Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (2): 209-219.doi: 10.17521/cjpe.2017.0132

• Research Articles • Previous Articles     Next Articles

Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata

PENG Xi,YAN Wen-De,WANG Feng-Qi,WANG Guang-Jun,YU Fang-Yong,ZHAO Mei-Fang()   

  1. Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, Hunan 418307, China; and National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha 410004, China
  • Online:2018-04-16 Published:2018-02-20
  • Contact: Mei-Fang ZHAO
  • Supported by:
    Supported by the National Forestry Industry Research Special Funds for Public Welfare Projects(201404316);the National Natural Science Foundation of China.(31600355)


Aims With progresses of leaf functional traits study, there is an increasing demand to explore the life history strategy and trade-offs in plants, as well as estimate stand productivity, by employing easy and simple leaf parameters. For instance, the interconversion between leaf dry matter content (LDMC) and specific leaf area (SLA) just fit the bill. Cunninghamia lanceolata serves as one of the most important afforestation evergreen needle species in subtropical zone. Building the SLA estimation model based on LDMC could provide a new approach to estimate SLA, and establish a connection path between mechanism explanation and productivity evaluation. Moreover, it could also build a bridge between individual level and large-scale, as well as between actuarial and estimation.

Methods Leaf samples were collected from two sampling sites located in C. lanceolata growing region: Huitong County of Hunan Province and Xinyang City of Henan Province. The samples covered fundamentally different niches (aspect, slope position, and canopy depth), and different life history (stand age and leaf age). SLA and LDMC were determined along leaf age gradients, and their value distributions in linkage to different factors were discussed. A general model based on LDMC of C. lanceolata was built to estimate SLA, and the impact of leaf age on the model was explored.

Important findings The SLA of C. lanceolata was (103.15 ± 69.54) cm 2·g -1, while LDMC was 0.39 ± 0.11. The LDMC and SLA of C. lanceolata can be estimated by nonlinear model (R 2 = 0.718β4, p < 0.001), which meets the estimation requirements. One-year-old leaves showed the best fitting model (R 2 = 0.889, p < 0.001), while old leaves (more than 2-year-old) showed the worst (R 2 = 0.100β1, p < 0.001). Old leaves with a lower SLA (52.28-75.74 cm 2·g -1) might imply the relative independence among the variation of LDMC. The model based on LDMC to evaluate SLA is credible and effective. The effects on LDMC and SLA along leaf age gradients indicate leaf sensitivity, life history strategies and trade-offs.

Key words: Cunninghamia lanceolata, specific leaf area, leaf dry matter content, model estimation, leaf functional traits

Fig. 1

Summary characteristics and degree of discretization of leaf dry matter content (LDMC) (A) and specific leaf area (SLA) (B) of Cunninghamia lanceolata along different factors gradients (n = 374)."

Fig. 2

Nonlinear fitting model of specific leaf area (SLA) based on leaf dry matter content (LDMC) (A) and SLA scatter plot the regression residuals of LDMC (B) of Cunninghamia lanceolata. Model selection y = a(1 + x)b; N, sampling size; R2, adjusted R-squared; p, significant difference degree."

Fig. 3

Nonlinear fitting model of specific leaf area (SLA) based on leaf dry matter content (LDMC) of Cunninghamia lanceolata along different leaf age gradients. Model selection y = a(1 + x)b; N, sampling size; R2, adjusted R-squared; p, significant difference degree."

Fig. 4

Specific leaf area (SLA) scatter plot the regression residuals of leaf dry matter content (LDMC) of Cunninghamia lanceolata along different leaf age gradients."

[1] Athokpam FD, Garkoti SC, Borah N ( 2013). Periodicity of leaf growth and leaf dry mass changes in the evergreen and deciduous species of southern Assam, India. Ecological Research, 29, 153-165.
doi: 10.1007/s11284-013-1105-2
[2] Bertin N ( 1998). Short and long term fluctuations of the leaf mass per area of tomato plants—Implications for growth models. Annals of Botany, 82, 71-81.
doi: 10.1006/anbo.1998.0647
[3] Cantón Y, Del Barrio G, Solé-Benet A, Lázaro R ( 2004). Topographic controls on the spatial distribution of ground cover in the tabernas badlands of SE Spain. Catena, 55, 341-365.
doi: 10.1016/S0341-8162(03)00108-5
[4] Cornelissen JHC, Lavorel S, Garnier E ( 2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
doi: 10.1071/bt02124
[5] Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG ( 2015). Relationship between leaf traits of Melica przewalskyi and slope aspects in alpine grassland of Qilian Mountains, China. Chinese Journal of Plant Ecology, 39, 23-31.
[ 党晶晶, 赵成章, 李钰, 侯兆疆, 董小刚 ( 2015). 祁连山高寒草地甘肃臭草叶性状与坡向间的关系. 植物生态学报, 39, 23-31.]
[6] Díaz S, Cabido M ( 2009). Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science, 8, 463-474.
doi: 10.2307/3237198
[7] Díaz S, Cabido M, Fernando C ( 1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122.
doi: 10.2307/3237229
[8] Duan YY, Song LJ, Niu SQ, Huang T, Yang GH, Hao WF ( 2017). Variation of leaf functional traits of different aged Robinia pseudoacacia communities and relationships with soil nutrients. Chinese Journal of Applied Ecology, 28, 28-36.
[ 段媛媛, 宋丽娟, 牛素旗, 黄婷, 杨改河, 郝文芳 ( 2017). 不同林龄刺槐叶功能性状差异及其与土壤养分的关系. 应用生态学报, 28, 28-36.]
[9] Ellsworth DS, Reich PB ( 1993). Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 96, 169-178.
doi: 10.1007/BF00317729 pmid: 28313412
[10] Field C, Mooney HAJ ( 1983). Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a california shrub. Oecologia, 56, 348-355.
doi: 10.1007/BF00379711
[11] Frak E, Roux XL, Millard P, Dreyed E, Jaouen G, Saint-Joanis B, Wendler R ( 2001). Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant, Cell & Environment, 24, 1279-1288.
doi: 10.1046/j.0016-8025.2001.00784.x
[12] Gao JL, Luo FM, Zhao YM, Zhang JB, Yuan WJ, Sun F, Hao YG ( 2016). Specific leaf area and leaf dry matter content of three kinds of poplar in Ulan Buh desert oasis. Journal of Northwest Forestry University, 31(1), 15-20.
doi: 10.3969/j.issn.1001-7461.2016.01.03
[ 高君亮, 罗凤敏, 赵英铭, 张景波, 原伟杰, 孙非, 郝玉光 ( 2016). 乌兰布和沙漠绿洲3种杨树比叶面积和叶干物质含量研究. 西北林学院学报, 31(1), 15-20.]
doi: 10.3969/j.issn.1001-7461.2016.01.03
[13] Garnier E, Cordonnier P, Guillerm JL ( 1997). Specific leaf area and leaf nitrogen concentration in annual and perennial grass species growing in mediterranean old-fields. Oecologia, 111, 490-498.
doi: 10.1007/s004420050262 pmid: 28308109
[14] Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML ( 2001 a). Consistency of species ranking based on functional leaf traits. New Phytologist, 152, 69-83.
doi: 10.1046/j.0028-646x.2001.00239.x
[15] Garnier E, Shipley B, Roumet C, Laurent G ( 2001 b). A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 15, 688-695.
doi: 10.1046/j.0269-8463.2001.00563.x
[16] Gratani L, Bombelli A ( 2000). Correlation between leaf age and other leaf traits in three mediterranean maquis shrub species:Quercus ilex, Phillyrea latifolia and Cistus incanus. Environmental and Experimental Botany, 43, 141-153.
doi: 10.1016/S0098-8472(99)00052-0
[17] Greenwood MS, Ward MH, Day ME, Adams SL, Bond BJ ( 2008). Age-related trends in red spruce foliar plasticity in relation to declining productivity. Tree Physiology, 28, 225-232.
doi: 10.1093/treephys/28.2.225
[18] Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J ( 1997). Integrated screening validates primary axes of specialisation in plants. Oikos, 79, 259-281.
doi: 10.1002/(SICI)1520-6378(200006)25:33.0.CO;2-#
[19] Hodgson JG, Montserrat-Martí G, Charles M, Jones G, Wilson P, Shipley B, Sharafi M, Cerabolini BEL, Cornelissen JHC, Band SR, Bogard A, Castro-Díez P, Guerrero- Campo J, Palmer C, Pérez-Rontomé MC, Carter G, Hynd A, Romo-Díez A, de Torres Espuny L, Royo Pla F ( 2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108, 1337-1345.
doi: 10.1093/aob/mcr225 pmid: 3197453
[20] Hou ZJ, Zhao CZ, Li Y, Zhang Q, Ma XL ( 2014). Trade-off between height and branch numbers in Stellera chamaejasme on slopes of different aspects in a degraded alpine grassland. Chinese Journal of Plant Ecology, 38, 281-288.
doi: 10.3724/SP.J.1258.2014.00025
[ 侯兆疆, 赵成章, 李钰, 张茜, 马小丽 ( 2014). 不同坡向高寒退化草地狼毒株高和枝条数的权衡关系. 植物生态学报, 38, 281-288.]
doi: 10.3724/SP.J.1258.2014.00025
[21] Hu YS, Yao XY, Liu YH ( 2015). Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains. Acta Ecologica Sinica, 35, 1480-1487.
doi: 10.5846/stxb201310132459
[ 胡耀升, 么旭阳, 刘艳红 ( 2015). 长白山森林不同演替阶段比叶面积及其影响因子. 生态学报, 35, 1480-1487.]
doi: 10.5846/stxb201310132459
[22] Huang HX, Yang XD, Sun BW, Zhang ZH, Yan ER ( 2014). Variability and association of leaf traits between current-?year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China. Chinese Journal of Plant Ecology, 37, 912-921.
doi: 10.3724/SP.J.1258.2013.00094
[ 黄海侠, 杨晓东, 孙宝伟, 张志浩, 阎恩荣 ( 2014). 浙江天童常绿植物当年生与往年生叶片性状的变异与关联. 植物生态学报, 37, 912-921.]
doi: 10.3724/SP.J.1258.2013.00094
[23] Huo H, Wang CK ( 2007). Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis. Chinese Journal of Applied Ecology, 18, 1181-1186.
[ 霍宏, 王传宽 ( 2007). 冠层部位和叶龄对红松光合蒸腾特性的影响. 应用生态学报, 18, 1181-1186.]
[24] James SA, Bell DT ( 2000). Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. Globulus provenances. Tree Physiology, 20, 1007-1018.
[25] Jiang AP, Jiang JM, Liu J ( 2016). Response of leaf traits of Sassafras tsumu (Hemsl.) Hemsl.along an altitudinal gradient. . Chinese Journal of Ecology, 25, 1467-1474.
doi: 10.13292/j.1000-4890.201606.017
[ 蒋艾平, 姜景民, 刘军 ( 2016). 檫木叶片性状沿海拔梯度的响应特征. 生态学杂志, 25, 1467-1474.]
doi: 10.13292/j.1000-4890.201606.017
[26] Jullien A, Allirand J-M, Mathieu A, Andrieu B, Ney B ( 2009). Variations in leaf mass per area according to N nutrition, plant age, and leaf position reflect ontogenetic plasticity in winter oilseed rape (Brassica napus l.). Field Crops Research, 114, 188-197.
doi: 10.1016/j.fcr.2009.07.015
[27] Karavin N ( 2013). Effects of leaf and plant age on specific leaf area in deciduous tree species Quercus cerris L. var. cerris. Bangladesh Journal of Botany, 42, 301-306.
doi: 10.3329/bjb.v42i2.18034
[28] Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, B?nisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, Van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, Casanoves F, Cavender-Bares J, Chambers JQ, Chapin III FS, Chave J, Coomes D, Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, Niinemets ü, N?llert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, Ordo?Ez J, Overbeck G, Ozinga WA, Pati?o S, Paula S, Pausas JG, Pe?uelas J, Phillips OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski E, Soussana JF, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C ( 2011). Try—A global database of plant traits. Global Change Biology, 17, 2905-2935.
doi: 10.1111/j.1365-2486.2011.02451.x pmid: 3627314
[29] Kattge J, Knorr W, Raddatz T, Wirth C ( 2009). Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology, 15, 976-991.
doi: 10.1111/j.1365-2486.2008.01744.x
[30] Kayama M, Sasa K, Koike T ( 2002). Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 22, 707-716.
[31] Landsberg JJ, Gower ST ( 1997). Applications of physiological ecology to forest management. Tree Physiology, 17, 601-602.
doi: 10.2307/2405244
[32] Lavorel S, Garnier E ( 2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the holy grail. Functional Ecology, 16, 545-556.
doi: 10.1046/j.1365-2435.2002.00664.x
[33] Li K, Xiang WH ( 2011). Comparison of specific leaf area, SPAD value and seed mass among subtropical tree species in hilly area of central Hunan, China. Journal of Central South University of Forestry & Technology, 31, 213-218.
[ 李凯, 项文化 ( 2011). 湘中丘陵区12个树种比叶面积、SPAD值和种子干质量的比较. 中南林业科技大学学报, 31, 213-218.]
[34] Li XR, Liu QJ, Cai Z, Ma ZQ ( 2007). Specific leaf area and leaf area index of conifer plantations in Qianyanzhou station of subtropical China. Journal of Plant Ecology (Chinese Version), 31, 93-101.
doi: 10.17521/cjpe.2007.0012
[ 李轩然, 刘琪璟, 蔡哲, 马泽清 ( 2007). 千烟洲针叶林的比叶面积及叶面积指数. 植物生态学报, 31, 93-101.]
doi: 10.17521/cjpe.2007.0012
[35] Li YL, Cui JY, Su YZ ( 2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica, 25, 304-311.
doi: 10.3321/j.issn:1000-0933.2005.02.019
[ 李玉霖, 崔建垣, 苏永中 ( 2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.]
doi: 10.3321/j.issn:1000-0933.2005.02.019
[36] Liu ZM ( 2014). Research on the Nutrient Dynamics and Internal Absorption of Cunninghamia lanceolata Foliar. Master degree dissertation, Fujian Agriculture and Forestry University, Fuzhou.
[ 刘桌明 ( 2014). 杉木针叶养分含量动态及其内吸收率研究. 硕士学位论文, 福建农林大学, 福州.]
[37] Matsuzaki J, Norisada M, Kodaira J, Suzuki M, Tange T (2004). Shoots grafted into the upper crowns of tall Japanese cedar ( Cryptomeria japonica D. Don) show foliar gas exchange characteristics similar to those of intact shoots. Trees, 19, 198-203.
[38] Mencuccini M, Martínez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B ( 2005). Size-mediated ageing reduces vigour in trees. Ecology Letter, 8, 1183-1190.
doi: 10.1111/j.1461-0248.2005.00819.x pmid: 21352442
[39] Miao YM, Lü JZ, Bi RC ( 2012). Distribution pattern of leaf traits in canopy of typical broad-leaved trees in Taiyue Mountain. Guihaia, 32, 483-486.
[ 苗艳明, 吕金枝, 毕润成 ( 2012). 太岳山典型阔叶乔木冠层叶片性状的分布格局. 广西植物, 32, 483-486.]
[40] Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H ( 2011). The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 38, 535-552.
doi: 10.1071/FP11057
[41] Ono K, Nishi Y, Watanabe A, Terashima I ( 2001). Possible mechanisms of adaptive leaf senescence. Plant Biology, 3, 234-243.
doi: 10.1055/s-2001-15201
[42] Osnas JL, Lichstein JW, Reich PB, Pacala SW ( 2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science, 340, 741-744.
doi: 10.1126/science.1231574
[43] Ou XL, Liu YH ( 2017). Age, slope aspectsand diameter classes affect the leaf functional traits of Pinus tabulaeformis in Songshan, Beijing. Journal of Nanjing Forestry University (Natural Sciences Edition), 41(4), 80-88.
[ 欧晓岚, 刘艳红 ( 2017). 北京松山不同坡向和径级油松异龄叶功能性状特征. 南京林业大学学报(自然科学版), 41(4), 80-88.]
[44] Qin XH ( 2015). Spatial heterogeneity of specific leaf area and leaf construction cost of Quercus liaotungensis canopy. Forest Resources Management, ( 4), 145-150.
[ 覃鑫浩 ( 2015). 辽东栎冠层叶建成消耗与比叶面积的空间异质性. 林业资源管理, ( 4), 145-150.]
[45] Reich PB, Uhl C, Walters MB, Ellsworth DS (1991a). Leaf lifespan as a determinant of leaf structure and function among 23 amazonian tree species. Oecologia, 86, 16-24.
doi: 10.1007/BF00317383 pmid: 28313152
[46] Reich PB, Walters MB, Ellsworth DS (1991 b). Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees. Plant, Cell & Environment, 14, 251-259.
[47] Reich PB, Walters MB, Ellsworth DS ( 1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392.
doi: 10.2307/2937116
[48] Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD ( 1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups. Oecologia, 114, 471-482.
doi: 10.1007/s004420050471 pmid: 28307896
[49] Ren Y, Lu Q, Wu B, Li MH ( 2015). Specific leaf area and leaf dry matter content of Nitraria tangutorum in the artificially simulated precipitation. Acta Ecologica Sinica, 35, 4707-4715.
[ 任昱, 卢琦, 吴波, 李明虎 ( 2015). 不同模拟增雨下白刺比叶面积和叶干物质含量的比较. 生态学报, 35, 4707-4715.]
[50] Roche P, Díaz-Burlinson N, Gachet S ( 2004). Congruency analysis of species ranking based on leaf traits: Which traits are the more reliable? Plant Ecology, 174, 37-48.
doi: 10.1023/B:VEGE.0000046056.94523.57
[51] Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW ( 2015). Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 39, 362-370.
[ 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 ( 2015). 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 39, 362-370.]
[52] Shipley B, Lechowicz MJ, Wright IJ ( 2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541.
doi: 10.1890/05-1051
[53] Sims DA, Pearcy RW ( 1992). Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza(Araceae) to a transfer from low to high light. American Journal of Botany, 79, 449-455.
[54] Smart SM, Glanville HC, Blanes MDC, Mercado LM, Emmett BA, Jones DL, Cosby BJ, Marrs RH, Butler A, Marshall MR, Reinsch S, Herrero-Jáuregui C, Hodgson JG, Field K ( 2017). Leaf dry matter content is better at predicting above-ground net primary production than specific leaf area. Functional Ecology, 31, 1336-1344.
doi: 10.1111/1365-2435.12832
[55] Sterck FJ, Poorter L, Schieving F ( 2006). Leaf traits determine the growth-survival trade-off across rain forest tree species. The American Naturalist, 167, 756-765.
doi: 10.1086/503056 pmid: 16671019
[56] Torrez V, J?rgensen PM, Zanne AE ( 2013). Specific leaf area: A predictive model using dried samples. Australian Journal of Botany, 61, 350-357.
doi: 10.1071/BT12236
[57] Wang XH, Zhang J, Zhang ZX ( 2000). Leaf longevity of evergreen broad-leaved species of Tiantong National Forest Park, Zhejiang Province. Acta Phytoecologica Sinica, 24, 625-629.
doi: 10.1088/0256-307X/17/9/008
[ 王希华, 张婕, 张正祥 ( 2000). 浙江天童国家森林公园主要常绿阔叶树种叶子寿命的研究. 植物生态学报, 24, 625-629.]
doi: 10.1088/0256-307X/17/9/008
[58] Westoby M (1998). A leaf-height-seed (lhs) plant ecology strategy scheme. Plant and Soil, 199, 213-227.
doi: 10.1023/A:1004327224729
[59] Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
doi: 10.1146/annurev.ecolsys.33.010802.150452
[60] Wilson PJ, Thompson KEN, Hodgson JG ( 1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
doi: 10.1046/j.1469-8137.1999.00427.x
[61] Wirth C, Lichstein JW ( 2009). The imprint of species turnover on old-growth forest carbon balances—Insights from a trait-based model of forest dynamics. Old-Growth Forests, 81-113
doi: 10.1007/978-3-540-92706-8_5
[62] Witkowski ETF, Lamont BB ( 1991). Leaf specific mass confounds leaf density and thickness. Oecologia, 88, 486-493.
doi: 10.1007/BF00317710 pmid: 28312617
[63] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ul, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
doi: 10.1038/nature02403
[64] Wyka T, Robakowski P, Zytkowiak R ( 2008). Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynthesis Research, 95, 87-99.
[65] Yang M, Wang SL, Zhang WD, Wang QK ( 2010). Dynamics of biomass and nutrient accumulation in a Chinese-fir plantation. Chinese Journal of Applied Ecology, 21, 1674-1680.
[ 杨明, 汪思龙, 张伟东, 王清奎 ( 2010). 杉木人工林生物量与养分积累动态. 应用生态学报, 21, 1674-1680.]
[66] Yu YF, Song TQ, Zeng FP, Peng WX, Wen YG, Huang CB, Wu QB, Zeng ZX, Yu Y ( 2013). Dynamics changes of biomass and its allocation in Cunninghamia lanceolata plantations of different stand ages. Chinese Journal of Ecology, 32, 1660-1666.
[ 俞月凤, 宋同清, 曾馥平, 彭晚霞, 温远光, 黄承标, 吴庆标, 曾昭霞, 于扬 ( 2013). 杉木人工林生物量及其分配的动态变化. 生态学杂志, 32, 1660-1666.]
[67] Zaehle S, Friend AD ( 2010). Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochemical Cycles, 24, 1468-1470.
doi: 10.1029/2009GB003521
[68] Zhang L, Luo TX, Deng KM, Li WH ( 2008). Vertical variations in specific leaf and leaf dry matter content with canopy height in Pinus yunnanensis. Journal of Beijing Forestry University, 30(1), 40-44.
doi: 10.3321/j.issn:1000-1522.2008.01.007
[ 张林, 罗天祥, 邓坤枚, 李文华 ( 2008). 云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律. 北京林业大学学报, 30(1), 40-44.]
doi: 10.3321/j.issn:1000-1522.2008.01.007
[69] Zhao MF, Xiang WH, Peng CH, Tian DL ( 2009). Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. Forest Ecology and Management, 257, 1520-1531.
doi: 10.1016/j.foreco.2008.12.025
[70] Zheng YP, Zhu H, Xu HN, Xu FH, Zhou YQ ( 1991). The characteristics of growing processes of Chinese fir and division of its growth stages. Journal of Zhejiang Forestry College, 8, 219-226.
[ 郑勇平, 朱浩, 徐焕农, 许凤华, 周岳泉 ( 1991). 杉木生长过程特征和生长期划分. 浙江林学院学报, 8, 219-226.]
[71] Zhou JY, He JJ, Guo ZY, Wang BB, Zhang XW, Guo CY ( 2013). A study on specific leaf area and leaf dry matter content of five dominant species in Xiangshan Mountain, Huaibei City, Anhui Province. Journal of Huaibei Normal University (Natural Science), 34(3), 51-54.
doi: 10.3969/j.issn.2095-0691.2013.03.013
[ 周济源, 何俊洁, 郭治远, 王贝贝, 张兴旺, 郭传友 ( 2013). 淮北相山主要优势物种比叶面积与叶干物质含量初步研究. 淮北师范大学学报(自然科学版), 34(3), 51-54.]
doi: 10.3969/j.issn.2095-0691.2013.03.013
[1] LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages [J]. Chin J Plant Ecol, 2019, 43(5): 458-470.
[2] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[3] CHEN Ri-Sheng, KANG Wen-Xing, ZHOU Yu-Quan, TIAN Da-Lun, XIANG Wen-Hua . Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest [J]. Chin J Plan Ecolo, 2018, 42(2): 173-184.
[4] CHEN Si-Tong, ZOU Xian-Hua, CAI Yi-Bing, WEI Dan, LI Tao, WU Peng-Fei, MA Xiang-Qing. Phosphorus distribution inside Chinese fir seedlings under different P supplies based on 32P tracer [J]. Chin J Plant Ecol, 2018, 42(11): 1103-1112.
[5] Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings [J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
[6] Zhi-Yu CHEN, Qi LI, Xian-Hua ZOU, Xiang-Qing MA, Peng-Fei WU. Effect of neighboring competition on photosynthetic characteristics and biomass allocation of Chinese fir seedlings under low phosphorus stress [J]. Chin J Plan Ecolo, 2016, 40(2): 177-.
[7] Xiang GU, Shi-Ji ZHANG, Wen-Hua XIANG, Lei-Da LI, Zhao-Dan LIU, Wei-Jun SUN, Xi FANG. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China [J]. Chin J Plan Ecolo, 2016, 40(10): 1064-1076.
[8] WAN Jing-Juan,GUO Jian-Fen,JI Shu-Rong,REN Wei-Ling,SI You-Tao,YANG Yu-Sheng. Effects of different sources of dissolved organic matter on soil CO2 emission in subtropical forests [J]. Chin J Plan Ecolo, 2015, 39(7): 674-681.
[9] WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation [J]. Chin J Plan Ecolo, 2015, 39(12): 1166-1175.
[10] YANG Yu-Sheng, QIU Ren-Hui, YU Xin-Tuo, Huang Bao-Long, . Study on soil microbes and biochemical activity in the continuous plantations of Cunninghamia lanceolata [J]. Biodiv Sci, 1999, 07(1): 1-7.
Full text



[1] Hu Shi-yi. Lipoid Bodies in Plant Tissues[J]. Chin Bull Bot, 1994, 11(04): 49 -51 .
[2] CHENG Hong-Yan. Introduction of State Key Laboratory of Biomembrane and Membrane Biotechnology[J]. Chin Bull Bot, 1998, 15(04): 78 .
[3] Liu Dong-zhuo and Li Lan. The Karyotype Analysis of Solanum pseudocapsicum[J]. Chin Bull Bot, 1992, 9(03): 50 .
[4] WANG Bao-Shan;LI De-Quan;ZHAO Shi-Jie;MENG Qing-Wei and ZOU Qi. Effects of Iso-osmotic NaCl and KCl Stress on Growth and Gas Exchange of Sorghum Seedlings[J]. Chin Bull Bot, 1999, 16(04): 449 -453 .
[5] LI Yao-Dong WEI Yu-Ning XU Ben-Mei. Study on the ABA Content and SOD Activity in Ancient Lotus and Modern Lotus Seeds[J]. Chin Bull Bot, 2000, 17(05): 439 -442 .
[6] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[7] WANG Ting SU Ying-Juan ZHU Jian-Ming HUANG Chao LI Xue-Yan. PCR_RFLP Analysis of rbc L Genes in Taxaceae and Related Taxa[J]. Chin Bull Bot, 2001, 18(06): 714 -721 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 51 .
[9] Dong Shu-ting, Hu Chang-hao, Yue Shou-song, Wang Qun-ying, Gao Rong-qi, Pan Zi-long. The Characteristics of Canopy Photosynthesis of Summer Corn (Zea mays) and its Relation with Canopy Structure and Ecological Conditions[J]. Chin J Plan Ecolo, 1992, 16(4): 372 -378 .