative error and relative root mean square error within 12%. The NPP in L. olgensis plantations would increase significantly with increases in atmospheric CO2 concentration, temperature and precipitation collectively. However, an increase in temperature alone would lead to a decrease in NPP, but increases in precipitation and atmospheric CO2 concentration would increase NPP; the positive effect of increasing precipitation appears to be weaker than the negative effect of increasing temperature. Sensitivity analysis shows that the model performance is sensitive to the optimum temperature, stand age at which specific leaf area equals to half of the sum of specific leaf area at age 0 (SLA0) and that for mature leaves (SLA1), and days of production loss due to frost.


参数
Parameter

Value
分类
Category
来源
Source
生物量的分配关系和比例 Allometric relationships and partitioning
胸径2 cm树叶与干分配比 Foliage: stem partitioning ratio when DBH = 2 cm 1.00 A 本文拟合 Fitted in this study
胸径20 cm树叶与干分配比 Foliage: stem partitioning ratio when DBH = 20 cm 0.5 A 本文拟合 Fitted in this study
干生物量与胸径关系中常数值 Constant in the stem biomass and DBH relationship 0.007 3 A 本文拟合 Fitted in this study
干生物量与胸径关系中幂值 Power in the stem biomass and DBH relationship 3.409 A 本文拟合 Fitted in this study
净初级生产量分配给根的最大值 Maximum fraction of net primary productivity to roots 0.95 A 本文拟合 Fitted in this study
净初级生产量分配给根最小值 Minimum fraction of net primary productivity to roots 0.5 A 本文拟合 Fitted in this study
气温修正因子 Air temperature modifier
生长最低气温 Minimum air temperature for growth (℃) -25 L Xu et al., 2012
生长最适气温 Optimum air temperature for growth (℃) 17 L Sun et al., 2009
生长最高气温 Maximum air temperature for growth (℃) 27 L Xu et al., 2012
霜冻修正因子 Frost modifier
每次霜冻导致生产力流失天数 Production lost days per frost day (d) 1 C 默认参数 Default parameters
冠层结构和过程 Canopy structure and process
比叶面积 Specific leaf area (SLA)
年龄为0时比叶面积 Specific leaf area at age 0 (m2·kg-1) 12.93 L Song & Sun, 2012
成熟叶比叶面积 Specific leaf area for mature leaves (m2·kg-1) 5 L Song & Sun, 2012
年龄为(SLA0 + SLA1)/2比叶面积 Age at which specific leaf area = (SLA0 + SLA1)/2 8 L Song & Sun, 2012
光截获 Light interception
消光系数 Extinction coefficient 0.5 L Amichev et al., 2011
郁闭度年龄 Age at canopy cover (a) 5 L Gonzalez-Benecke et al., 2014
从林冠降水蒸发的最大比例 Maximum proportion of rainfall evaporated from canopy 0.15 C 默认参数 Default parameters
最大降水截留时叶面积指数 Leaf area index for maximum rainfall interception 5 C 默认参数 Default parameters
光合生产和呼吸 Photosynthesis production and respiration
冠层量子效率 Canopy quantum efficiency (mol·mol-1) 0.035 L Ma et al., 2008
净初级生产力/总初级生产力
Ratio of net primary productivity to gross primary productivity
0.47 L Liu et al., 2015
树枝在干中的比例 Fraction of stem biomass as branch and bark 0.15 L
林分初生时树枝占干生物量的比例 Fraction of branch and bark at age = 0 0.15 L Coops & Waring, 2011
林分成熟时树枝占干生物量的比例 Fraction of branch and bark for mature stands Coops & Waring, 2011
树枝占平均值时的林龄
Age at which fraction = (Branch and bark fraction at age = 0+Branch and
bark fraction for mature stands)/2
1.5 L Coops & Waring, 2011
立地初始化条件 Stand initialization
初始种植年 Years of initial plantation 1973-1983 M 本研究测定 Measurements in this study
初始密度 Initial stocking (trees·hm-2) 3300 M 本研究测定 Measurements in this study
海拔 Altitude (m) 230-751 M 本研究测定 Measurements in this study
纬度 Latitude (°) 41.61-43.88 M 本研究测定 Measurements in this study
肥力等级 Fertility rating 0.7 ± 0.1 M 本研究测定 Measurements in this study
土壤质地类型 Soil texture Clay loam M 本研究测定 Measurements in this study
Table 3 3-PG model parameters and the initial values for Larix olgensis plantations
Extracts from the Article
气候变化对净初级生产力(NPP)会产生显著的影响, 但影响的方向和程度存在较大的不确定性。过程模型是揭示气候变化对森林生产力影响的重要工具。该文以吉林省四平、临江、白山等地10个林区30块长白落叶松(Larix olgensis)人工林固定样地为研究对象, 基于气候、土壤、林分生长等观测数据, 运用3-PG模型模拟了长白落叶松人工林NPP在一个轮伐期(40 年)内随林龄的动态变化, 以及在未来不同气候情景条件下NPP的变化情况。结果表明: 通过本地参数化后的3-PG模型模拟的长白落叶松林NPP为272.79-844.80 g·m-2·a-1, 与基于样地实测的NPP具有很好的一致性, 平均相对误差和相对均方根误差均小于12%。在未来CO2浓度、温度及降水同时增加的情景下, 长白落叶松林NPP明显增加。单独增加温度会减小长白落叶松林的NPP, 而降水及CO2浓度增加能够在一定程度上促进NPP的增加, 但降水增加的正效应明显弱于温度升高的负效应。参数敏感性分析表明: 生长最适温度、林分比叶面积达(年龄为0时比叶面积+成熟叶比叶面积)/2时的林龄、每次霜冻导致生产力流失天数是模型的关键参数。因此, 3-PG模型可以准确地模拟长白落叶松的NPP, 模拟结果可为应对气候变化的长白落叶松经营管理提供依据。
表3   长白落叶松人工林3-PG模型参数和初始数据
Other Images/Table from this Article