Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (5): 562-572.doi: 10.17521/cjpe.2017.0270

• Research Articles • Previous Articles     Next Articles

Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China

ZHONG Qiao-Lian1,2,3,LIU Li-Bin1,2,4,XU Xin1,2,3,YANG Yong1,2,3,GUO Yin-Ming1,2,3,XU Hai-Yang1,2,3,CAI Xian-Li1,2,3,NI Jian1,2,4,*()   

  1. 1 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
    2 Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding, Guizhou 562100, China
    3 University of Chinese Academy of Sciences, Beijing 100049, China
    4 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
  • Received:2017-10-29 Revised:2018-03-27 Online:2018-07-20 Published:2018-05-20
  • Contact: Jian NI E-mail:nijian@zjnu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation(41471049);the National Key Basic Research Program for Global Change(2013CB956704)

Abstract:

Aims The aims are to characterize key plant functional traits and their interactions of woody species growing in special and harsh karst habitats, and to explore their potential ways in adapting harsh karst habitats.

Methods A comprehensive survey of nine plant functional traits (including above- and below-ground ones) was conducted in a 100 m × 30 m permanent plot in the Tianlongshan Mountain of Puding County, central Guizhou Province, southwestern China in the summer 2016. Five dominant tree species (Carpinus pubescens, Machilus cavaleriei, Itea yunnanensis, Platycarya strobilacea, Lithocarpus confinis), three shrubs (Zanthoxylum ovalifolium, Stachyurus obovatus, Rhamnus heterophylla) and two vines (Rosa cymosa and Dalbergia hancei) in an evergreen and deciduous broadleaved mixed forest were chosen as target species. Nine traits of leaf, stem, branch and root were investigated and measured. Key features of these nine functional traits of ten woody species were numerically characterized. Traits variations among plant species, life form and leaf phenology group were further investigated. Relationships among key functional traits and between above- and below-ground traits were statistically analyzed.

Important findings (1) Nine traits varied in varying degrees. The maximum and minimum coefficient of interspecific variation were the fine root tissue density (FRTD) and twig dry-matter content (TDMC), 96.47% and 11.67%, respectively. Similarly, the largest and smallest coefficients of intraspecific variation were also FRTD and TDMC, 51.44% and 6.83%, respectively; (2) At the interspecific level, among different species FRTD had no significant difference, but other traits including specific root length (SRL), leaf thickness (LT), leaf area (LA), specific leaf area (SLA), leaf dry-matter content (LDMC), leaf tissue density (LTD), TDMC and twig tissue density (TTD) showed significant differences (p < 0.01). At the intraspecific level, however, SLA showed significant difference, and differences of other traits were not significant. (3) There was a significant correlation between most leaf and branch traits, and SRL vs. SLA were negatively correlated. However, there was no significant correlation among other root traits and leaf and twig traits. In a word, compared to the functional traits in tree species of non-karst evergreen broad-leaved forests in the same latitude, karst woody plants in Puding had a series of functional traits, such as smaller LA, SLA and larger LDMC and LTD and so on, which are beneficial to reducing transpiration and storing nutrient. This may be its main ecological strategy for adapting to arid and poor karst environments.

Key words: karst forest, life form, growth form, trait combination, intraspecific variation, interspecific variation

Table 1

The selected ten dominant woody species in a karst evergreen and deciduous broad-leaved mixed forest in central Guizhou Province, China"

物种
Species
生长型
Growth form
生活型
Life form
采样株数
Sample individuals
叶质地
Leaf texture
安顺润楠 Machilus cavaleriei 乔木 Tree 常绿 Evergreen 20 革质 Leathery
云南鼠刺 Itea yunnanensis 乔木 Tree 常绿 Evergreen 20 薄革质 Thinly leathery
窄叶石栎 Lithocarpus confinis 乔木 Tree 常绿 Evergreen 21 厚纸质 Thickly papery
化香树 Platycarya strobilacea 乔木 Tree 落叶 Deciduous 25 纸质 Papery
云贵鹅耳枥 Carpinus pubescens 乔木 Tree 落叶 Deciduous 20 厚纸质 Thickly papery
刺异叶花椒 Zanthoxylum ovalifolium 灌木 Shrub 常绿 Evergreen 20 革质 Leathery
倒卵叶旌节花 Stachyurus obovatus 灌木 Shrub 常绿 Evergreen 20 革质或亚革质 Leathery or subcoriaceous
异叶鼠李 Rhamnus heterophylla 灌木 Shrub 常绿 Evergreen 20 纸质 Papery
小果蔷薇 Rosa cymosa 藤本 Liana 常绿 Evergreen 20 薄纸质 Thinly papery
藤黄檀 Dalbergia hancei 藤本 Liana 落叶 Deciduous 20 膜质 Membranous

Table 2

Characteristics of dominant woody plant functional traits in the karst forest"

性状
Trait
平均值±标准偏差
Mean ± SD
最小值
Minimum
最大值
Maximum
变异系数
Coefficient of variation (%)
叶片厚度 Leaf thickness (mm) 0.17 ± 0.07 0.03 0.33 39.41
叶面积 Leaf area (cm2) 17.74 ± 10.44 2.15 69.28 58.85
比叶面积 Specific leaf area (cm2?g-1) 134.44 ± 45.80 55.35 281.34 34.07
叶干物质含量 Leaf dry-matter content (g?g-1) 0.40 ± 0.06 0.28 0.69 14.79
叶组织密度 Leaf tissue density (g?cm-3) 0.54 ± 0.13 0.27 1.07 24.07
小枝干物质含量 Twig dry-matter content of branchlets (g?g-1) 0.48 ± 0.06 0.37 0.64 11.67
小枝组织密度 Twig tissue density (g?cm-3) 0.69 ± 0.19 0.28 2.50 27.53
比根长 Specific root length (cm?g-1) 251.91 ± 128.79 54.56 987.41 51.12
细根组织密度 Fine root tissue density (g?cm-3) 0.85 ± 0.82 0.12 7.33 96.47

Fig. 1

Functional traits value of dominant woody species in the karst forest. The circle in the box plot indicates the abnormal value; the percentage of data in the figure is the coefficient of variation; 1-10 represent species in the ordinate; the species number 1, Machilus cavaleriei; 2, Itea yunnanensis; 3, Lithocarpus confinis; 4, Carpinus pubescens; 5, Platycarya strobilacea; 6, Zanthoxylum ovalifolium; 7, Rhamnus heterophylla; 8, Stachyurus obovatus; 9, Rosa cymosa; 10, Dalbergia hancei. A, leaf thickness (LT). B, leaf area (LA). C, specific leaf area (SLA). D, leaf dry-matter content (LDMC). E, leaf tissue density (LTD). F, twig dry-matter content of branchlets (TDMC). G , twig tissue density (TTD). H, specific root length (SRL). I, fine root tissue density (FRTD)."

Table 3

Plant functional traits in different growth and life forms (mean ± SD) and (interspecific-intraspecific) coefficient of variation"

LT (mm) LA (cm2) SLA (cm2?g-1) LDMC (g?g-1) LTD (g?cm-3) TDMC (g?g-1) TTD (g?cm-3) SRL (cm?g-1) FRTD (g?cm-3)
乔木 Tree 0.19 ± 0.06a (33.25%/
16.52%)
24.66 ± 9.02a (36.59%/
22.63%)
115.64 ± 44.16a (28.18%/
19.33%)
0.42 ± 0.05a (11.59%/
6.26%)
0.53 ± 0.10a (19.19%/
10.05%)
0.48 ± 0.06a (11.48%/
6.36%)
0.71 ± 0.11a (15.50%/
12.52%)
237.89 ± 89.59a (37.66%/
32.72%)
0.90 ± 0.93a (102.97%/
68.94%)
灌木 Shrub 0.16±0.06b
(41.51%/
14.41%)
12.3 ± 6.62b (53.85%/
20.10%)
143.49 ± 35.369b (24.64%/
11.73%)
0.35 ± 0.05b (14.31%/
6.11%)
0.50 ± 0.15a (30.47%/
13.83%)
0.49 ± 0.06a (12.66%/
7.01%)
0.68 ± 0.17a (24.70%/
13.26%)
271.09 ± 179.73a (66.30%/
62.05%)
0.88 ± 0.89a (100.61%/
31.27%)
藤本 Liana 0.11 ± 0.04c (35.94%/
24.26%)
7.43 ± 1.48c (19.95%/
17.33%)
169.689 ± 40.13c (23.65%/
23.17%)
0.41 ± 0.06c (13.86%/
12.77%)
0.61 ± 0.15b (24.52%/
15.23%)
0.46 ± 0.04b (9.80%/
7.70%)
0.63 ± 0.32a (50.94%/
43.33%)
255.17 ± 110.55a (43.32%/
37.93%)
0.69 ± 0.21a (30.37%/
25.04%)
常绿植物
Evergreen
0.17 ± 0.07d (39.34%/
14.81%)
18.15 ± 10.18d (56.12%/
17.12%)
131.19 ± 43.38d (34.47%/
13.99%)
0.39 ± 0.06d (16.29%/
7.06%)
0.54 ± 0.13d (27.98%/
12.12%)
0.48 ± 0.05d (11.73%/
7.17%)
0.71 ± 0.14d (20.81%/
13.38%)
238.14 ± 145.15d (60.95%/
45.90%)
0.88 ± 0.92d (93.11%/
59.18%)
落叶植物
Deciduous
0.14 ± 0.04e (29.49%/
23.57%)
16.84 ± 11.08e (65.79%/
29.42%)
145.85 ± 41.79e (30.12%/
26.66%)
0.43 ± 0.04e (9.60%/
8.56%)
0.55 ± 0.08d (16.58%/
12.52%)
0.50 ± 0.05e (10.65%/
6.02%)
0.72 ± 0.27d (36.91%/
31.61%)
237.66 ± 94.71d (34.61%/
34.23%)
0.91 ± 0.963d (102.4%2/
52.96%)

Table 4

Effects of species, growth form and life form on trait variations (R2 value)"

变量 Variables LT (mm) LA (cm2) SLA (cm2?g-1) LDMC (g?g-1) LTD (g?cm-3) TDMC (g?g-1) TTD (g?cm-3) SRL (cm?g-1) FRTD (g?cm-3)
物种 Species 0.86 0.78 0.67 0.75 0.74 0.64 0.19 0.18 0.08
生长型 Growth form 0.13 0.50 0.16 0.31 0.02 0.06 0.03 0.02 0.01
生活型 Life form 0.08 0.01 0.03 0.12 0.01 0.04 0.00 0.02 0.00
生长型×生活型
Growth form × Life form
0.07 0.55 0.49 0.35 0.19 0.02 0.17 0.37 0.04

Table 5

Correlation coefficient between plant functiolal traits of ten dominant woody species in the karst forest"

LT LA SLA LDMC LTD TDMC TTD SRL
LA 0.65**
SLA -0.83** -0.56**
LDMC -0.21** 0.01 -0.22**
LTD -0.70** -0.47** 0.34** 0.64**
TDMC -0.38** 0.41** 0.17* 0.43** 0.45**
TTD -0.17* 0.10 -0.02 0.28** 0.29** 0.34**
SRL 0.12 -0.00 -0.18* 0.12 -0.13 0.09 0.04
FRTD 0.02 -0.31** -0.09 0.10 0.12 0.02 -0.01 -0.00
[1] Ackerly DD, Reich PB ( 1999). Convergence and correlations among leaf size and function in seed plants: A comparative test using independent contrasts. American Journal of Botany, 86, 1272-1281.
doi: 10.2307/2656775 pmid: 10487815410300123000530007300
[2] Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S ( 2010). Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98, 604-613.
doi: 10.1111/j.1365-2745.2010.01651.x
[3] Auger S, Shipley B ( 2013). Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24, 419-428.
doi: 10.1111/jvs.2013.24.issue-3
[4] Bauhus J, Khanna PK, Menden N ( 2000). Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Canadian Journal of Forest Research, 30, 1886-1894.
[5] Bu WS, Schmid B, Liu XJ, Li Y, Hardtle W, von Oheimb G, Liang Y, Sun ZK, Huang YY, Bruelheide H, Ma KP ( 2017). Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands. Journal of Plant Ecology, 10, 158-169.
doi: 10.1093/jpe/rtw096
[6] Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE ( 2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
doi: 10.1111/j.1461-0248.2009.01285.x pmid: 19243406
[7] Chen L, Yang XG, Song NP, Yang XM, Xiao XP, Wang X ( 2014). A study on variations in leaf trait of 35 plants in the arid region of middle Ningxia, China. Acta Prataculturae Sinica, 23, 41-49.
doi: 10.11686/cyxb20140106
[ 陈林, 杨新国, 宋乃平杨明秀, 肖绪培, 王兴 ( 2014). 宁夏中部干旱带主要植物叶性状变异特征研究. 草业学报, 23, 41-49.]
doi: 10.11686/cyxb20140106
[8] Chen W, Wang JH, Ma RJ, Qi W, Liu K, Zhang LN, Chen XL ( 2016). Variance in leaf functional traits of 89 species from the eastern Guangdong of China. Chinese Journal of Ecology, 35, 2101-2109.
doi: 10.13292/j.1000-4890.201608.033
[ 陈文, 王桔红, 马瑞君, 齐威, 刘坤, 张丽娜, 陈学林 ( 2016). 粤东89种常见植物叶功能性状变异特征. 生态学杂志, 35, 2101-2109.]
doi: 10.13292/j.1000-4890.201608.033
[9] Comas LH, Eissenstat DM ( 2004). Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18, 388-397.
doi: 10.1111/j.0269-8463.2004.00835.x
[10] Comstock J, Mencuccini M ( 1998). Control of stomatal conductance by leaf water potential in Hymenoclea salsola(T. & G.), a desert subshrub. Plant, Cell & Environment, 21, 1029-1038.
[11] Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
doi: 10.1071/BT02124
[12] Corner EJH ( 1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414.
doi: 10.1093/oxfordjournals.aob.a083225
[13] Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC ( 2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19.
doi: 10.1890/04-1075
[14] Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Hamzehee GFB, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany A, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-?Campo J, Thompson K, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR ( 2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295-304.
doi: 10.1111/j.1654-1103.2004.tb02266.x
[15] Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray B, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bonisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremetev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné L ( 2016). The global spectrum of plant form and function. Nature, 529, 167-171.
doi: 10.1038/nature16489 pmid: 26700811
[16] Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL ( 2000). Building roots in a changing environment: Implications for root longevity. New Phytologist, 147, 33-42.
doi: 10.1046/j.1469-8137.2000.00686.x
[17] Figueroa JA, Armesto JJ ( 2001). Community-wide germination strategies in a temperate rainforest of Southern Chile: Ecological and evolutionary correlates. Australian Journal of Botany, 49, 411-425.
doi: 10.1071/bt00013
[18] Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML ( 2001). Consistency of species ranking based on functional leaf traits. New Phytologist, 152, 69-83.
doi: 10.1046/j.0028-646x.2001.00239.x
[19] Guo BQ ( 2016). Study on the Adaptation of Main Functional Fine Root Traits to the Altitude Gradient of Pinus taiwanensis. Master degree dissertation, Fujian Normal University,Fuzhou.
[ 郭炳桥 ( 2016). 黄山松细根主要功能性状对海拔梯度的适应规律研究. 硕士学位论文, 福建师范大学, 福州.]
[20] Guo K, Liu CC, Dong M ( 2011). Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China. Chinese Journal of Plant Ecology, 35, 991-999.
doi: 10.3724/SP.J.1258.2011.00991
[ 郭柯, 刘长成, 董鸣 ( 2011). 我国西南喀斯特植物生态适应性与石漠化治理. 植物生态学报, 35, 991-999.]
doi: 10.3724/SP.J.1258.2011.00991
[21] Jiang Y, Chen XB, Ma JM, Liang SC, Huang J, Liu RH, Pan YF ( 2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broadleaved mixed forests in karst topography, Guilin, Southwest China. Tropical Conservation Science, 9(4). DOI:10.1177/1940082916680211.
[22] Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ ( 2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122.
doi: 10.1086/507879 pmid: 17004214
[23] Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC ( 2016). Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104, 1299-1310.
doi: 10.1111/1365-2745.12562
[24] Laughlin DC ( 2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102, 186-193.
doi: 10.1111/1365-2745.12187
[25] Lavorel S, Garnier E ( 2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
doi: 10.1046/j.1365-2435.2002.00664.x
[26] Liu HW, Liu WD, Wang W, Chai J, Tao JP ( 2015). Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing. Acta Ecologica Sinica, 35, 4071-4080.
doi: 10.5846/stxb201310262584
[ 刘宏伟, 刘文丹, 王微, 柴捷, 陶建平 ( 2015). 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征. 生态学报, 35, 4071-4081.]
doi: 10.5846/stxb201310262584
[27] Liu HW, Wang W, Zuo J, Tao JP ( 2014). Leaf traits of main plants on limestone area in Zhongliang Mountain. Journal of Southwest China Normal University (Natural Science Edition), 39, 50-55.
doi: 10.13718/j.cnki.xsxb.2014.09.010
[ 刘宏伟, 王微, 左娟, 陶建平 ( 2014). 中梁山石灰岩山地30种主要植物叶片性状研究. 西南大学学报(自然科学版), 39, 50-55.]
doi: 10.13718/j.cnki.xsxb.2014.09.010
[28] Liu LB, Wu YY, Hu G, Zhang ZH, Cheng AY, Wang SJ, Ni J ( 2016). Biomass of karst evergreen and deciduous broad-leaved mixed forest in central Guizhou Province, southwestern China: A comprehensive inventory of a 2 ha plot. Silva Fennica, 50, 1492. DOI: 10.14214/sf.1492.
doi: 10.14214/sf.1492
[29] Ma JM, Zhang XZ, Liang SC, Chen T, Huang QJ ( 2012). Leaf traits of common plants in Yaoshan Mountain of Guilin, China. Journal of Guangxi Normal University (Natural Science Edition), 30, 77-82.
doi: 10.3969/j.issn.1001-6600.2012.01.016
[ 马姜明, 张秀珍, 梁士楚, 陈婷, 黄秋菊 ( 2012). 桂林尧山常见植物叶片性状研究. 广西师范大学学报(自然科学版), 30, 77-82.]
doi: 10.3969/j.issn.1001-6600.2012.01.016
[30] Meng TT, Ni J, Wang GH ( 2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology(Chinese Version), 31, 150-165.
doi: 10.17521/cjpe.2007.0019
[ 孟婷婷, 倪健, 王国宏 ( 2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
doi: 10.17521/cjpe.2007.0019
[31] Messier J, Lechowicz MJ, McGill BJ, Violle C, Enquist BJ ( 2017). Interspecific integration of trait dimensions at local scales: The plant phenotype as an integrated network. Journal of Ecology, 105, 1775-1790.
doi: 10.1111/1365-2745.12755
[32] Ni J, Luo DH, Xia J, Zhang ZH, Hu G ( 2015). Vegetation in karst terrain of southwestern China allocates more biomass to roots. Solid Earth, 6, 799-810.
doi: 10.5194/sed-7-1209-2015
[33] Niinemets Ü ( 2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shurbs. Ecology, 82, 453-469.
doi: 10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
[34] Ohashi Y, Nakayama N, Saneoka H, Fujita K ( 2006). Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50, 138-141.
doi: 10.1007/s10535-005-0089-3
[35] Reich PB, Walters MB, Ellsworth DS, Vose JM, Gresham C, Bowman WD ( 1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional group. Oecologia, 114, 471-482.
doi: 10.1007/s004420050471
[36] Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB ( 2003). The evolution of plant functional variation: Traits, spectra, and strategies. Internatinal Journal of Plant Sciences, 164, S143-S164.
doi: 10.1086/374368
[37] Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas VD, DeBello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchui M, Kembel SW, Kichenin E, Kraft NJB, Lagerstrom A, Le Bagousse- Pinguer Y, Li YZ, Mason N, Messier J, Nakashizuka T, McC Overton J, Peltzer DA, Perez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Vandewalle M, Wardle DA ( 2015). A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
doi: 10.1111/ele.12508 pmid: 26415616
[38] Stahl U, Kattge J, Reu B, Voigt W, Ogle K, Dickie J, Wirth C ( 2013). Whole-plant trait spectra of North American woody plant species reflect fundamental ecological strategies. Ecosphere, 4, 128.
doi: 10.1890/ES13-00143.1
[39] Su WH, Shi Z, Yang B, Yang JJ, Zhao GH, Zhou R ( 2015). Intraspecific functional trait variation in a tree species (Lithocarpus dealbatus) along latitude. Plant Diversity and Resources, 37, 309-317.
[ 苏文华, 施展, 杨波, 杨建军, 赵冠华, 周睿 ( 2015). 滇石栎沿纬度梯度叶片功能性状的种内变化. 植物分类与资源学报, 37, 309-317.]
[40] Tang QQ, Huang YT, Ding Y, Zang RG ( 2016). Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270.
[ 唐青青, 黄永涛, 丁易, 臧润国 ( 2016). 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
[41] Verheijen LM, Aerts R, Bonisch G, Kattge J, van Bodegom PM ( 2016). Variation in trait trade-offs allows differentiation among predefined plant functional types: Implications for predictive ecology. New Phytologist, 209, 563-575.
doi: 10.1111/nph.13623 pmid: 26352461
[42] Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007). Let the concept of trait be functional! Oikos, 116, 882-892.
doi: 10.1111/oik.2007.116.issue-5
[43] Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Huishof C, Jung V, Messier J ( 2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252.
doi: 10.1016/j.tree.2011.11.014 pmid: 22244797
[44] Walker AP, Beckerman AP, Gu LH, Kattge J, Cermusak LA, Domingues TF, Scales JC, Wohlfahrt G, Wullschleger SD, Woodward FI ( 2014). The relationship of leaf photosynthetic traits—Vcmax and Jmax—to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecology and Evolution, 4, 3218-3235.
doi: 10.1002/ece3.1173 pmid: 4222209
[45] Wang SJ, Li YB, Li RL ( 2003). Karst rocky desertification: Formation background, evolution and comprehensive taming. Quaternary Sciences, 23, 657-666.
[ 王世杰, 李阳兵, 李瑞玲 ( 2003). 喀斯特石漠化的形成背景、演化与治理. 第四纪研究, 23, 657-666.]
[46] Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
doi: 10.1146/annurev.ecolsys.33.010802.150452
[47] Westoby M, Wright IJ ( 2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
doi: 10.1007/s00442-003-1231-6 pmid: 16228258
[48] Westoby M, Wright IJ ( 2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268.
doi: 10.1016/j.tree.2006.02.004 pmid: 16697912
[49] Wilson PJ, Thompson K, Hodgson JG ( 1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
doi: 10.1046/j.1469-8137.1999.00427.x
[50] Withington JM, Reich PB, Oleksyn J, Eissenstat DM ( 2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397.
doi: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2
[51] Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-?Manriquez G, Martine-Ramos M, Mazer SJ, Muller-?Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendrop CF, Webb CO, Westoby M, Wright SJ ( 2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
doi: 10.1093/aob/mcl066 pmid: 28029050663
[52] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thonmas SC, Tjoelker MG, Veneklass EJ, Villar R ( 2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
doi: 10.1038/nature02403
[53] Xi XQ, Zhao YJ, Liu YG, Wang X, Gao XM ( 2011). Variation and correlation of plant functional traits in karst area of central Guizhou Province, China. Chinese Journal of Plant Ecology, 35, 1000-1008.
[ 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明 ( 2011). 黔中喀斯特山区植物功能性状的变异与关联. 植物生态学报, 35, 1000-1008.]
[54] Xu MS, Zhao YT, Yang XD, Shi QR, Zhou LL, Zhang QQ, Arshad A, Yan ER ( 2016). Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province. Chinese Journal of Plant Ecology, 40, 48-59.
doi: 10.17521/cjpe.2015.0246
[ 许洺山, 赵延涛, 杨晓东, 史青茹, 周刘丽, 张晴晴, Arshad A, 阎恩荣 ( 2016). 浙江天童木本植物叶片性状空间变异的地统计学分析. 植物生态学报, 40, 48-59.]
doi: 10.17521/cjpe.2015.0246
[55] Yao TT, Meng TT, Ni J, Yan S, Feng XH, Wang GH ( 2010). Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China. Biodiversity Science, 18, 201-211.
[ 尧婷婷, 孟婷婷, 倪健, 阎顺, 冯晓华, 王国宏 ( 2010). 新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探. 生物多样性, 18, 201-211.]
[56] Zhan SX, Zhen SX, Wang Y, Bai YF ( 2016). Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions. Chinese Journal of Plant Ecology, 40, 36-47.
doi: 10.17521/cjpe.2015.0164
[ 詹书侠, 郑淑霞, 王扬, 白永飞 ( 2016). 羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联. 植物生态学报, 40, 36-47.]
doi: 10.17521/cjpe.2015.0164
[57] Zhang ZH, Hu G, Zhu JD, Luo DH, Ni J ( 2010). Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research, 25, 1151-1160.
doi: 10.1007/s11284-010-0740-0
[58] Zou B, Cai F, Zheng JM, Dai W ( 2015). Biomass vertical distribution of fine root and its traits of four tree species in subtropical natural forest. Journal of Northeast Forestry University, 43, 18-22.
[ 邹斌, 蔡飞, 郑景明, 戴伟 ( 2015). 亚热带天然林4种树木细根生物量垂直分布和主要功能性状的差异. 东北林业大学学报, 43, 18-22.]
[1] GAO Chen-Guang, QIAO Xian-Guo, WANG Zi, LU Shuai-Zhi, HOU Dong-Jie, LIU Chang-Cheng, ZHAO Li-Qing, GUO Ke. Distribution, community characteristics and classification of Thymus mongolicus steppe in China [J]. Chin J Plan Ecolo, 2018, 42(9): 971-976.
[2] Zhiwen Guo, Jingming Zheng. Predicting modes of seed dispersal using plant life history traits [J]. Biodiv Sci, 2017, 25(9): 966-971.
[3] Yu-Liang JIANG, Xian-Kun LI, Yi-Li GUO, Tao DING, Bin WANG, Wu-Sheng XIANG. Diversity of climbing seed plants and their reproductive habit in a karst seasonal rain forest in Nonggang, Guangxi, China [J]. Chin J Plan Ecolo, 2017, 41(7): 716-728.
[4] Zhi-Ying NING, Yu-Lin LI, Hong-Ling YANG, Dian-Chao SUN, Jing-Dong BI. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land [J]. Chin J Plan Ecolo, 2017, 41(10): 1069-1080.
[5] Jia-Xiang LI, Wen-Ting XU, Gao-Ming XIONG, Yang WANG, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China [J]. Chin J Plan Ecolo, 2017, 41(1): 31-42.
[6] Yunqin Li,Fan Du,Jian Wang,Ruinian Li,Yang Liu. Desert vegetation in dry valleys of the upstream of Jinsha River [J]. Biodiv Sci, 2016, 24(4): 489-494.
[7] Yuliang Jiang,Kundong Bai,Yili Guo,Bin Wang,Dongxing Li,Xiankun Li,Zhishang Liu. Floral traits of woody plants and their habitat differentiations in a northern tropical karst forest [J]. Biodiv Sci, 2016, 24(2): 148-156.
[8] Ning Wang,Weifang Li,Bing Zhou,Xiaohong Yan. Invasiveness, clonal form and geographical origin of invasive clonal plant species in China [J]. Biodiv Sci, 2016, 24(1): 12-.
[9] HUANG Zong-Sheng,YU Li-Fei,FU Yu-Hong,YANG Rui. Characteristics of carbon sequestration during natural restoration of Maolan karst forest ecosystems [J]. Chin J Plan Ecolo, 2015, 39(6): 554-564.
[10] Changzhu Liu, Qiang Guo, Xiulian Chi. Relationship Between Leaf Mass and Leafing Intensity for 48 Tree Species in the Temperate Mountain Forests in China [J]. Chin Bull Bot, 2015, 50(2): 234-240.
[11] YANG Yao, GUO Ke, ZHAO Li-Qing, ZHAO Hai-Wei, QIAO Xian-Guo, LIU Hui-Ming, and LIU Chang-Cheng. Community characteristics of Stipa roborowskyi steppe in Xizang [J]. Chin J Plan Ecolo, 2014, 38(6): 635-639.
[12] CUI Ning-Jie, ZHANG Dan-Ju, LIU Yang, ZHANG Jian, YANG Wan-Qin, OU Jiang, ZHANG Jie, SONG Xiao-Yan, and YIN Rui. Plant diversity and seasonal dynamics in forest gaps of varying sizes in Pinus massoniana plantations [J]. Chin J Plan Ecolo, 2014, 38(5): 477-490.
[13] Chunyan Pi,Yan Liu. Bryophyte composition and diversity within anthropogenic habitats in a residential area of Chongqing municipality city [J]. Biodiv Sci, 2014, 22(5): 583-588.
[14] NIU De-Cao, LI Qian, JIANG Shi-Gao, CHANG Pei-Jing, and FU Hua. Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau [J]. Chin J Plan Ecolo, 2013, 37(4): 317-325.
[15] CHEN Yan-Song, ZHOU Shou-Biao, OU Zu-Lan, XU Zhong-Dong, and HONG Xin. Seed mass variation in common plant species in Wanfoshan Natural Reservation Region, Anhui, China [J]. Chin J Plan Ecolo, 2012, 36(8): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hui Liu, Danli Guo, Darun Cai, Xianzhong Huang. Heterologous overexpression of ApZFP Promotes Flowering and Improves Abiotic Tolerance in Arabidopsis thaliana[J]. Chin Bull Bot, 2016, 51(3): 296 -305 .
[2] Ke Xia, Roy Turkington, Hong-yu Tan, Lei Fan. Factors limiting the recruitment of Quercus schottkyana, a dominant evergreen oak in SW China[J]. Plant Diversity, 2018, 40(06): 277 -283 .
[3] LI Qiao-Hong , , P.K . Joshi, YANG Xue-Fei , , N . Lele , XU Jian-Chu , . Resource Utilization Pattern Analysis in Pali Gad Watershed of Tehri , Garhwal Himalaya ( India)[J]. Plant Diversity, 2009, 31(06): 551 -558 .
[4] WANG Wen-Tsai. Ranunculus ailaoshanicus W. T. Wang, a new species of Ranunculaceae from Yunnan, China[J]. J Syst Evol, 2007, 45(3): 293 -295 .
[5] Yann-Ru Lou, Sheaza Ahmed, Jian Yan, Adewale M. Adio, Hannah M. Powell, Paul F. Morris, and Georg Jander. Arabidopsis ADC1 functions as an Nδ-acetylornithine decarboxylase[J]. J Integr Plant Biol, 0, (): 0 .
[6] LIANG Song-Yun. New material of Carex sect. Praelongae from China[J]. J Syst Evol, 1999, 37(2): 189 -192 .
[7] HUANG Jian-Hui, LI Hai-Tao, HAN Xing-Guo, CHEN Ling-Zhi. Nutrient Characteristics of Stemflow and Throughfall in two Coniferous Forest Ecosystems[J]. Chin J Plan Ecolo, 2000, 24(2): 248 -251 .
[8] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[9] Quan CHEN, Ke-Ming MA. Effects of Spartina alterniflora invasion on enrichment of sedimental heavy metals in a mangrove wetland and the underlying mechanisms[J]. Chin J Plan Ecolo, 2017, 41(4): 409 -417 .
[10] . [J]. Chin J Plan Ecolo, 1958, 1(1): 36 -65 .