Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (3): 327-336.doi: 10.17521/cjpe.2017.0067

• Research Articles • Previous Articles     Next Articles

Effects of enclosure on carbon density of plant-soil system in typical steppe and desert steppe in Nei Mongol, China

YAN Bao-Long,WANG Zhong-Wu*(),QU Zhi-Qiang,WANG Jing,HAN Guo-Dong*()   

  1. College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Huhhot 010019, China
  • Online:2018-03-27 Published:2018-03-20
  • Contact: Zhong-Wu WANG,Guo-Dong HAN;
  • Supported by:
    Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05050402-6);the National Key Research and Development Project of China(2016YFC0500504);the Science and Technology Projects in Inner Mongolia Autonomous Region and West Light Foundation of Chinese Academy of Sciences.


Aims As an immense carbon (C) stock, grassland ecosystem plays a crucial role in global C cycling. The objective of this research was to reveal the effects of enclosure on C density of the plant-soil system by comparing the aboveground biomass (AGB), belowground biomass (BGB) and soil C density in enclosure plots with those in grazing plots in the typical steppe (TS) and desert steppe (DS) in Nei Mongol, China.

Methods At each of the 19 study sites, we set up a 100 m × 100 m plot and 5 quadrats (1 m × 1 m) along the diagonal transect within each plot. At each quadrat, AGB was harvested first and then a soil core (0-100 cm depth, 7 cm inner diameter) was taken for BGB and soil C content measurement. Each soil core was divided into 7 depth increments (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm, 50-70 cm, 70-100 cm).

Important findings (1) Enclosure significantly increased C density of AGB and BGB in TS. In DS, enclosure significantly increased C density of AGB, but had no significant effect on the C density of BGB. (2) Enclosure significantly increased soil C density in TS, but had no significant impact in DS although there was an increasing trend. (3) For all increments along the soil profile, enclosure significantly increased BGB and soil C density compared to grazing plots in TS, but this effect was not found in DS. (4) Enclosure increased C density of the plant-soil system by 2.2 and 1.6 times in TS and DS, respectively. 65% and 89% C was stored in soil in TS and DS, respectively, and BGB C stock accounted for more than 90% of total biomass C in both TS and DS. Enclosure is an effective approach to improve C sequestration in grassland ecosystems.

Key words: enclosure, typical steppe, desert steppe, carbon density, vertical distribution

Fig. 1

Mean precipitation and air temperature of each study site from 2001 to 2012. Solid dots indicate air temperature, and the empty ones indicate precipitation."

Table 1

Study locations and ecosystem characteristics"

Steppe type
Longitude (° E)
Latitude (° N)
Altitude (m)
Soil type
Plant community
Typical steppe
112.43 43.10 1 081 SY 草原风沙土
Grassland sand soil
冷蒿 Artemisia frigida
113.16 42.12 1 362 SY 淡栗钙土 Light chestnut soil 羊草 Leymus chinensis
113.84 43.83 1 135 SZ 淡栗钙土 Light chestnut soil 西北针茅+冷蒿
Stipa sareptana var. krylovii + Artemisia frigida
114.00 42.54 1 196 XH 栗钙土 Chestnut soil 小叶锦鸡儿+大针茅
Caragana microphylla + Stipa grandis
114.40 42.43 1 258 XH 栗褐土 Cinnamon soil 西北针茅+糙隐子草
Stipa sareptana var. krylovii + Cleistogenes squarrosa
禁牧 Ungrazing 114.43 42.47 1 216 XH 栗钙土 Chestnut soil 冷蒿 Artemisia frigida
115.04 42.26 1 397 ZB 栗钙土 Chestnut soil 西北针茅 Stipa sareptana var. krylovii
115.10 42.60 1 266 ZB 栗褐土 Chestnut soil 西北针茅+冰草
Stipa sareptana var. krylovii + Agropyron cristatum
115.14 42.31 1 334 ZB 栗钙土 Chestnut soil 西北针茅+小叶锦鸡儿
Stipa sareptana var. krylovii + Caragana microphylla
115.27 42.38 1 285 ZB 栗钙土 Chestnut soil 西北针茅+冷蒿
Stipa sareptana var. krylovii + Artemisia frigida
Desert steppe
111.35 43.39 1 050 SY 淡栗钙土 Light chestnut soil 小针茅+画眉草
Stipa klemenzii + Eragrostis pilosa
112.34 43.27 1 016 SY 棕钙土 Brown soil 小针茅+多根葱
Stipa klemenzii + Allium polyrhizum
112.58 42.95 1 094 SY 淡栗钙土 Light chestnut soil 小针茅+无芒隐子草
Stipa klemenzii + Cleistogenes songorica
113.37 43.41 1 060 SY 淡栗钙土 Light chestnut soil 小针茅 Stipa klemenzii
112.66 44.57 1 193 SZ 棕钙土 Brown soil 西北针茅 Stipa sareptana var. krylovii
113.34 43.95 949 SZ 棕钙土 Brown soil 西北针茅+小叶锦鸡儿
Stipa sareptana var. krylovii + Caragana microphylla
113.63 43.62 1 096 SZ 淡栗钙土 Light chestnut soil 西北针茅 Stipa sareptana var. krylovii
113.83 43.50 1 036 SZ 淡栗钙土 Light chestnut soil 西北针茅+狭叶锦鸡儿
Stipa sareptana var. krylovii + Caragana microphylla
禁牧 Ungrazing 112.74 42.77 1 097 SY 淡栗钙土 Light chestnut soil 西北针茅 Stipa sareptana var. krylovii

Fig. 2

The effects of enclosure and grazing on the carbon density of biomass (mean ± SD). A, Aboveground. B, Belowground. ***, p < 0.000 1."

Fig. 3

The effects of enclosure and grazing on soil carbon density in the typical and desert steppes (mean ± SD). **, p < 0.01."

Fig. 4

The effects of enclosure and grazing on the vertical distribution of belowground biomass carbon density (mean ± SD). A, Typical steppe. B, Desert steppe. ***, p < 0.000 1; **, p < 0.01."

Table 2

The effects of interaction between grazing and soil depth on belowground carbon density"

影响因子 Impact factor 典型草原 Typical steppe 荒漠草原 Desert steppe
Belowground biomass
carbon density (g·m-2)
Soil carbon density
Belowground biomass
carbon density (g·cm-3)
Soil carbon density
F p F p F p F p
放牧利用 Grazing 164.48 <0.000 1 126.39 <0.000 1 33.82 <0.000 1 0.04 0.832 7
土层深度 Soil depth 40.31 <0.000 1 6.88 <0.000 1 0.20 0.655 6 9.86 <0.000 1
放牧利用×土层深度 Grazing × Soil depth 22.41 <0.000 1 1.95 0.086 1 1.05 0.393 4 0.59 0.711 2

Fig. 5

The effects of enclosure and grazing on the vertical distribution of soil carbon density (mean ± SD). A, Typical steppe. B, Desert steppe. ***, p < 0.000 1; **, p < 0.01 *, p < 0.05."

Fig. 6

The effects of enclosure and grazing on litter mass in the typical and desert steppes (mean ± SD). **, p < 0.01."

[1] Amula, Zhao ML, Han GD, Jia L, Dong T ( 2011). Influences of grazing intensity on carbon and nitrogen contents in desert steppe. Chinese Journal of Grassland, 33, 115-118.
阿穆拉, 赵萌莉, 韩国栋, 贾乐, 董亭 ( 2011). 放牧强度对荒漠草原地区土壤有机碳及全氮含量的影响. 中国草地学报, 33, 115-118.
[2] Ao YM, Jiao Y, Xu Z ( 2011). The changes of carbon and nitrogen storage of plant-soil system of enclosure years in typical steppe. Ecology and Environmental Sciences, 20, 1403-1410.
doi: 10.3969/j.issn.1674-5906.2011.10.004
敖伊敏, 焦燕, 徐柱 ( 2011). 典型草原不同围封年限植被-土壤系统碳氮贮量的变化. 生态环境学报, 20, 1403-1410.
doi: 10.3969/j.issn.1674-5906.2011.10.004
[3] Bai Y, Han X, Wu J, Chen Z, Li L ( 2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
doi: 10.1038/nature02850 pmid: 202020202020202020202020
[4] Bakker ES, Olff H, Boekhoff M, Gleichman JM, Berendse F ( 2004). Impact of herbivores on nitrogen cycling: Contrasting effects of small and large species. Oecologia, 138, 91-101.
doi: 10.1007/s00442-003-1402-5 pmid: 14566555
[5] Bond WJ ( 2005). Large parts of the world are brown or black: A different view on the “Green World” hypothesis. Journal of Vegetation Science, 16, 261-266.
doi: 10.1111/j.1654-1103.2005.tb02364.x
[6] Burke IC, Lauenroth WK, Vinton MA, Hook PB, Kelly RH, Epstein HE, Aguiar MR, Robles MD, Aguilera MO, Murphy KL ( 1998). Plant-soil interactions in temperate grasslands. Biogeochemistry, 42, 121-143.
doi: 10.1023/A:1005987807596
[7] Derner JD, Boutton TW, Briske DD ( 2006). Grazing and ecosystem carbon storage in the North American Great Plains. Plant and Soil, 280, 77-90.
doi: 10.1007/s11104-005-2554-3
[8] Derner JD, Schuman GE ( 2007). Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. Journal of Soil & Water Conservation, 62, 77-85.
doi: 10.1016/j.ejsobi.2006.12.001
[9] Fan J, Zhong H, Harris W, Yu G, Wang S, Hu Z, Yue Y ( 2008). Carbon storage in the grasslands of China based on field measurements of above- and below-ground biomass. Climatic Change, 86, 375-396.
doi: 10.1007/s10584-007-9316-6
[10] Fang JY, Yang YH, Ma WH, Mohhamot A, Shen HH ( 2010). Carbon pool and its variation of grassland ecosystem in China. Chinese Science: Life Sciences, 40, 566-576.
(in Chinese) [ 方精云, 杨元合, 马文红, 安尼瓦尔·买买提, 沈海花 ( 2010). 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 40, 566-576.
[11] Frank DA, Groffman PM ( 1998). Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 79, 2229-2241.
doi: 10.1890/0012-9658(1998)079[2229:UVLCOS]2.0.CO;2
[12] Grace J ( 2004). Presidential address: Understanding and managing the global carbon cycle. Journal of Ecology, 92, 189-202.
doi: 10.1111/j.0022-0477.2004.00874.x
[13] Han GD, Jiao SY, Bili getu, Aodeng gaowa ( 2007). Effects of plant species diversity and productivity under different stocking rates in the Stipa breviflora Griseb. desert steppe. Acta Ecologica Sinica, 27, 182-188.
doi: 10.3321/j.issn:1000-0933.2007.01.021
韩国栋, 焦树英, 毕力格图, 敖登高娃 ( 2007). 短花针茅草原不同载畜率对植物多样性和草地生产力的影响. 生态学报, 27, 182-188.
doi: 10.3321/j.issn:1000-0933.2007.01.021
[14] Hu Z, Li S, Guo Q, Niu S, He N, Li L, Yu G ( 2015). A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Global Change Biology, 22, 1385.
doi: 10.1111/gcb.13133 pmid: 26485056
[15] Hu XM, Hou XY, Ding Y, Chen HJ, Yun XJ, Wu ZN ( 2014). Dynamics of organic carbon storage in Stipa breviflora desert steppe ecosystem under different grazing systems. Chinese Journal of Grassland, 36, 13-17.
doi: 10.3969/j.issn.1673-5021.2014.04.003
胡向敏, 侯向阳, 丁勇, 陈海军, 运向军, 武自念 ( 2014). 不同放牧制度下短花针茅荒漠草原生态系统碳储量动态. 中国草地学报, 36, 13-17.
doi: 10.3969/j.issn.1673-5021.2014.04.003
[16] Hou XY, Ding Y ( 2014). Carbon Sequestration Potential of Different Protection and Construction Technology in the Main Types of Grasslands in Inner Mongolia. Science Press, Beijing.
(in Chinese) [ 侯向阳, 丁勇 ( 2014). 内蒙古主要草原类型区保护建设技术固碳潜力研究. 科学出版社, 北京.
[17] Li XB, Fan RX, Liu XD ( 2014). Advance in studies on carbon storage and carbon process in grassland ecosystem of China. Ecology and Environmental Sciences, 11, 1845-1851.
doi: 10.3969/j.issn.1674-5906.2014.11.019
李学斌, 樊瑞霞, 刘学东 ( 2014). 中国草地生态系统碳储量及碳过程研究进展. 生态环境学报, 11, 1845-1851.
doi: 10.3969/j.issn.1674-5906.2014.11.019
[18] Li Y, Han GD ( 2011). Effects of different grazing intensities on the under ground biomass and its vertical distribution of the typical Stipa grandis steppe. Journal of Inner Mongolia Agricultural University, 32, 89-92.
李怡, 韩国栋 ( 2011). 放牧强度对内蒙古大针茅典型草原地下生物量及其垂直分布的影响. 内蒙古农业大学学报(自然科学版), 32, 89-92.
[19] Liu N, Zhang YJ ( 2010). Effects of grazing on soil organic carbon and total nitrogen in typical steppe. Pratacultural Science, 27(4), 11-14.
刘楠, 张英俊 ( 2010). 放牧对典型草原土壤有机碳及全氮的影响. 草业科学, 27(4), 11-14.
[20] Liu PT, Yang TT, Yao GZ, Li P, Wu H, He J ( 2014). Change of carbon density in desert steppe under different grazing intensities. Journal of Northwest A&F University (Natural Science Edition), 42, 157-162.
doi: 10.13207/j.cnki.jnwafu.2014.07.016
刘朋涛, 杨婷婷, 姚国征, 李鹏, 吴昊, 贺晶 ( 2014). 不同放牧强度下荒漠草原碳密度的变化. 西北农林科技大学学报(自然科学版), 42, 157-162.
doi: 10.13207/j.cnki.jnwafu.2014.07.016
[21] Liu SL, Lin L, Guo XW, Li J, Ouyang JZ, Du YG, Zhang FW, Li YK, Cao GM ( 2014). The variation feature of soil inorganic carbon storage in alpine grassland in Qinghai Province. Acta Ecologica Sinica, 34, 5953-5961.
刘淑丽, 林丽, 郭小伟, 李婧, 欧阳经政, 杜岩功, 张法伟, 李以康, 曹广民 ( 2014). 青海省高寒草地土壤无机碳储量空间分异特征. 生态学报, 34, 5953-5961.
[22] Ma WH, Han M, Lin X, Ren YL, Wang ZH, Fang JY ( 2006). Carbon storage in vegetation of grasslands in Inner Mongolia. Journal of Arid Land Resources and Environment, 20, 192-195.
doi: 10.3969/j.issn.1003-7578.2006.03.038
马文红, 韩梅, 林鑫, 任艳林, 王志恒, 方精云 ( 2006). 内蒙古温带草地植被的碳储量. 干旱区资源与环境, 20, 192-195.
doi: 10.3969/j.issn.1003-7578.2006.03.038
[23] Mekuria W, Veldkamp E, Haile M, Nyssen J, Muys B, Gebrehiwot K ( 2007). Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. Journal of Arid Environments, 69, 270-284.
doi: 10.1016/j.jaridenv.2006.10.009
[24] Mu SJ, Zhou KX, Chen YZ, Sun JM, Li JL ( 2014). Research progress on the carbon cycle and impact factors of grassland ecosystem. Acta Agrestia Sinica, 22, 439-447.
穆少杰, 周可新, 陈奕兆, 孙成明, 李建龙 ( 2014). 草地生态系统碳循环及其影响因素研究进展. 草地学报, 22, 439-447.
[25] Nosetto MD, Jobbagy EG, Paruelo JM ( 2006). Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments, 67, 142-156.
[26] Piao SL, Fang JY, He JS, Xiao Y ( 2004). Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 28, 491-498.
朴世龙, 方精云, 贺金生, 肖玉 ( 2004). 中国草地植被生物量及其空间分布格局. 植物生态学报, 28, 491-498.
[27] Piao S, Fang J, Zhou L, Tan K, Tao S ( 2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 21, 1-10.
doi: 10.1029/2005GB002634
[28] Raiesi F, Asadi E ( 2006). Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology and Fertility of Soils, 43, 76-82.
doi: 10.1007/s00374-005-0066-1
[29] Reeder JD, Schuman GE ( 2002). Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 116, 457-463.
doi: 10.1016/S0269-7491(01)00223-8 pmid: 11822725
[30] Ren HY, Zheng SX, Bai YF ( 2009). Effects of grazing on foliage biomass allocation of grassland communities in Xilin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology, 33, 1065-1074.
doi: 10.3773/j.issn.1005-264x.2009.06.006
任海彦, 郑淑霞, 白永飞 ( 2009). 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响. 植物生态学报, 33, 1065-1074.
doi: 10.3773/j.issn.1005-264x.2009.06.006
[31] Sarula, Hou XY, Li JX, Ding Y, Wu XY, Yun XJ ( 2013). Organic carbon storage in vegetation-soil systems of typical grazing degraded steppe. Acta Agrestia Sinica, 22(5), 18-26.
doi: 10.11686/cyxb20130503
萨茹拉, 侯向阳, 李金祥, 丁勇, 吴新宏, 运向军 ( 2013). 不同放牧退化程度典型草原植被—土壤系统的有机碳储量. 草业学报, 22(5), 18-26.
doi: 10.11686/cyxb20130503
[32] Sang YY, Ni HC, Qu HL ( 2006). Surveying biomass of degraded grassland for forbidden grazing and enclosing after three years. Qinghai Prataculture, 15(3), 7-9.
doi: 10.3969/j.issn.1008-1445.2006.03.003
桑永燕, 宁洪才, 屈海林 ( 2006). 禁牧封育3年后退化草地生物量测定. 青海草业, 15(3), 7-9.
doi: 10.3969/j.issn.1008-1445.2006.03.003
[33] Scurlock JMO, Hall DO ( 1998). The global carbon sink: A grassland perspective. Global Change Biology, 4, 229-233.
doi: 10.1046/j.1365-2486.1998.00151.x
[34] Scurlock JMO, Johnson K, Olson RJ ( 2002). Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8, 736-753.
doi: 10.1007/s11136-006-9005-3
[35] Shrestha G, Stahl P ( 2008). Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion. Agriculture Ecosystems & Environment, 125, 173-181.
doi: 10.1016/j.agee.2007.12.007
[36] Steffens M, K?lbl A, Kai UT, K?gel-Knabner I ( 2008). Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P. R. China). Geoderma, 143, 63-72.
doi: 10.1016/j.geoderma.2007.09.004
[37] Tanentzap AJ, Coomes DA ( 2011). Carbon storage in terrestrial ecosystems: Do browsing and grazing herbivores matter? Biological Reviews of the Cambridge Philosophical Society, 87, 72-94.
doi: 10.1111/j.1469-185X.2011.00185.x pmid: 21635684
[38] Wang JL, Chang TY, Li P, Cheng HH, Fang HL ( 2009). The vegetation carbon reserve and its spatial distribution configuration of grassland ecosystem in Tibet. Acta Ecologica Sinica, 29, 931-938.
doi: 10.3321/j.issn:1000-0933.2009.02.047
王建林, 常天军, 李鹏, 成海宏, 方华丽 ( 2009). 西藏草地生态系统植被碳贮量及其空间分布格局. 生态学报, 29, 931-938.
doi: 10.3321/j.issn:1000-0933.2009.02.047
[39] Wang W, Fang JY ( 2009). Soil respiration and human effects on global grasslands. Global & Planetary Change, 67, 20-28.
doi: 10.1016/j.gloplacha.2008.12.011
[40] Welker JM, Fahnestock JT, Povirk KL, Bilbrough CJ, Piper RE ( 2004). Alpine Grassland CO2 exchange and nitrogen cycling: Grazing history effects, medicine bow range, Wyoming, U.S.A. Arctic Antarctic & Alpine Research, 36, 11-20.
[41] Wilcox BP ( 2007). Does rangeland degradation have implications for global streamflow? Hydrological Processes, 21, 2961-2964.
doi: 10.1002/hyp.6856
[42] Wu GL, Du GZ, Liu ZH, Thirgood S ( 2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319, 115-126.
[43] Wu GL, Liu ZH, Zhang L, Chen JM, Hu TM ( 2010). Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil, 332, 331-337.
doi: 10.1007/s11104-010-0299-0
[44] Xu ZQ, Li WH, Xu Q, Min QW, Wang YS, Wu XB ( 2009). The impacts of human disturbances on soil carbon density and ecosystem storage of carbon of typical steppe. Journal of Natural Resources, 2, 621-629.
许中旗, 李文华, 许晴, 闵庆文, 王英舜, 吴雪宾 ( 2009). 人为干扰对典型草原土壤碳密度及生态系统碳贮量的影响. 自然资源学报, 2, 621-629.
[45] Yan YC, Tang HP ( 2008). Restoration of degraded grassland communities and its contribution to carbon sequestration under enclosure in typical steppe of Inner Mongolia. Progress in Natural Science, 18, 546-551.
doi: 10.3321/j.issn:1002-008X.2008.05.009
(in Chinese) [ 闫玉春, 唐海萍 ( 2008). 围封下内蒙古典型草原区退化草原群落的恢复及其对碳截存的贡献. 自然科学进展, 18, 546-551.
doi: 10.3321/j.issn:1002-008X.2008.05.009
[46] Yu J, Fang L, Bian ZF, Wang Q, Yu YC ( 2014). A review of the composition of soil carbon pool. Acta Ecologica Sinica, 34, 4829-4838.
doi: 10.5846/stxb201301050036
余健, 房莉, 卞正富, 汪青, 俞元春 ( 2014). 土壤碳库构成研究进展. 生态学报, 34, 4829-4838.
doi: 10.5846/stxb201301050036
[47] Zhang BB, Liu F, Ding JZ, Fang K, Yang GB, Liu L, Chen YL, Li F, Yang YH ( 2016). Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: An updated evaluation using deep cores. Chinese Journal of Plant Ecology, 40, 93-101.
doi: 10.17521/cjpe.2015.0406
张蓓蓓, 刘芳, 丁金枝, 房凯, 杨贵彪, 刘莉, 陈永亮, 李飞, 杨元合 ( 2016). 青藏高原高寒草地3米深度土壤无机碳库及分布特征. 植物生态学报, 40, 93-101.
doi: 10.17521/cjpe.2015.0406
[48] Zhang J, Zhang L, Liu W, Yue QI, Xiao WO ( 2014). Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China. Journal of Geographical Sciences, 24, 303-312.
doi: 10.1007/s11442-014-1089-z
[49] Zhao HL, Zhao XY, Zhou RL, Zhang TH, Drake S ( 2005). Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. Journal of Arid Environments, 62, 309-319.
doi: 10.1016/j.jaridenv.2004.11.009
[50] Zhou ZY, Li FR, Chen SK, Zhang HR, Li G ( 2011). Dynamics of vegetation and soil carbon and nitrogen accumulation over 26 years under controlled grazing in a desert shrubland. Plant and Soil, 341, 257-268.
doi: 10.1007/s11104-010-0641-6
[1] WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92.
[2] WANG Ming-Ming,LIU Xin-Ping,HE Yu-Hui,ZHANG Tong-Hui,WEI Jing,Chelmge ,SUN Shan-Shan. How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land [J]. Chin J Plant Ecol, 2019, 43(8): 672-684.
[3] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[4] TANG Yong-Kang, WU Yan-Tao, WU Kui, GUO Zhi-Wei, LIANG Cun-Zhu, WANG Min-Jie, CHANG Pei-Jing. Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities [J]. Chin J Plant Ecol, 2019, 43(5): 408-417.
[5] CHEN Lin, WANG Lei, YANG Xin-Guo, SONG Nai-Ping, LI Yue-Fei, SU Ying, BIAN Ying-Ying, ZHU Zhong-You, MENG Wen-Ting. Reproductive characteristics of Artemisia scoparia and the analysis of the underlying soil drivers in a desert steppe of China [J]. Chin J Plant Ecol, 2019, 43(1): 65-76.
[6] Song Naiping, Wang Xing, Chen Lin, Xue Yi, Chen Juan, Sui Jinming, Wang Lei, Yang Xinguo. Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe [J]. Biodiv Sci, 2018, 26(7): 667-677.
[7] JIN Yu-Xi, LIU Fang, ZHANG Jun, HAN Meng-Qi, WANG Zhong-Wu, QU Zhi-Qiang, HAN Guo-Dong. Net ecosystem carbon exchange characteristics in Stipa breviflora desert steppe with different stocking rates [J]. Chin J Plan Ecolo, 2018, 42(3): 361-371.
[8] YANG Hao-Tian, WANG Zeng-Ru, JIA Rong-Liang. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China [J]. Chin J Plan Ecolo, 2018, 42(3): 288-296.
[9] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[10] Zihong Chen, Xiaona Yang, Ningjing Sun, Ling Xu, Yuan Zheng, Yuming Yang. Species diversity and vertical distribution characteristics of Metarhizium in Gaoligong Mountains, southwestern China [J]. Biodiv Sci, 2018, 26(12): 1308-1317.
[11] Xi LI, Fang WANG, Yang CAO, Shou-Zhang PENG, Yun-Ming CHEN. Soil carbon storage and its determinants in the forests of Shaanxi Province, China [J]. Chin J Plan Ecolo, 2017, 41(9): 953-963.
[12] Ju-Ying HUANG, Hai-Long YU, Li-Li WANG, Kai-Bo MA, Yang-Mei KANG, Ya-Xian DU. Effects of different nitrogen:phosphorus levels on the growth and ecological stoichiometry of Glycyrrhiza uralensis [J]. Chin J Plan Ecolo, 2017, 41(3): 325-336.
[13] Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China [J]. Chin J Plan Ecolo, 2017, 41(1): 53-61.
[14] Lu-Cun YANG, Chang-Bin LI, Yi NING, Xiu-Qing NIE, Wen-Hua XU, Guo-Ying ZHOU. Carbon density and its spatial distribution in the Potentilla fruticosa dominated alpine shrub in Qinghai, China [J]. Chin J Plan Ecolo, 2017, 41(1): 62-70.
[15] Yin LI, Guo-Ke CHEN, Dun-Mei LIN, Bin CHEN, Lei-Ming GAO, Xing JIAN, Bo YANG, Wu-Bing XU, Hong-Xin SU, Jiang-Shan LAI, Xi-Hua WANG, Hai-Bo YANG, Ke-Ping MA. Carbon storage and its distribution of forest ecosystems in Zhejiang Province, China [J]. Chin J Plan Ecolo, 2016, 40(4): 354-363.
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[6] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .
[7] ZHANG Da-Yong, JIANG Xin-Hua. An Ecological Perspective on Crop Prduction[J]. Chin J Plan Ecolo, 2000, 24(3): 383 -384 .
[8] Gui Ji-xun, Zhu Ting-cheng. Study of Energy Flow Between Litter and Decomposers in Aneurolepidium chinese Grassland[J]. Chin J Plan Ecolo, 1992, 16(2): 143 -148 .
[9] YAN Xiu-Feng. Ecology of Plant secondary Metabolism[J]. Chin J Plan Ecolo, 2001, 25(5): 639 -640 .