Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (2): 186-195.DOI: 10.17521/cjpe.2016.0274
• Research Articles • Previous Articles Next Articles
Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN*(), Yu-Sheng YANG
Received:
2016-09-06
Accepted:
2016-11-10
Online:
2017-02-10
Published:
2017-03-16
Contact:
Guang-Shui CHEN
About author:
KANG Jing-yao(1991-), E-mail:
Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings[J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0274
Fig. 1 Annual changes of soil (0-10 cm) temperature (A) and moisture (B) under different treatments (mean ± SD). ▲, control treatment (ambient, ambient); ■, soil warming treatment (+5 °C, ambient).
Fig. 2 Soil (0-20 cm) nitrogen availability under different treatments (mean ± SD). NH4+, ammonium nitrogen. NO3- + NO2-, nitrate nitrogen. CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1). Different capital letters indicate significant differences among treatments (p < 0.05).
因子 Factor | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 土壤有效氮(铵态氮和硝态氮) Soil nitrogen availability (ammonium nitrogen and nitrate nitrogen) |
---|---|---|---|---|---|
W | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 |
N | <0.001 | <0.001 | <0.001 | ||
W × N | <0.001 | 0.317 | <0.001 |
Table 1 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on soil temperature, soil moisture and soil nitrogen availability
因子 Factor | 土壤温度 Soil temperature (℃) | 土壤湿度 Soil moisture (%) | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 土壤有效氮(铵态氮和硝态氮) Soil nitrogen availability (ammonium nitrogen and nitrate nitrogen) |
---|---|---|---|---|---|
W | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 |
N | <0.001 | <0.001 | <0.001 | ||
W × N | <0.001 | 0.317 | <0.001 |
指标 Index | 因子 Factor | ||
---|---|---|---|
W | N | W × N | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | 0.483 |
Table 2 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||
---|---|---|---|
W | N | W × N | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | 0.483 |
Fig. 3 Total number of fine roots emerged of one year (A) under different treatments and number of different diameter class (B) (mean ± SD). Different capital letters indicate significant differences among treatments (p < 0.05). Different lowercase letters indicate significant differences among diameters (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | D | W × N | W × D | N × D | W × N × D | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.004 | 0.624 | <0.001 | 0.491 | 0.002 | 0.44 | 0.431 |
Table 3 p-value of ANOVA on the effects of soil warming, nitrogen addition and diameter class on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | D | W × N | W × D | N × D | W × N × D | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.004 | 0.624 | <0.001 | 0.491 | 0.002 | 0.44 | 0.431 |
指标 Index | 因子 Factor | W | N | W × N | |
---|---|---|---|---|---|
每根管细根一年总出生数量 Total mumber of fine roots emerged per tube of one year (No.·tube-1·a-1) | 径级 Diameter class | 0-1 mm | 0.004 | 0.535 | 0.465 |
1-2 mm | 0.137 | 0.182 | 0.505 | ||
季节 Season | 春季 Spring | <0.001 | 0.529 | 0.010 | |
夏季 Summer | 0.003 | 0.001 | 0.041 | ||
秋季 Autumn | 0.226 | 0.555 | 0.971 | ||
冬季 Winter | 0.702 | 0.175 | 0.313 | ||
土层 Soil layer | 0-10 cm | 0.547 | 0.488 | 0.423 | |
10-20 cm | 0.158 | 0.114 | 0.052 | ||
20-30 cm | 0.005 | 0.424 | 0.892 | ||
30-40 cm | 0.124 | 0.379 | 0.892 |
Table 4 p-value of two-way ANOVA on the effects of soil warming, nitrogen addition and their interaction on total number of fine roots emerged per tube of one year in different diameter classes, seasons and soil layers
指标 Index | 因子 Factor | W | N | W × N | |
---|---|---|---|---|---|
每根管细根一年总出生数量 Total mumber of fine roots emerged per tube of one year (No.·tube-1·a-1) | 径级 Diameter class | 0-1 mm | 0.004 | 0.535 | 0.465 |
1-2 mm | 0.137 | 0.182 | 0.505 | ||
季节 Season | 春季 Spring | <0.001 | 0.529 | 0.010 | |
夏季 Summer | 0.003 | 0.001 | 0.041 | ||
秋季 Autumn | 0.226 | 0.555 | 0.971 | ||
冬季 Winter | 0.702 | 0.175 | 0.313 | ||
土层 Soil layer | 0-10 cm | 0.547 | 0.488 | 0.423 | |
10-20 cm | 0.158 | 0.114 | 0.052 | ||
20-30 cm | 0.005 | 0.424 | 0.892 | ||
30-40 cm | 0.124 | 0.379 | 0.892 |
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | S | W × N | W × S | N × S | W × N × S | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | <0.001 | 0.483 | <0.001 | 0.193 | 0.025 |
Table 5 p-value of repeated measures ANOVA on the effects of soil warming, nitrogen addition and season on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | S | W × N | W × S | N × S | W × N × S | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.005 | 0.616 | <0.001 | 0.483 | <0.001 | 0.193 | 0.025 |
Fig. 4 Total number of fine roots emerged per tube of one year under different seasons (mean ± SD). Different capital letters indicate significant differences among treatments in the same season (p < 0.05). Different lowercase letters indicate significant differences among seasons in the same treatment (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
Fig. 5 Total number of fine roots emerged per tube of one year under different soil layer (mean ± SD). Different capital letters indicate significant differences among treatments in the same soil layer (p < 0.05). Different lowercase letters indicate significant differences among soil layers in the same treatment (p < 0.05). CT, control treatment (ambient, ambient); HN, high nitrogen addition (ambient, ambient + 80 kg·hm-2·a-1); LN, low nitrogen addition (ambient, ambient + 40 kg·hm-2·a-1); W, soil warming (+5 °C, ambient); WHN, soil warming plus high nitrogen addition (+5 °C, ambient + 80 kg·hm-2·a-1); WLN, soil warming plus low nitrogen addition (+5 °C, ambient + 40 kg·hm-2·a-1).
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | L | W × N | W × L | N × L | W × N × L | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.001 | 0.563 | 0.06 | 0.419 | 0.025 | 0.256 | 0.765 |
Table 6 p-value of ANOVA on the effects of soil warming, nitrogen addition and soil layer on total number of fine roots emerged per tube of one year
指标 Index | 因子 Factor | ||||||
---|---|---|---|---|---|---|---|
W | N | L | W × N | W × L | N × L | W × N × L | |
每根管细根一年总出生数量 Total number of fine roots emerged per tube of one year (No.·tube-1·a-1) | 0.001 | 0.563 | 0.06 | 0.419 | 0.025 | 0.256 | 0.765 |
Fig. 6 Proposed mechanism on the effects of soil warming and nitrogen addition on fine root production. “+” means increase; “-” means decrease; “NS” means have no significant effect. The red arrows mean effects by soil warming; while the black arrows mean effects by nitrogen addition.
[1] | Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling.Global Change Biology, 16, 1306-1316. |
[2] | Chen GS, Yang YS, Robinson D (2013). Allocation of gross primary production in forest ecosystems: Allometric constraints and environmental responses.New Phytologist, 200, 1176-1186. |
[3] | Chen SD, Liu XF, Xiong DC, Lin WS, Lin CF, Xie L, Yang YS (2013). A preliminary study on effects of continuous active warming on soil respiration rates in central sub-tropical forests.Journal of Subtropical Resources and Environment, 4, 1-8. (in Chinese with English abstract)[陈仕东, 刘小飞, 熊德成, 林伟盛, 林成芳, 谢麟, 杨玉盛 (2013). 持续性主动增温对中亚热带森林土壤呼吸影响研究初报. 亚热带资源与环境学报, 4, 1-8.] |
[4] | Davidson EA (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860.Nature Geoscience, 2, 659-662. |
[5] | Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P (1999). Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature.Oecologia, 120, 575-581. |
[6] | Hendricks JJ, Nadelhoffer KJ, Aber JD (1993). Assessing the role of fine roots in carbon and nutrient cycling.Trends in Ecology & Evolution, 8(5), 174-178. |
[7] | Huang JX, Chen GS, Yang ZJ, Xiong DC, Guo JF, Xie JS, Robinson D, Yang YS (2016). Understory fine roots are more ephemeral than those of trees in subtropical Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) stands.Annals of Forest Science, 73, 657-667. |
[8] | Huang JX, Ling H, Yang ZJ, Lu ZL, Xiong DC, Chen GS,Yang YS, Xie JS (2012). Estimating fine root production and mortality in subtropical Altingia grlilipes and Castanopsis carlesii forests.Acta Ecologica Sinica, 32, 4472-4480. (in Chinese with English abstract)[黄锦学, 凌华, 杨智杰, 卢正立, 熊德成, 陈光水, 杨玉盛, 谢锦升 (2012). 中亚热带细柄阿丁枫和米槠群落细根的生产和死亡动态. 生态学报, 32, 4472-4480.] |
[9] | IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin DH, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[10] | Johnson MG, Rygiewicz PT, Tingey DT, Phillips DL (2006). Elevated CO2 and elevated temperature have no effect on Douglas-fir fine-root dynamics in nitrogen-poor soil.New Phytologist, 170, 345-356. |
[11] | Lamarque JF, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess PG, Holland EA, Horowitz L, Lawrence MG, McKenna D, Merilees P, Prather MJ, Rasch PJ, Rotman D, Shindell D, Thornton P (2005). Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition.Journal of Geo- physical Research Atmospheres, 110(D19), 2657-2677. |
[12] | Leppälammi-Kujansuu J, Ostonen I, Strömgren M, Nilsson LO, Kleja DB, Sah SP, Helmisaari HS (2013). Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production.Plant and Soil, 366, 287-303. |
[13] | Leppälammi-Kujansuu J, Salemaa M, Kleja DB, Linder S, Helmisaari HS (2014). Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment.Plant and Soil, 374, 73-88. |
[14] | Li WB, Jin CJ, Guan DX, Wang QK, Wang AZ, Yuan FH, Wu JB (2015). The effects of simulated nitrogen deposition on plant root traits: A meta-analysis.Soil Biology & Biochemistry, 82, 112-118. |
[15] | Liu LL, Greaver TL (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment.Ecology Letters, 13, 819-828. |
[16] | Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: An overview.Environmental Pollution, 159, 2251-2264. |
[17] | Majdi H, Öhrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden.Global Change Biology, 10, 182-188. |
[18] | Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytologist, 147, 131-139. |
[19] | Ostertag R (2001). Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests.Ecology, 82, 485-499. |
[20] | State Forestry Administration of the People’s Republic of China (2005). The National Forest Resources Statistics (1999-2003). China Forestry Publishing House, Beijing. (in Chinese)[中华人民共和国国家林业局 (2005). 全国森林资源统计(1999-2003). 中国林业出版社, 北京.] |
[21] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indi- rect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014, doi:10.1029/2004GB002315. |
[22] | Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004). CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots.New Phytologist, 162, 437-446. |
[23] | Way DA, Oren R (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: A review and synthesis of data.Tree Physiology, 30, 669-688. |
[24] | Wu YB, Zhang J, Deng YC, Wu J, Wang SP, Tang YH, Cui XY (2014). Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 215, 1057-1066. |
[25] | Zhang X, Liu XF, Chen SD, Xiong DC, Lin WS, Lin TW, Lin CF (2014). Effects of soil warming on the temperature of soil in different depths.Journal of Subtropical Resources and Environment, 9, 89-91. (in Chinese with English abstract)[章宪, 刘小飞, 陈仕东, 熊德成, 林伟盛, 林廷武,林成芳 (2014). 土壤增温对不同深度土壤温度的影响. 亚热带资源与环境学报, 9, 89-91.] |
[1] | Lai-Cong LUO Xiao-Qin LAI Jian BAI Ai-Xin LI Hai-Fu FANG Ming TANG dong-nan hu Liang ZHANG. Effects of soil bacteria and fungi on the growth characteristics of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[3] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[4] | XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2022, 46(2): 220-231. |
[5] | WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland [J]. Chin J Plant Ecol, 2021, 45(7): 790-798. |
[6] | YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(7): 780-789. |
[7] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[8] | WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings [J]. Chin J Plant Ecol, 2021, 45(11): 1231-1240. |
[9] | XU Xiao-Hui, DIAO Hua-Jie, QIN Chu-Yi, HAO Jie, SHEN Yan, DONG Kuan-Hu, WANG Chang-Hui. Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(1): 85-95. |
[10] | GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(8): 791-806. |
[11] | YANG Ze, null null, TAN Xing-Ru, YOU Cui-Hai, WANG Yan-Bing, YANG Jun-Jie, HAN Xing-Guo, CHEN Shi-Ping. Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(10): 1059-1072. |
[12] | LI Jun-Jun, LI Meng-Ru, QI Xing-E, WANG Li-Long, XU Shi-Jian. Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition [J]. Chin J Plant Ecol, 2020, 44(10): 1050-1058. |
[13] | WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92. |
[14] | LÜ Zhong-Cheng, KANG Wen-Xing, HUANG Zhi-Hong, ZHAO Zhong-Hui, DENG Xiang-Wen. Reuse of retranslocated nutrients in tissues of Chinese fir in plantations of different ages [J]. Chin J Plant Ecol, 2019, 43(5): 458-470. |
[15] | LI Yang, XU Xiao-Hui, SUN Wei, SHEN Yan, REN Ting-Ting, HUANG Jian-Hui, WANG Chang-Hui. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(2): 174-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn