Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (2): 252-260.doi: 10.17521/cjpe.2017.0138

• Research Articles • Previous Articles    

Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China

LIU Hai-Yue,LI Xin-Mei,ZHANG Lin-Lin,WANG Jiao-Jiao,HE Xue-Li()   

  1. College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
  • Online:2018-04-16 Published:2018-02-20
  • Contact: Xue-Li HE E-mail:jshe@pku.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(31470533)

Abstract:

Aims To understand the ecological significance of arbuscular mycorrhizal (AM) fungi associated with Hedysarum scoparium in semi-arid and arid lands, species diversity and ecological distribution of AM fungi associated with Hedysarum scoparium were elucidated in a desert ecosystem of northwestern China.

Methods Soil samples (0–30 cm depth) under Hedysarum scopariumis were collected at seven different sites (Ordos, Wuhai, Dengkou, Alxa, Shapotou, Minqin, Anxi) in northwest China in July 2015. Based on the morphological characteristics of spores, AM fungi were identified, and redundancy analysis (RDA) was used to distinguish among different groups. Furthermore, the relationship between species diversity of AM fungi and soil factors were evaluated by Pearson’s correlation analysis.

Important findings A total of 42 AM fungal species belonging to six genera were isolated. Among these, 16 species belong to Glomus,17 to Acaulospora four to Claroideoglomus,two to Septoglomus,two to Funneliformis and one to Scutellospora.The abundance, spore density and Shannon-Wiener index of AM fungi decreased gradually along the aridity gradient from east to west. Spore density of AM fungi of different species in the same site were different, and those of the same species in different sites were also different. Soil organic matter, pH,ammonia, and available phosphorus had significant effects on AM fungi. The results showed that the species diversity and distribution of AM fungi have obvious spatial patterns, and were influenced by soil factors, among which soil moisture was the most significant factor.

Key words: arbuscular mycorrhizae fungi, species diversity, spatial distribution, Hedysarum scoparium, desert zone of northwestern China

Table 1

Basic information of the sampling sites (mean ± SE)"

样地
Site
海拔
Altitude
(m)
经纬度
Latitude and
longitude
土壤温度
Soil temperature
(°C)
土壤湿度
Soil moisture
(%)
鄂尔多斯沙地草地生态研究观测站 Ordos Sandland Ecological Research Station1 269.039.19° N, 110.11° E23.40 ± 0.219.81 ± 0.05
乌海海勃湾区 Wuhai Haibowan District1 150.039.49° N, 106.49° E30.54 ± 0.325.71 ± 0.07
磴口阿敦乌苏 Dengkou Aton Usu1 030.040.39° N, 106.74° E22.14 ± 0.234.67 ± 0.06
阿拉善木仁高勒苏木 Mu Ren Gao Le Su Mu, Alxa League1 295.039.10° N, 105.52° E28.06 ± 0.457.29 ± 0.04
沙坡头沙漠试验研究站 Shapotou Desert Experimental Research Station2 027.537.27° N, 104.59° E40.05 ± 0.516.34 ± 0.09
民勤连古城国家级自然保护区 Minqin Liangucheng National Nature Reserve1 400.039.00° N, 102.37° E29.35 ± 0.224.48 ± 0.05
安西极旱荒漠自然保护区 Anxi Extreme-Arid Desert National Nature1 514.040.20° N, 096.50° E27.66 ± 0.371.37 ± 0.02

Fig. 1

Species richness (A) and composition (B) of arbuscular mycorrhizae (AM) fungi associated with Hedysarum scoparium in different sites. Different lowercase letters indicate the significant difference among sites (p < 0.05). ALS, Alxa; AX, Anxi; DK, Dengkou; EDS, Ordos; MQ, Minqin; SPT, Shapotou; WH, Wuhai."

Fig. 2

RDA analysis of species composition of arbuscular mycorrhizae (AM) fungi associated with Hedysarum scoparium in different sites. ALS, Alxa; AX, Anxi; DK, Dengkou; EDS, Ordos; MQ, Minqin; SPT, Shapotou; WH, Wuhai. ACP, acid phosphatase; ALP, alkaline phosphatase; AN, ammonia nitrogen; AP, available phosphorus; EEG, easily extractable glomalin; pH, pH value; SH, soil moisture; SOC, organic carbon; ST, soil temperature; TEG, total extractable glomalin; UA, urease."

Fig. 3

Spore density (A) and glomalin content (B) of arbuscular mycorrhizae (AM) fungi associated with Hedysarum scoparium in different sites (mean ± SE). Different lowercase letters indicate the significant difference among sites (p < 0.05). ALS, Alxa; AX, Anxi; DK, Dengkou; EDS, Ordos; MQ, Minqin; SPT, Shapotou; WH, Wuhai."

Table 2

Spatial distribution of arbuscular mycorrhizae (AM) fungi"

AM真菌 AM fungi鄂尔多斯 Ordos乌海 Wuhai磴口 Dengkou阿拉善 Alxa沙坡头 Shapotou民勤 Minqin安西 Anxi
凹坑无梗囊霉 Acaulospora excavata1.005.331.672.330.330.33-
刺无梗囊霉 Acaulospora spinosa--0.330.33---
附柄无梗囊霉 Acaulospora appendicola-1.33--0.33--
光壁无梗囊霉 Acaulospora laevis2.330.333.671.330.672.33-
孔窝无梗囊霉 Acaulospora foveata2.333.000.676.334.332.00-
毛氏无梗囊霉 Acaulospora morrowae7.33-3.671.673.675.001.33
蜜色无梗囊霉 Acaulospora mellea5.679.001.672.003.004.33-
膨胀无梗囊霉 Acaulospora dilatata0.674.00-0.330.67--
浅窝无梗囊霉 Acaulospora lacunosa14.334.671.331.000.33--
疣状无梗囊霉 Acaulospora tuberculata0.67--0.33---
瑞氏无梗囊霉 Acaulospora rehmii17.00-2.338.333.004.337.67
双网无梗囊霉 Acaulospora bireticulata3.339.672.673.330.677.670.33
细凹无梗囊霉 Acaulospora scrobiculata0.6713.67-0.330.670.67-
细齿无梗囊霉 Acaulospora denticulate1.000.33-2.000.33--
皱壁无梗囊霉 Acaulospora rugosa--0.33-0.330.33-
Acaulospora sp. 11.00-0.67----
Acaulospora sp. 2-0.33-----
Acaulospora sp. 33.00-0.6715.334.330.330.67
层状近明囊霉 Claroideoglomus lamellosum17.007.336.6728.338.002.67-
近明囊霉 Claroideoglomus claroideum7.003.331.330.673.670.67-
黄近明囊霉 Claroideoglomus luteum2.000.330.331.000.671.33-
幼套近明囊霉 Claroideoglomus etunicatum0.331.00-8.331.330.67-
地管柄囊霉 Funneliformis geosporum0.67-0.671.330.33--
摩西管柄囊霉 Funneliformis mosseae6.330.67-0.670.331.00-
道氏球囊霉 Glomus dominikii2.33-0.338.004.337.67_
地表球囊霉 Glomus versiforme1.67--0.331.331.00-
多梗球囊霉 Glomus multicaule5.336.002.6729.677.002.00-
黑球囊霉 Glomus melanosporum1.003.33--3.000.67-
聚丛球囊霉 Glomus aggregatum0.33-0.33----
聚集球囊霉 Glomus glomorulatum1.674.67-0.671.330.67-
卷曲球囊霉 Glomus convolutum3.671.330.331.671.000.330.67
宽柄球囊霉 Glomus magnicaule-1.00--0.336.671.00
膨果球囊霉 Glomus pansihalos3.000.335.3321.676.000.33-
透光球囊霉 Glomus diaphanum0.330.674.670.670.33--
网状球囊霉 Glomus reticulatum31.336.0015.6719.009.0013.004.00
微丛球囊霉 Glomus microaggregatum2.001.671.670.67-0.33-
隐球囊霉 Glomus occultum2.33-3.001.33-1.330.33
粘质球囊霉 Glomus viscosum3.331.001.008.331.67--
Glomus sp. 1-1.000.331.00---
美丽盾巨孢囊霉 Scutellospara calospora0.330.33-0.330.330.33-
沙荒缩管柄囊霉 Septoglomus deserticola6.673.332.008.004.007.005.67
缩管柄囊霉 Septoglomus constrictum0.333.33-3.670.67-1.33
种数 Number of species36302835342810

Fig. 4

The spore density of common species associated with Hedysarum scoparium (A) and its proportion among all arbuscular mycorrhizae (AM) fungal species (B) in different sites. ALS, Alxa; AX, Anxi; DK, Dengkou; EDS, Ordos; MQ, Minqin; SPT, Shapotou; WH, Wuhai."

Table 3

Correlation analysis between species diversity of arbuscular mycorrhizae (AM) fungi associated with Hedysarum scoparium and environmental factors"

环境因子Environmental factor种丰度
Species richness
孢子密度
Spore density
Shannon-Wiener指数
Shannon-Wiener index
辛普森指数
Simpson index
易提取球囊霉素
Easily extractable glomalin
总提取球囊霉素
Total extractable glomalin
SOC0.271-0.511*0.3470.338.-0.512*-0.435*
AP0.3860.0510.537*0.532*0.2830.302
AN0.2750.637**0.2150.1700.3090.256
pH0.411-0.725**0.3030.275-0.764**-0.751**
ST0.030-0.3050.1580.188-0.0900.055
SH0.787**0.581**0.688**0.608**0.563**0.664**
LA0.762**-0.3810.772**0.718**0.504*0.518*

Appendix I

Soil characteristics in the different sites (mean ± SE, n = 3)"

样地
Site
SOC
(mg·g-1)
AP
(µg·g -1)
AN
(μg·g-1)
pHACP
(µg·g-1·h-1)
ALP
(µg·g-1·h-1)
UA
(μg·g-1·h-1)
EEG
(mg·g-1)
TEG
(mg·g-1)
鄂尔多斯 Ordos10.00 ± 1.00c6.14 ± 0.50b64.24 ± 2.13b7.62 ± 0.27c51.97 ± 1.62c59.82 ± 0.92b7.33 ± 0.23e3.98 ± 0.03a11.17 ± 0.24a
乌海 Wuhai36.78 ± 2.01a5.16 ± 0.46c53.22 ± 2.70c8.57 ± 0.04a32.01 ± 1.41f17.33 ± 2.00e1.58 ± 0.05g2.36 ± 0.12b8.28 ± 0.53b
磴口 Dengkou9.92 ± 1.61c8.57 ± 1.19a93.34 ± 3.92a8.51 ± 0.06a55.70 ± 0.93b56.50 ± 0.94c10.64 ± 0.38b2.39 ± 0.10b7.61 ± 0.15c
阿拉善 Alxa14.42 ± 1.63b5.97 ± 0.16bc50.20 ± 0.52cd8.25 ± 0.17b85.19 ± 1.19a82.72 ± 2.40a7.94 ± 0.35d1.59 ± 0.12c7.56 ± 0.56c
沙坡头 Shapotou10.92 ± 0.52c7.83 ± 0.07a40.27 ± 1.02e8.54 ± 0.08a44.46 ± 2.96d30.92 ± 0.83d11.41 ± 0.23a1.40 ± 0.06cd4.01 ± 0.17d
民勤 Minqin11.67 ± 0.58c6.40 ± 0.22b26.29 ± 0.82f8.56 ± 0.13a29.04 ± 1.45f17.62 ± 0.80e10.08 ± 0.39c1.31 ± 0.16d3.60 ± 0.26d
安西 Anxi9.58 ± 1.18c3.81 ± 0.10d46.58 ± 1.90d8.68 ± 0.12a37.58 ± 2.07e17.15 ± 1.67e6.35 ± 0.30f0.84 ± 0.11e3.46 ± 0.19d
[1] Alguacil M, Lozano Z, Campoy MJ, Roldán A (2010). Phosphorus fertilization management modifies the biodiversity of AM fungi in a tropical savanna forage system.Soil Biology & Biochemistry, 42, 1114-1122.
doi: 10.1016/j.soilbio.2010.03.012
[2] Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001). Occurrence of arbuscular mycorrhizal fungi in saline soils of the tabriz plain of iran in relation to some physical and chemical properties of soil.Mycorrhiza, 11, 119-122.
doi: 10.1007/s005720100113 pmid: 28401349
[3] Bai CM, He XL, Shan BQ, Zhao LL (2009). Study on relationships between arbuscular mycorrhizal fungi and soil enzyme activities of Astragalus adsurgens in the desert.Journal of Northwest A&F UniversityNatural Science edition), 37, 84-90.
[白春明, 贺学礼, 山宝琴, 赵丽莉 (2009). 荒漠境沙打旺根围AM真菌与土壤酶活性的关系. 西北农林科技大学学报(自然科学版), 37, 84-90.]
[4] Bai CM, He XL, Tang HL, Shan BQ, Zhao LL (2009). Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China. Soil Biology & Biochemistry, 41, 941-947.
doi: 10.1016/j.soilbio.2009.02.010
[5] Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009). Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism.Ecology Letters, 12, 13-21.
doi: 10.1111/j.1461-0248.2008.01254.x pmid: 19019195
[6] Chen Z, He XL, Guo HJ, Yao XQ, Chen C (2012). Diversity of arbuscular mycorrhizal fungi in the rhizosphere of three host plants in the farming-pastoral zone, North China.Symbiosis, 57, 149-160.
doi: 10.1007/s13199-012-0186-y
[7] Davison J, Moora M, ?pik M, Adholeya A, Ainsaar L, Ba A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, P?rtel M, Reier ü, Saks ü, Singh R, Vasar M, Zobel M (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism.Science, 349, 970-973.
doi: 10.1126/science.aab1161 pmid: 26315436
[8] Ding XH, Luo SH, Liu JW, Li K, Liu GH (2012). Longitude gradient changes on plant community and soil stoichiometry characteristics of grassland in Hulunbeir.Acta Ecologica Sinica, 32, 3467-3476.
doi: 10.5846/stxb201105020571
[丁小慧, 罗淑政, 刘金巍, 李魁, 刘国华 (2012). 呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化. 生态学报, 32, 3467-3476. ]
doi: 10.5846/stxb201105020571
[9] Duan XY, He XL (2008). Ecological research on arbuscular mycorrhizal fungi from the rhizosphere of Hedysarum scoparium in Mu Us sandland. Agricultural Research in the Arid Areas, 26(5), 234-238.
[段小圆, 贺学礼 (2008). 毛乌素沙地花棒(Hedysarum scoparium)根围AM真菌生态学研究. 干旱地区农业研究, 26(5), 234-238.]
[10] Feddermann N, Finlay R, Boller T, Elfstrand M (2010). Functional diversity in arbuscular mycorrhiza—The role of gene expression, phosphorous nutrition and symbiotic efficiency.Fungal Ecology, 3(1), 1-8.
doi: 10.1016/j.funeco.2009.07.003
[11] Fitzsimons MS, Miller RM, Jastrow JD (2008). Scale-dependent niche axes of arbuscular mycorrhizal fungi.Oecologia, 158, 117-127.
doi: 10.1007/s00442-008-1117-8 pmid: 18690479
[12] Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010). Agroecology: The key role of arbuscular mycorrhizas in ecosystem services.Mycorrhiza, 20, 519-530.
doi: 10.1007/s00572-010-0333-3 pmid: 20697748
[13] Guo QH, Hu CC, He XL, Wang XQ, Chang H, Chen YY (2016). Exploration of the spatial distribution of am fungi in the rhizospheres ofAmmopiptanthus mongolicus- associated plants. Acta Ecologica Sinica, 36, 5809-5819.
doi: 10.5846/stxb201503300609
[郭清华, 胡从从, 贺学礼, 王晓乾, 常辉, 陈严严 (2016). 蒙古沙冬青伴生植物AM真菌的空间分布. 生态学报, 36, 5809-5819.]
doi: 10.5846/stxb201503300609
[14] Hazard C, Gosling P, van der Gast C, Mitchell DT, Doohan FM, Bending GD (2013). The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale.Isme Journal, 7, 498-508.
doi: 10.1038/ismej.2012.127 pmid: 23096401
[15] He XL, Chen Z, Guo HJ, Chen C (2012). Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Caragana korshinskii Kom. in desert zone. Acta Ecologica Sinica, 32, 3041-3049.
doi: 10.5846/stxb201104270557
[贺学礼, 陈烝, 郭辉娟, 陈程 (2012). 荒漠柠条锦鸡儿AM真菌多样性. 生态学报, 32, 3041-3049.]
doi: 10.5846/stxb201104270557
[16] He XL, Cheng C, He B (2011). Spatial distribution of arbuscular mycorrhizal fungi and glomalin ofHippophae rhamnoides L. in farming-pastoral zone from the two northern provinces of China. Acta Ecologica Sinica, 31, 1653-1661.
[贺学礼, 陈程, 何博 (2011). 北方两省农牧交错带沙棘根围AM真菌与球囊霉素空间分布. 生态学报, 31, 1653-1661.]
[17] He XL, Li YP, Zhao LL (2010). Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biology & Biochemistry, 42, 1313-1319.
[18] He XL, Liu XW, Li YP (2010a). The spatio-temporal distribution of arbuscular mycorrhizal fungi in the rhizosphere of Ammopiptanthus mongolicus from Shapotou. Acta Ecologica Sinica, 30, 370-376.
[贺学礼, 刘雪伟, 李英鹏 (2010a). 沙坡头地区沙冬青AM真菌的时空分布. 生态学报, 30, 370-376.]
[19] He XL, Tang HL, Zhang YX (2006a). Floristic eco-geographical distribution of Hedysarum L. in China.Journal of Hebei University (Natural Science edition), 26, 625-630.
doi: 10.3969/j.issn.1000-1565.2006.06.017
[贺学礼, 唐宏亮, 张玉霄 (2006a). 中国岩黄耆属(Hedysarum L.)植物区系生态地理分布. 河北大学学报(自然科学版), 26, 625-630.]
doi: 10.3969/j.issn.1000-1565.2006.06.017
[20] He XL, Wang LY, Ma J, Zhao LL (2010b). AM fungal diversity in the rhizosphere of Salvia miltiorrhiza in Anguo City of Hebei Province. Biodiversity Science, 18, 187-194.
[贺学礼, 王凌云, 马晶, 赵丽莉 (2010b). 河北省安国地区丹参根围AM真菌多样性. 生物多样性, 18, 187-194.]
[21] He XL, Zhao LL, Yang HY (2006b). Diversity and spatial distribution of arbuscular mycorrhizal fungi ofCaragana korshinskii in the Loess Plateau. Acta Ecologica Sinica, 26, 3835-3840.
[贺学礼, 赵丽莉, 杨宏宇 (2006b). 黄土高原柠条锦鸡儿AM真菌多样性及空间分布. 生态学报, 26, 3835-3840.]
[22] Hoffmann GG, Teicher K (1961). A colorimetric technique for determining urease activity in soil.Dung Boden, 95, 55-63.
doi: 10.1002/jpln.19610950107
[23] Ianson DC, Allen MF (1986). The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites.Mycologia, 78, 164-168.
doi: 10.2307/3793161
[24] Ji CH, Zhang SB, Gai JP, Bai DS, Li XL, Feng G (2007). Arbuscular mycorrhizal fungal diversity in arid zones in northwestern China.Biodiversity Science, 15, 77-83.
[冀春花, 张淑彬, 盖京苹, 白灯莎, 李晓林, 冯固 (2007). 西北干旱区AM真菌多样性研究. 生物多样性, 15, 77-83.]
[25] Landis FC, Gargas A, Givnish TJ (2004). Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas.New Phytologist, 164, 493-504.
doi: 10.1111/j.1469-8137.2004.01202.x
[26] Li XP, Zhang FP, Hu M, Wei YF (2012). Analysis of the regulation of spatial-temporal variation of the vegetation coverage based on SPOT NDVI data—A case study in Northwest China. Agricultural Research in the Arid Areas, 30(5), 180-184, 199-199.
doi: 10.3969/j.issn.1000-7601.2012.05.034
[李旭谱, 张福平, 胡猛, 魏永芬 (2012). 基于SPOT NDVI的植被覆盖时空演变规律分析——以西北五省为例. 干旱地区农业研究, 30(5), 180-184, 199-199.]
doi: 10.3969/j.issn.1000-7601.2012.05.034
[27] Li YP, He XL, Zhao LL (2010). Tempo-spatial dynamics of arbuscular mycorrhizal fungi under clonal plantPsammochloa villosa, Trin. Bor in Mu Us sandland. European Journal of Soil Biology, 46, 295-301.
[28] Odland A, Moral RD (2002). Thirteen years of wetland vegetation succession following a permanent drawdown, Myrkdalen Lake, Norway.Plant Ecology, 162, 185-198.
doi: 10.1023/A:1020388910724
[29] Pringle A, Bever JD (2002). Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a north carolina grassland.American Journal of Botany, 89, 1439-1446.
doi: 10.3732/ajb.89.9.1439 pmid: 21665745
[30] Rillig MC (2004). Arbuscular mycorrhizae and terrestrial ecosystem processes.Ecology Letters, 7, 740-754.
doi: 10.1111/j.1461-0248.2004.00620.x
[31] Rosendahl S (2008). Communities, populations and individuals of arbuscular mycorrhizal fungi.New Phytologist, 178, 253-266.
doi: 10.1111/j.1469-8137.2008.02378.x pmid: 18248587
[32] Santos JC, Finlay RD, Tehler A (2006). Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient.New Phytologist, 172, 159-168.
doi: 10.1111/j.1469-8137.2006.01799.x pmid: 16945098
[33] Schenck NC, Perez Y (1990). Manual for the identification of VA Mycorrhizal Fungi. 3rd edn. Synergistic, Gainesville, USA.
[34] Tarafdar JC, Marschner H (1994). Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus.Soil Biology & Biochemistry, 26, 387-395.
doi: 10.1016/0038-0717(94)90288-7
[35] van Aarle IM, Olsson PA, Soderstrom B (2002). Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization.New Phytologist, 155, 173-182.
doi: 10.1046/j.1469-8137.2002.00439.x
[36] Vogelsang KM, Reynolds HL, Bever JD (2006). Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system.New Phytologist, 172, 554-562.
doi: 10.1111/j.1469-8137.2006.01854.x pmid: 17083685
[37] Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011). Belowground biodiversity effects of plant symbionts support aboveground productivity.Ecology Letters, 14, 1001-1009.
doi: 10.1111/j.1461-0248.2011.01666.x pmid: 21790936
[38] Wright SF, Upadhyaya A (1998). A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi.Plant and Soil, 198, 97-107.
doi: 10.1023/A:1004347701584
[39] Xu LR (1985). The ecological differentiation of theHedysarum L. and geographical distribution in China. Acta Botanica Boreali-Occidentalia Sinica, 5, 275-285.
[徐朗然 (1985). 中国岩黄耆属植物的生态分化及地理分布. 西北植物学报, 5, 275-285.]
[40] Yang J, He XL, Zhao LL (2011). Species diversity of arbuscular mycorrhizal fungi in the rhizosphere ofSalix psammophila in Inner Mongolia desert. Biodiversity Science, 19, 377-385.
[杨静, 贺学礼, 赵丽莉 (2011). 内蒙古荒漠沙柳AM真菌物种多样性. 生物多样性, 19, 377-385.]
[41] Zhang MQ, Wang YS, Zhang C, Huang L (1994). The ecological distribution characteristics of some genera and species of VAM fungi in northern China.Mycosystema, 13, 166-172.
[张美庆, 王幼珊, 张弛, 黄磊 (1994). 我国北方VA菌根真菌某些属和种的生态分布. 菌物学报, 13, 166-172.]
[42] Zhao JL, He XL (2013). Diversity of arbuscular mycorrhizal fungi associated with clonal plants in Mu Us sandy land.Chinese Journal of Eco-Agriculture, 21, 199-206.
doi: 10.3724/SP.J.1011.2013.00199
[赵金莉, 贺学礼 (2013). 毛乌素沙地典型克隆植物根际AM真菌多样性研究. 中国生态农业学报, 21, 199-206.]
doi: 10.3724/SP.J.1011.2013.00199
[43] Zhu ZY, Ma YQ, Liu ZL, Zhao YZ (1999). Endemic plants and floristic characteristics in Alashan-Ordos biodiversity center.Journal of Arid Land Resources & Environment, 13(2), 1-16.
doi: 10.1088/0256-307X/15/12/025
[朱宗元, 马毓泉, 刘钟龄, 赵一之 (1999). 阿拉善—鄂尔多斯生物多样性中心的特有植物和植物区系的性质. 干旱区资源与环境, 13(2), 1-16.]
doi: 10.1088/0256-307X/15/12/025
[1] Yibo Tan, Wenhui Shen, Zi Fu, Wei Zheng, Zhiyang Ou, Zhangqiang Tan, Yuhua Peng, Shilong Pang, Qinfei He, Xiaorong Huang, Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[2] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. Distribution, community structures and species diversity of larch forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 742-752.
[3] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 825-833.
[4] Zihong Chen, Yuanbing Wang, Yongdong Dai, Kai Chen, Ling Xu, Qingcheng He. Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan [J]. Biodiv Sci, 2019, 27(9): 993-1001.
[5] Tolgor Bau, Xueshan Wang, Peng Zhang. Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains [J]. Biodiv Sci, 2019, 27(8): 867-873.
[6] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases [J]. Biodiv Sci, 2019, 27(7): 778-786.
[7] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2019, 27(7): 813-818.
[8] Aizezitiyuemaier MAIMAITI, Yusufujiang RUSULI, HE Hui, Baihetinisha ABUDUKERIMU. Spatio-temporal characteristics of vegetation water use efficiency and its relationship with climate factors in Tianshan Mountains in Xinjiang from 2000 to 2017 [J]. Chin J Plant Ecol, 2019, 43(6): 490-500.
[9] ZHANG Xin-Xin, WANG Xi, HU Ying, ZHOU Wei, CHEN Xiao-Yang, HU Xin-Sheng. Advances in the study of population genetic diversity at plant species’ margins [J]. Chin J Plant Ecol, 2019, 43(5): 383-395.
[10] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[11] Hu Yifeng, Yu Wenhua, Yue Yang, Huang Zhenglanyi, Li Yuchun, Wu Yi. Species diversity and potential distribution of Chiroptera on Hainan Island, China [J]. Biodiv Sci, 2019, 27(4): 400-408.
[12] Yan Wenbo,Ji Shengnan,Shuai Lingying,Zhao Leigang,Zhu Dapeng,Zeng Zhigao. Spatial distribution patterns of mammal diversity in Yangxian County of Shaanxi Province on the southern slope of the Qinling Mountains [J]. Biodiv Sci, 2019, 27(2): 177-185.
[13] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China [J]. Biodiv Sci, 2019, 27(2): 149-158.
[14] Dai Mengmeng, Yang Kun, Li Shu, Wang Xiaodong, Song Zhaobin. Fish diversity and resource status in the Nanguang River, a tributary of upper Yangtze River [J]. Biodiv Sci, 2019, 27(10): 1081-1089.
[15] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. Amphibian species richness patterns in karst regions in Southwest China and its environmental associations [J]. Biodiv Sci, 2018, 26(9): 941-950.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yuliang Chen;Feixiong Zhang;Guiyou Zhang*. Key Caspase-like Enzymes in Programmed Cell Death in Plants[J]. Chin Bull Bot, 2008, 25(05): 616 -623 .
[2] Zhu Ru-xing;Xiao Wen-qiao;Wang Man-si;Cao Ri-qiang and Pan Da-qian. Antibiotic Effect of the Main Constituents in the Onosma paniculatum Callus[J]. Chin Bull Bot, 1992, 9(03): 40 -43 .
[3] Zhu Zheng-ge;Pan Yan-yun;Zhang Zhao-duo and Liu Zhi-yi. The Extraction and Analysis of Mitochondriat DNA from Common Wheat[J]. Chin Bull Bot, 1995, 12(增刊): 42 -45 .
[4] Guan Jun-feng. Effect of Water Loss and Wilting of Harvested Spinach Leaves on Membrane Permeability and Lipid Perexidation[J]. Chin Bull Bot, 1992, 9(04): 38 -40 .
[5] Li Rong-hui;Zhang Shu-ying and Zhang Zhi-min. Embryo Culture of Viburnum lantana in Vitro[J]. Chin Bull Bot, 1989, 6(02): 104 -107 .
[6] Jian Ling-cheng. Germplasm Long-term Conservation Associated with Cryobiology in Plant[J]. Chin Bull Bot, 1988, 5(02): 65 -68 .
[7] Yongmei Wu, Xue Mao, Shujian Wang, Jinai Xue, Xiaoyun Jia, Jiping Wang, Zhirong Yang, Runzhi Li. Systematic Metabolic Engineering of ω-7 Fatty Acids in Plants[J]. Chin Bull Bot, 2011, 46(5): 575 -585 .
[8] Niu Zi-mian Fang Yao-ren. Study on the ABSCISIC Acid in Leaf of Spur-type Variety of Apple[J]. Chin Bull Bot, 1994, 11(02): 49 -50 .
[9] Hongmei Xi, Wenzhong Xu, Mi Ma. Advances in Biological Function of Arabidopsis Bifunctional Enzyme SAL1[J]. Chin Bull Bot, 2016, 51(3): 377 -386 .
[10] Dandan Qin, Songchao Xie, Gang Liu, Zhongfu Ni, Yingyin Yao, Qixin Sun, Huiru Peng. Isolation and Functional Characterization of Heat-stressresponsive Gene TaWTF1 from Wheat[J]. Chin Bull Bot, 2013, 48(1): 34 -41 .