Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (1): 92-103.doi: 10.17521/cjpe.2015.0010

• Orginal Article • Previous Articles     Next Articles

Influence of three types of salt stress on photosynthesis in Spartina alterniflora and Phragmites australis

HU Chu-Qi, LIU Jin-Ke, WANG Tian-Hong, WANG Wen-Lin, LU Shan, ZHOU Chang-Fang*()   

  1. State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
  • Received:2014-07-21 Accepted:2014-12-09 Online:2015-01-22 Published:2015-01-10
  • Contact: Chang-Fang ZHOU E-mail:zcfnju@nju.edu.cn
  • About author:

    # Co-first authors

Abstract: Aims

The invasion of Spartina alterniflora has imposed significant influences on structure and functioning of coastal saltmarshes. The Spartina marsh has been found to contain relatively higher sulfur content than the adjacent native Phragmites marsh. This research is aimed to investigate if sulfur helps with S. alterniflora in competition over Phragmites australis.

<i>Methods</i>

Seedlings of S. alterniflora and P. australis were grown in an imitated mesocosm on the campus of Nanjing University. Three common salts of the sea water, Na2SO4, Na2S and NaCl were respectively added to the cultural medium. Light response curves of the plants before and during the four days of treatments were obtained by measuring gas exchange with varying light levels. Maximum quantum yield of photosynthesis II (PSII) and light induction curves were also measured by chlorophyll fluorescence analysis.

<i>Important findings</i>

Among the three salts, Na2S caused the greatest difference in the response of photosynthesis between S. alterniflora and P. australis, and Na2SO4 had the least effect. The Na2S treatment significantly increased net photosynthetic rate (Pn) and light saturation point (Isat) in S. alterniflora, but decreased Pn in P. australis. The NaCl treatment also increased Pn in S. alterniflora to a less degree and decreased Pn in P. australis. The Na2SO4 treatment had little effect on Pn in both S. alterniflora and P. australis. The non-photochemical quenching (NPQ) in P. australis were promoted by all three salts, whereas it was only affected by Na2S and NaCl in S. alterniflora. Our results suggest that S. alterniflora has significantly greater tolerance to sulfate and sulfide than P. australis. Therefore, sulfuric compounds and especially sulfide in saltmarsh environments might benefit the competition of S. alterniflora over P. australis, which could contribute to the formation of the mono-specific vegetation of the invasive S. alterniflora.

Key words: biological invasion, saltmarsh ecosystem, Spartina alterniflora, Phragmites australis, sulfur enviroment, salt stress, photosynthesis

Fig. 1

Influence of Na2SO4 on net photosynthetic rate (A, B), quantum yield of PSII (C, D), photochemical quenching (E, F) and non-photochemical quenching (G, H) in Spartina alterniflora and Phragmites australis."

Table 1

Influence of different salt treatments on maximum net photosynthetic rate in Spartina alterniflora and Phragmites australis (μmol·m-2·s-1) (mean ± SE, n = 3)"

处理后天数
Day after treatment
互花米草 S. alterniflora 芦苇 P. australis
Na2SO4 Na2S NaCl Na2SO4 Na2S NaCl
0 19.92 ± 1.44a 21.25 ± 0.58a 16.53 ± 1.33a 17.89 ± 1.90a 17.98 ± 2.50a 15.65 ± 0.24a
1 18.43 ± 1.30a 23.61 ± 1.67ab 16.16 ± 0.91a 16.36 ± 2.75a 14.03 ± 3.19a 15.76 ± 2.20a
2 18.67 ± 1.80a 25.39 ± 1.16b 18.11 ± 1.48a 16.81 ± 2.21a 15.08 ± 2.52a 14.54 ± 0.12a
3 20.36 ± 1.12a 24.41 ± 0.58ab 19.33 ± 1.42a 17.47 ± 2.27a 13.54 ± 2.43a 13.07 ± 1.44a
4 22.07 ± 2.05a 26.11 ± 0.43b 17.60 ± 1.31a 16.93 ± 2.42a 11.64 ± 3.81a 12.42 ± 1.07a

Table 2

Influence of different salt treatments on initial quantum yield in Spartina alterniflora and Phragmites australis (mean ± SE, n = 3)"

处理后天数
Day after treatment
互花米草 S. alterniflora 芦苇 P. australis
Na2SO4 Na2S NaCl Na2SO4 Na2S NaCl
0 0.048 ± 0.004a 0.050 ± 0.001a 0.041 ± 0.000a 0.038 ± 0.003a 0.037 ± 0.001a 0.036 ± 0.002ab
1 0.047 ± 0.002a 0.045 ± 0.002ab 0.045 ± 0.000ab 0.039 ± 0.001a 0.026 ± 0.005a 0.038 ± 0.002ab
2 0.048 ± 0.004a 0.040 ± 0.002b 0.043 ± 0.003ab 0.039 ± 0.004a 0.028 ± 0.005a 0.034 ± 0.003a
3 0.054 ± 0.002a 0.042 ± 0.003ab 0.045 ± 0.003ab 0.038 ± 0.003a 0.030 ± 0.006a 0.041 ± 0.001b
4 0.050 ± 0.001a 0.046 ± 0.003ab 0.050 ± 0.003b 0.037 ± 0.001a 0.027 ± 0.006a 0.038 ± 0.001ab

Table 3

Influence of different salt treatments on light saturation point in Spartina alterniflora and Phragmites australis (mean ± SE, n = 3)"

处理后天数
Day after treatment
互花米草 S. alterniflora 芦苇 P. australis
NaCl Na2SO4 Na2S NaCl Na2SO4 Na2S
0 2 440.0 ± 136.2a 2 067.1 ± 75.6a 2 258.1 ± 198.7a 1 815.1 ± 166.1a 2 081.2 ± 169.7a 1 911.2 ± 77.0a
1 2 517.8 ± 180.3a 2 366.9 ± 413.6a 2 246.4 ± 124.7a 1 958.9 ± 66.4a 1 943.5 ± 239.8a 2 141.6 ± 113.0a
2 2 520.5 ± 0.8a 2 221.7 ± 315.2a 2 313.3 ± 182.0a 1 973.9 ± 132.6a 1 970.5 ± 130.5a 1 924.3 ± 124.7a
3 2 475.9 ± 149.5a 1 951.2 ± 224.0a 2 438.8 ± 170.1a 1 747.9 ± 161.2a 1 942.0 ± 98.4a 2 054.1 ± 98.6a
4 2 371.4 ± 191.0a 2 230.3 ± 114.1a 2 613.2 ± 191.2a 1 905.5 ± 118.9a 1 917.9 ± 177.4a 1 788.5 ± 114.7a

Fig. 2

Influence of Na2S on net photosynthetic rate (A, B), quantum yield of PSII (C, D), photochemical quenching (E, F) and non-photochemical quenching (G, H) in Spartina alterniflora and Phragmites australis."

Table 4

Influence of different salt treatments on light compensation point in Spartina alterniflora and Phragmites australis (mean ± SE, n = 3)"

处理后天数
Day after treatment
互花米草 S. alterniflora 芦苇 P. australis
NaCl Na2SO4 Na2S NaCl Na2SO4 Na2S
0 57.2 ± 14.6a 52.7 ± 2.4a 45.4 ± 1.7ab 37.6 ± 6.9a 52.4 ± 3.1a 33.0 ± 14.8a
1 33.7 ± 3.1b 35.9 ± 4.4b 39.0 ± 1.9a 25.1 ± 7.8a 34.5 ± 2.9b 29.5 ± 11.1a
2 30.8 ± 2.4b 42.3 ± 1.5ab 67.0 ± 7.1c 27.6 ± 7.3a 43.3 ± 4.7ab 27.7 ± 13.9a
3 26.1 ± 0.9b 43.2 ± 6.8ab 58.2 ± 3.1bc 46.7 ± 5.5a 42.3 ± 6.8ab 46.9 ± 5.5a
4 30.6 ± 4.6b 46.0 ± 0.5ab 53.6 ± 4.3bc 32.4 ± 8.7a 31.9 ± 1.0b 57.8 ± 16.8a

Table 5

Influence of different salt treatments on maximum quantum yield of PSII in Spartina alterniflora and Phragmites australis (mean ± SE, n = 3)"

处理后天数
Day after treatment
互花米草 S. alterniflora 芦苇 P. australis
Na2SO4 Na2S NaCl Na2SO4 Na2S NaCl
0 0.810 ± 0.000a 0.791 ± 0.011a 0.786 ± 0.017a 0.825 ± 0.009a 0.797 ± 0.009a 0.794 ± 0.006a
1 0.796 ± 0.006ab 0.806 ± 0.007a 0.810 ± 0.001a 0.809 ± 0.003a 0.788 ± 0.034a 0.811 ± 0.010a
2 0.784 ± 0.008b 0.783 ± 0.016a 0.813 ± 0.005a 0.823 ± 0.007a 0.781 ± 0.043a 0.808 ± 0.014a
3 0.800 ± 0.005ab 0.773 ± 0.012a 0.809 ± 0.004a 0.821 ± 0.006a 0.816 ± 0.008a 0.794 ± 0.027a
4 0.795 ± 0.003ab 0.798 ± 0.006a 0.809 ± 0.003a 0.814 ± 0.011a 0.804 ± 0.020a 0.812 ± 0.009a

Fig. 3

Influence of NaCl on net photosynthetic rate (A, B), quantum yield of PSII (C, D), photochemical quenching (E, F) and non-photochemical quenching (G, H) in Spartina alterniflora and Phragmites australis."

35 (in Chinese with English abstract) [袁琳, 张利权, 古志钦 (2010). 入侵植物互花米草(Spartina alterniflora)叶绿素荧光对淹水胁迫的响应. 环境科学学报, 30, 882-889.]
36 Zhou CF, An SQ, Deng ZF, Yin DQ, Zhi YB, Sun ZY, Zhao H, Zhou LX, Fang C, Qian C (2009). Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China. Ecological Engineering, 35, 536-543.
37 Zhou CF, An SQ, Zhao CJ, Fang C, Lu XM, Zhao H, Liu JN (2009). Th`e influence of Spartina alterniflora invasion on emission of DMS and N2O in coastal salt marsh. Marine Sciences, 33(2), 17-21.
(in Chinese with English abstract) [周长芳, 安树青, 赵聪蛟, 方超, 陆霞梅, 赵晖, 刘静娜 (2009). 互花米草入侵对海岸盐沼二甲基硫及氧化亚氮气体释放的影响. 海洋科学, 33(2), 17-21.]
38 Zhou CF, Shen WY, Lu CM, Wang HX, Xiao Y, Zhao YQ, An SQ (2014). Effects of salinity on the photosynthesis of two Poaceous Halophytes. Clean-Soil, Air, Water, doi: 10.1002/clen.201300840.
39 Zhu XG, Zhang QD (1999). Advances in the research on the effects of NaCl on photosynthesis. Chinese Bulletin of Botany, 16, 332-338.
(in Chinese with English abstract) [朱新广, 张其德 (1999). NaCl对光合作用影响的研究进展. 植物学通报, 16, 332-338.]
40 Zhu YH, Tu NM, Xiao HQ, Guan GS, Wang H, Cai Q, Deng LC, Wei Y, Yi D, Huang ZC, Li HL (2008). Effects of sulfur nutrition on photosynthesis and chlorophyll fluorescence of tobacco leaves. Acta Ecologica Sinica, 28, 1000-1005.
1 An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007).Spartina invasion in China: Implications for invasive species management and future research. Weed Research, 47, 183-191.
2 Anttila CK, Daehler CC, Rank NE, Strong DR (1998). Greater male fitness of a rare invader (Spartina alterniflora, Poaceae) threatens a common native (Spartina foliosa) with hybridization. American Journal of Botany, 85, 1597-1601.
3 Arim M, Abades SR, Neill PE, Lima M, Marquet PA (2006). Spread dynamics of invasive species. Proceedings of the National Academy of Sciences of the United States of America, 103, 374-378.
4 Armstrong J, Armstrong W (2005). Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Annals of Botany, 96, 625-638.
5 Belnap J, Phillips SL, Sherrod SK, Moldenke A (2005). Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?Ecology, 86, 3007-3017.
6 Carlson PR, Forrest J (1982). Uptake of dissolved sulfide by Spartina alterniflora: Evidence from natural sulfur isotope abundance ratios. Science, 216, 633-635.
7 Chen ZY, Li B, Chen JK (2004). Ecological consequences and management of Spartina spp. invasions in coastal ecosystems. Biodiversity Science, 12, 280-289.
(in Chinese with English abstract) [陈中义, 李博, 陈家宽 (2004). 米草属植物入侵的生态后果及管理对策. 生物多样性, 12, 280-289.]
8 Chung C (2006). Forty years of ecological engineering with Spartina plantations in China. Ecological Engineering, 27, 49-57.
9 Daehler CC, Strong DR (1996). Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in pacific estuaries, USA. Biological Conservation, 78, 51-58.
10 Deng ZF, An SQ, Zhi YB, Zhou CF, Chen L, Zhao CJ, Fang SB, Li HL (2006). Preliminary studies on invasive model and outbreak mechanism of exotic species, Spartina alterniflora Loisel. Acta Ecologica Sinica, 26, 2678-2686.
(in Chinese with English abstract) [邓自发, 安树青, 智颖飙, 周长芳, 陈琳, 赵聪蛟, 方淑波, 李红丽 (2006). 外来种互花米草入侵模式与爆发机制. 生态学报, 26, 2678-2686.]
11 Fang C, Zhao H, Zhou CF, Lu XM, Chen FF, Yang Q, An SQ (2007). The impact of Spartina alterniflora invasion on soil properties of coastal salt marsh in China. Journal of Nanjing University(Natural Scincnce), 43, 274-283.
(in Chinese with English abstract) [方超, 赵晖, 周长芳, 陆霞梅, 陈奋飞, 杨茜, 安树青 (2007). 互花米草入侵对我国海岸盐沼土壤特性的影响. 南京大学学报(自然科学版), 43, 274-283.]
12 Gao S, Tanji KK, Scardaci SC (2004). Impact of rice straw incorporation on soil redox status and sulfide toxicity. Agronomy Journal, 96, 70-76.
13 Gu ZQ, Zhang LQ (2009). Physiological responses of Spartina alterniflora to long-term waterlogging stress. Acta Scientiae Circumstantiae, 29, 876-881.
(in Chinese with English abstract) [古志钦, 张利权 (2009). 互花米草对持续淹水胁迫的生理响应. 环境科学学报, 29, 876-881.]
14 Hulme PE, Pysek P, Nentwig W, Vilà M (2009). Will threat of biological invasions unite the European Union?Science, 324, 40-41.
15 Jiang GM, Zhu GJ (2001). Effects of natural high temperature and irradiation on photosynthesis and related parameters in three arid sandy shrub species. Acta Phytoecologica Sinica, 25, 525-531.
(in Chinese with English abstract) [蒋高明, 朱桂杰 (2001). 高温强光环境条件下3种沙地灌木的光合生理特点.植物生态学报, 25, 525-531.]
16 Kang H, Shi GY, Li JM (2009). Effects of NaCl stress on photosynthesis and parameters of Spartina alterniflora. Guangxi Sciences, 16, 451-454.
(in Chinese with English abstract) [康浩, 石贵玉, 李佳枚 (2009). NaCl胁迫对互花米草光合作用及其参数的影响. 广西科学, 16, 451-454.]
17 Kathilankal JC, Mozdzer TJ, Fuentes JD, McGlathery KJ, D’Odorico P, Zieman JC (2011). Physiological responses of Spartina alterniflora to varying environmental conditions in Virginia marshes. Hydrobiologia, 669, 167-181.
18 Klepac-Ceraj V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF (2004). High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environmental Microbiology, 6, 686-698.
19 Kocsis MG, Nolte KD, Rhodes D, Shen TL, Gage DA, Hanson AD (1998). Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora. Plant Physiology, 117, 273-281.
20 Liang X, Zhang LQ, Zhao GQ (2006). A comparison of photosynthetic characteristics between Spartina alterniflora and Phragmites australis under different CO2 concentrations. Acta Ecologica Sinica, 26, 842-848.
(in Chinese with English abstract) [梁霞, 张利权, 赵广琦 (2006). 芦苇与外来植物互花米草在不同CO2浓度下的光合特性比较. 生态学报, 26, 842-848.]
21 Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659-668.
22 Naidoo G, McKee KL, Mendelssohn IA (1992). Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae). American Journal of Botany, 79, 765-770.
23 Otte ML, Wilson G, Morris JT, Moran BM (2004). Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. Journal of Experimental Botany, 55, 1919-1925.
24 Pagter M, Bragato C, Malagoli M, Brix H (2009). Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Botany, 90, 43-51.
25 Renny-Byfield S, Ainouche M, Leitch IJ, Lim KY, Le Comber SC, Leitch AR (2010). Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritime origin. Annals of Botany, 105, 527-533.
26 Seliskar DM, Smart KE, Higashikubo BT, Gallagher JL (2004). Seedling sulfide sensitivity among plant species colonizing Phragmites-infested wetlands. Wetlands, 24, 426-433.
27 Shen WY, Lu CM, Zhou CF (2011). Antioxidant systems of Spartina alterniflora and Phragmites australis responded differently to environmental sulfur stress. Journal of Fudan University(Natural Scincnce), 50, 653-661.
(in Chinese with English abstract ) [沈文燕, 陆长梅, 周长芳 (2011). 互花米草和芦苇抗氧化系统在抵御硫胁迫过程中的响应差异. 复旦学报(自然科学版), 50, 653-661.]
28 Stribling JM (1997). The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides. Aquatic Botany, 56, 131-143.
29 Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Li B (2006). Invasive Spartina alterniflora: Biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559-588.
(in Chinese with English abstract) [王卿, 安树青, 马志军, 赵斌, 陈家宽, 李博 (2006). 入侵植物互花米草——生物学、生态学及管理. 植物分类学报, 44, 559-588.]
30 Wu Y, Gao L, Cao MJ, Xiang CB (2007). Plant sulfur metabolism, regulation, and biological functions. Chinese Bulletin of Botany, 24, 735-761.
(in Chinese with English abstract) [吴宇, 高蕾, 曹民杰, 向成斌 (2007). 植物硫营养代谢、调控与生物学功能. 植物学通报, 24, 735-761.]
31 Xiao Y, Tang JB, An SQ (2011). Responses of growth and sexual reproduction of Phragmites australis and Spartina alterniflora to salinity stress. Chinese Journal of Ecology, 30, 267-272.
(in Chinese with English abstract) [肖燕, 汤俊兵, 安树青 (2011). 芦苇、互花米草的生长和繁殖对盐分胁迫的响应. 生态学杂志, 30, 267-272.]
32 Ye Q, Hou ZH, Liu J, Liu RQ, Liu X (2011). H2O2 involvement in H2S-induced stomatal closure of Arabidopsis thaliana L. Plant Physiology Journal, 47, 1195-1200.
(in Chinese with English abstract) [叶青, 侯智慧, 刘菁, 刘瑞清, 刘新 (2011). H2O2介导H2S诱导的拟南芥气孔关闭. 植物生理学报, 47, 1195-1200.]
33 Ye ZP, Yu Q (2007). Comparison of a new model of light response of photosynthesis with traditional models. Journal of Shenyang Agriculture University, 38, 771-775.
(in Chinese with English abstract) [叶子飘, 于强 (2007). 一个光合作用光响应新模型与传统模型的比较. 沈阳农业大学学报, 38, 771-775.]
34 Ye ZP, Yu Q (2008). Comparison of new and several classical models of photosynthesis in response to irradiance. Journal of Plant Ecology (Chinese Version), 32, 1356-1361.
(in Chinese with English abstract) [叶子飘, 于强 (2008). 光合作用光响应模型的比较. 植物生态学报, 32, 1356-1361.]
35 Yuan L, Zhang LQ, Gu ZQ (2010). Responses of chlorophyll fluorescence of an invasive plant Spartina alterniflora to continuous waterlogging. Acta Scientiae Circumstantiae, 30, 882-889.
40 (in Chinese with English abstract) [朱英华, 屠乃美, 肖汉乾, 关广晟, 王辉, 蔡奇, 邓力超, 危跃, 易迪, 黄泽春, 李海林 (2008). 硫对烟草叶片光合特性和叶绿素荧光参数的影响. 生态学报, 28, 1000-1005.]
[1] XU Guang-Yao, LI Hong-Yuan, MO Xun-Qiang, MENG Wei-Qing. Composition and spatial-temporal distribution of Chinese naturalized plants [J]. Chin J Plant Ecol, 2019, 43(7): 601-610.
[2] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems [J]. Biodiv Sci, 2019, 27(5): 491-504.
[3] Yu Wensheng, Guo Yaolin, Jiang Jiajia, Sun Keke, Ju Ruiting. Comparison of the life history of a native insect Laelia coenosa with a native plant Phragmites australis and an invasive plant Spartina alterniflora [J]. Biodiv Sci, 2019, 27(4): 433-438.
[4] SUN Hui-Min, JIANG Jiang, CUI Li-Na, ZHANG Shui-Feng, ZHANG Jin-Chi. Effects of Spartina alterniflora invasion on soil organic carbon composition of mangrove wetland in Zhangjiang River Estuary [J]. Chin J Plan Ecolo, 2018, 42(7): 774-784.
[5] Shiguo Sun,Bin Lu,Xinmin Lu,Shuangquan Huang. On reproductive strategies of invasive plants and their impacts on native plants [J]. Biodiv Sci, 2018, 26(5): 457-467.
[6] CHEN Bao-Ming, WEI Hui-Jie, CHEN Wei-Bin, ZHU Zheng-Cai, YUAN Ya-Ru, ZHANG Yong-Long, LAN Zhi-Gang. Effects of plant invasion on soil nitrogen transformation processes and it’s associated microbial [J]. Chin J Plant Ecol, 2018, 42(11): 1071-1081.
[7] Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla [J]. Chin J Plan Ecolo, 2017, 41(5): 570-576.
[8] Liang-Hua CHEN, Juan LAI, Xiang-Wei HU, Wan-Qin YANG, Jian ZHANG, Xiao-Jun WANG, Ling-Jie TAN. Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution [J]. Chin J Plan Ecolo, 2017, 41(4): 480-488.
[9] Li-Ling JIANG, Cong-Sheng ZENG, Jun-Jiong SHAO, Xu-Hui ZHOU. Plant nutrient dynamics and stoichiometric homeostasis of invasive species Spartina alterniflora and native Cyperus malaccensis var. brevifolius in the Minjiang River estuarine wetlands [J]. Chin J Plan Ecolo, 2017, 41(4): 450-460.
[10] Quan CHEN, Ke-Ming MA. Effects of Spartina alterniflora invasion on enrichment of sedimental heavy metals in a mangrove wetland and the underlying mechanisms [J]. Chin J Plan Ecolo, 2017, 41(4): 409-417.
[11] Yan Sun, Zhongshi Zhou, Rui Wang, Heinz Müller-Schärer. Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia [J]. Biodiv Sci, 2017, 25(12): 1285-1294.
[12] CHEN Quan,MA Ke-Ming. Research overview and trend on biological invasion in mangrove forests [J]. Chin J Plan Ecolo, 2015, 39(3): 283-299.
[13] Ziyan Zhang, Zhijie Zhang, Xiaoyun Pan. Phenotypic plasticity of Alternanthera philoxeroides in response to shading: introduced vs. native populations [J]. Biodiv Sci, 2015, 23(1): 18-22.
[14] Caiyun Zhao,Xiaoyan Liu,Jiade Bai,Fengchun Lü,Junsheng Li. Impact of Spartina alterniflora on benthic macro-invertebrates communities on mangrove wetland in Xicungang Estuary, Guangxi [J]. Biodiv Sci, 2014, 22(5): 630-639.
[15] Xi’ao Zhang,Xiaoyun Sui,Zhi Lü,Yifeng Chen. A prediction of the global habitat of two invasive fishes (Pseudorasbora parva and Carassius auratus) from East Asia using Maxent [J]. Biodiv Sci, 2014, 22(2): 182-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wenxia Wang;Shuguang Li;Xiaoming Zhao;Bingcheng Lin;Yuguang Du. Effects of Oligochitosan on Transcription of Genes Involved in Jasmonic Acid Biosynthesis in Tobacco Suspension Cells[J]. Chin Bull Bot, 2008, 25(05): 526 -532 .
[2] Yuan Gao;Li Tian;Song Qin* . Positive Selection in Plant Evolution[J]. Chin Bull Bot, 2008, 25(04): 401 -406 .
[3] Lei Zhang Baoshi Zhang. Mapping and Cloning of Quantitative Trait Genes in Plants[J]. Chin Bull Bot, 2007, 24(04): 553 -560 .
[4] Cai Ji-jing. Scanning Electron Microscopy Method for the Direct Observation of Fresh Plant Specimen[J]. Chin Bull Bot, 1983, 1(02): 55 -56 .
[5] LI AI-Fen;CHEN Min and ZHOU Bai-Cheng. Studies on Characterization of Fluorescence Emission Spectra of Brown Algae at 77K[J]. Chin Bull Bot, 1999, 16(03): 274 -279 .
[6] Huan Feng, Shuli Yi, Jiaheng Xie, Mengqi Lei, Xuan Huang. Callus Induction and Plant Regeneration of Rosa hybrida[J]. Chin Bull Bot, 2014, 49(5): 595 -602 .
[7] Meishan Zhang, Bao Liu. Epigenetic Regulation in Plant Endosperm Development[J]. Chin Bull Bot, 2012, 47(2): 101 -110 .
[8] Zhangxiong Han, Li Li, Xinwen Xu, Xiangfang Lü, Hongxia Yue, Zhen Bian, Lizheng Li. Effect of NaCl on Physiological Features of 4 Legume Seedlings in Desert Areas of Xinjiang, China[J]. Chin Bull Bot, 2012, 47(5): 491 -499 .
[9] Jin Guo, Xiaoyan Yang, Hongping Deng, Qin Huang, Yunting Li, Huayu Zhang. Sex Expression and Reproduction Allocation in Eurya loquaiana[J]. Chin Bull Bot, 2017, 52(2): 202 -209 .
[10] Chen Guoliang, Liu Duhui. A Preliminary Study on the Rational Eco-Economic Structure Model of Agriculture, Forestry and Animal Husbandry in the Loess Hilly Regions[J]. Chin J Plan Ecolo, 1983, 7(3): 215 -221 .