Chin J Plan Ecolo ›› 2007, Vol. 31 ›› Issue (3): 445-450.doi: 10.17521/cjpe.2007.0054

• Research Articles • Previous Articles     Next Articles


LUAN Qing-Shan; SUN Jun; SONG Shu-Qun; SHEN Zhi-Liang; YU Zhi-Ming   

  1. Key Laboratory of Marine Ecology & Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
  • Online:2007-05-30 Published:2007-05-30
  • Contact: SUN Jun


Aims The Yangtze River Estuary (YRE) faces eutrophication caused by discharge of industrial and agricultural sewage. This leads to frequent harmful algae blooms involving the rapid proliferation of specific toxic species. The aims of our study are to: 1) apply scientific methods and field experiments to clarify the distributional relationship between phytoplankton species and the environment, and 2) provide data on species and environment informative for further research on estuary ecosystem protection.
Methods An interdisciplinary survey of hydrological, chemical and biological re sources was conducted in the YRE on August 28 - September 6, 2004. Phytoplankton cell counts and species identification were performed with an inverted microscope at ×100-×400 magnification after sedimentation for 24 h in 25 ml Utermǒhl chambers .Temperature, salinity, pH and dissolved oxygen were measured by a pre-calibrated YSI 6000. Other abiotic environmental data were obtained based on protocols of marine investigations. Canonical correspondence analysis (CCA) was applied to explore the relationship between phytoplankton species and environmental parameters using CANOCO4.0.
Important findings Turbidity and nutrient gradient along the Yangtze River runoff were the most important factors influencing the distribution of phytoplankton species. Transparency, nitrate and silicate were major factors affecting the phytoplankton community structure. The dominant phytoplankton species Proboscia alataf. gracillimapreferred low nitrate concentration and clear offshore areas, while Skeletonema costatumpreferred high nitrate and more turbid waters. CCA can be a useful tool to understand the spatial distribution of phytoplankton species in marine ecosystems.

No related articles found!
Full text



[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chin Bull Bot, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 65 .
[4] . [J]. Chin Bull Bot, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chin Bull Bot, 1994, 11(01): 6 -11 .
[7] . [J]. Chin Bull Bot, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chin Bull Bot, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chin Bull Bot, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chin Bull Bot, 2014, 49(1): 78 -86 .