Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (11): 1103-1112.doi: 10.17521/cjpe.2018.0148

• Research Articles • Previous Articles     Next Articles

Phosphorus distribution inside Chinese fir seedlings under different P supplies based on 32P tracer

CHEN Si-Tong,ZOU Xian-Hua,CAI Yi-Bing,WEI Dan,LI Tao,WU Peng-Fei,MA Xiang-Qing()   

  1. State Forestry Administration Chinese Fir Engineering Research Center, Fuzhou 350002, China
  • Received:2018-06-20 Accepted:2018-09-12 Online:2019-03-13 Published:2018-11-20
  • Contact: Xiang-Qing MA E-mail:lxymxq@126.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(U1405211);the Science and Technology Major Project of the Fujian Province(2018NZ0001-1)

Abstract:

Aim The objective of this study was to determine the amount and distribution of exogenous phosphorus (P) in different organs, as well as their changes in Chinese fir (Cunninghamia lanceolata) under different P supply levels. The results could be used as scientific base for selecting P-efficient genotypes.
Methods Seedlings of two Chinese fir genotypes (M1 and M4), both with high P use efficiency, were treated with different P supply levels and quantified by using 32P isotope tracer for P distributions in different organs. The seedlings used in this study were selected by our team through previous research as the experimental materials.
Important findings We found that the distribution of exogenous P in M1 and M4 was the highest in the roots and the lowest in the stems, and at an intermedia level in the needles. The 32P content of each organ under the same treatment was ranked as root > stem > needle on the horizontal projection plane. The exogenous P content by the roots, stems and needles of M1 and M4 under low-P treatment appeared lower than that under the high-P treatment. The blackening degree of low-P image of roots, stems and needles under the same treatment was also lower than that under high-P treatment. The content of exogenous P in these organs under the low-P treatment increased slowly, indicating that the low-P stress significantly affected the absorption and accumulation of P in the seedlings. P allocation rates in the roots of M1 and M4 showed an initial decreasing and increasing later under low-P stress, while under the high-P treatment, the root P level increased first and stabilizing later. These findings indicate that M1 and M4 could adapt to external low-P stress through redistribution of P within the plants by transferring P from roots to above-ground parts at the early stage under low P stress. With the extension of stressing time, P from above-ground parts was shifted to roots. However, the distribution of exogenous P in M1 and M4 was significantly different under the low P treatment. The distribution of exogenous P from the beginning to the end of M1 was greater in the roots than that in above-ground parts, while M4 showed a similar pattern in early stages but a higher rate toward the above-ground parts later. This indicates that M1 has a higher degree of strengthening P circulation in vivo than M4 with low P stress, i.e. the tendency of P transfer from above-ground parts to roots is stronger in M1 than in M4.

Key words: Cunninghamia lanceolata, phosphorus distribution, 32P isotope, low phosphorus stress, phosphorus use efficiency, autoradiography

Fig. 1

The autoradiography of M1 (A) and M4 (B) for Chinese fir family. The blackening part indicates the parts containing 32P of the fir seedlings. The higher the degree of blackening, the higher the content of 32P. Each column of images from top to bottom represents the upper part of the shoots, the lower part of the shoots and the roots. The left and right image for each processing time represents the autoradiography of the fir seedlings under low and high P treatment, respectively."

Fig. 2

Changes in concentration of the exogenous phosphorus in leaves, stems and roots of M1 (A) and M4 (B) for Chinese fir with time for each treatment (mean ± SD). Different lower case letters represent the significant levels (p < 0.05) in phosphorus content of the same organ under low phosphorus (L-P) treatment, whereas different capital letters indicate the significance (p < 0.05) under high-?phosphorus (H-P) condition."

Fig. 3

Dynamics of the exogenous phosphorus (P) allocation in roots, stems and leaves of M1 (A) and M4 (B) for Chinese fir under different P treatments (mean ± SD). Different lower case letters indicate the significance (p < 0.05) in P allocation of different periods under low P (L-P) treatment, whereas different uppercase letters represent the significance (p < 0.05) under high P (H-P) treatment."

[1] Abel S, Ticeoni CA, Delatorre CA ( 2002). Phosphate sensing in higher plants. Physiologia Plantnrum, 115, 1-8.
doi: 10.1034/j.1399-3054.2002.1150101.x pmid: 12010462
[2] Bennetzen JL, Hake SC ( 2009). Handbook of Maize: It’s Biology. Springer, New York. 381-404.
[3] Cao LW, Guo XS, Long ZP, Ma CM ( 2012). Changes of phosphorus nutrition on P accumulation, yield and quality of soybean. Soybean Science, 34, 458-462.
doi: 10.11861/j.issn.1000-9841.2015.03.0458
[ 曹立为, 郭晓双, 龚振平, 马春梅 ( 2012). 磷素营养变化对大豆磷素积累及产量和品质的影响. 大豆科学, 34, 458-462.]
doi: 10.11861/j.issn.1000-9841.2015.03.0458
[4] Chao MN, Zhang ZY, Zhang JB, Song HN, Bu JJ, Niu FQ, Wang QL ( 2017). Preliminary study on adaptability of cotton varieties to phosphorus deficiency stress in hydroponic culture. Journal of Yangzhou University (Agricultural and Life Science Edition), 38, 99-104.
doi: 10.16872/j.cnki.1671-4652.2017.01.019
[ 晁毛妮, 张志勇, 张金宝, 宋海娜, 卜晶晶, 牛富强, 王清连 ( 2017). 水培条件下棉花品种对缺磷胁迫的适应性研究初探. 扬州大学学报(农业与生命科学版), 38, 99-104.]
doi: 10.16872/j.cnki.1671-4652.2017.01.019
[5] Chen SS ( 2002). The water holding capacity and soil fertility in the mixed forest of Cunninghamia lanceolata and Altingia gracilides. Acta Ecologica Sinica, 22, 957-961.
doi: 10.3321/j.issn:1000-0933.2002.06.024
[ 陈绍栓 ( 2002). 杉木细柄阿丁枫混交林涵养水源功能和土壤肥力的研究. 生态学报, 22, 957-961.]
doi: 10.3321/j.issn:1000-0933.2002.06.024
[6] Chen YL, Li XL, Zhou XY ( 2006). Effects of phosphorus deficiency stress on growth of larch seedlings and activities of acid phosphatase in roots. Journal of Beijing Forestry University, 28(6), 46-50.
doi: 10.3321/j.issn:1000-1522.2006.06.008
[ 陈永亮, 李修岭, 周晓燕 ( 2006). 低磷胁迫对落叶松幼苗生长及根系酸性磷酸酶活性的影响. 北京林业大学学报, 28(6), 46-50.]
doi: 10.3321/j.issn:1000-1522.2006.06.008
[7] Chen ZY, Wu PF, Zou XH, Wang P, Ma J, Ma XQ ( 2016). Relationship between growth and endogenous hormones of Chinese fir seedlings under low phosphorus stress. Scientia Silvae Sinicae, 52(2), 57-66.
doi: 10.11707/j.1001-7488.20160207
[ 陈智裕, 吴鹏飞, 邹显花, 汪攀, 马静, 马祥庆 ( 2016). 低磷胁迫下杉木幼苗生长特性与内源激素的关系. 林业科学, 52(2), 57-66.]
doi: 10.11707/j.1001-7488.20160207
[8] Doerner P ( 2008). Phosphate starvation signaling: A threesome controls systemic Pi homeostasis. Current Opinion in Plant Biology, 11, 536-540.
doi: 10.1016/j.pbi.2008.05.006 pmid: 18614391
[9] Guo ZH, He LY, Xu CG ( 2005). Uptake and use of sparingly soluble phosphorus by rice genotypes with different P-efficiency. Acta Agronomica Sinica, 31, 1322-1327.
doi: 10.3321/j.issn:0496-3490.2005.10.014
[ 郭再华, 贺立源, 徐才国 ( 2005). 不同耐低磷水稻基因型秧苗对难溶性磷的吸收利用. 作物学报, 31, 1322-1327.]
doi: 10.3321/j.issn:0496-3490.2005.10.014
[10] Hu XQ, Yang WP, Huang L, Mei PP, Meng L ( 2018). Absorption and distribution of nitrogen, phosphorus and potassium in Carthamus tinctorius L. Journal of Northwest A & F University (Natural Science Edition), 46(7), 1-7.
[ 胡喜巧, 杨文平, 黄玲, 梅沛沛, 孟丽 ( 2018). 红花对氮磷钾的吸收与分配规律研究. 西北农林科技大学学报(自然科学版), 46(7), 1-7.]
[11] Jeschke WD, Kirekby EA, Peuke AD, Pate JS, Hartung W ( 1997). Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.). Journal of Experimental Botany, 48, 75-91.
doi: 10.1093/jxb/48.1.75
[12] Leng HN, Chen YT, Duan HP, Rao LB, Wang YJ, Hu YX ( 2009). Effects of phosphorus stress on the growth and nitrogen and phosphorus absorption and utilization efficiency of Liquidambar formosana from different provenances. Chinese Journal of Applied Ecology, 20, 754-756.
[ 冷华妮, 陈益泰, 段红平, 饶龙兵, 王永军, 胡韵雪 ( 2009). 磷胁迫对不同种源枫香生长及氮、磷吸收利用率的影响. 应用生态学报, 20, 754-756.]
[13] Li H, Shen J, Zhang F, Clairotte M, Drevon JJ, Le cadre E, Hinsinger P ( 2008). Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat(Triticumtur gidumdurum L.) grown in monocropping and intercropping systems. Plant and Soil, 312, 139-150.
[14] Liang CY, Liao H ( 2015). Molecular mechanisms underlying the responses of plant roots to low P stress. Chinese Bulletin of Life Sciences, 27, 289-397.
[ 梁翠月, 廖红 ( 2015). 植物根系响应低磷胁迫的机理研究. 生命科学, 27, 389-397.]
[15] Liang X, Liu AQ, Ma XQ, Feng LZ, Huang YJ ( 2006). Comparison of the phosphorus characteristics of different Chinese fir clones. Journal of Plant Ecology (Chinese Version), 30, 1005-1011.
doi: 10.17521/cjpe.2006.0129
[ 梁霞, 刘爱琴, 马祥庆, 冯丽贞, 黄益江 ( 2006). 不同杉木无性系磷素特性的比较. 植物生态学报, 30, 1005-1011.]
doi: 10.17521/cjpe.2006.0129
[16] Lin KM, Yu XT ( 2001). Land resilience and sustainable management of Cunninghamia lanceolata plantation. Chinese Journal of Eco-Agriculture, 9(4), 39-42.
[ 林开敏, 俞新妥 ( 2001). 杉木人工林地力衰退与可持续经营. 中国生态农业学报, 9(4), 39-42.]
[17] Liu J, Lü JY, Li SR ( 1996). Studies of absorption and accumulation of 32P in Larix gmelinii seedling. Acta Botanica Boreali-Occidentalia Sinica, 16, 136-139.
doi: 10.1007/BF02951625
[ 刘军, 吕金印, 李树荣 ( 1996). 兴安落叶松幼苗对 32P的吸收与积累研究 . 西北植物学报, 16, 136-139.]
doi: 10.1007/BF02951625
[18] Ma XQ, Fan SW, Chen SS, Lin SJ ( 2003). Study on biomass productivity of Chinese fir plantations after successive planting. Scientia Silvae Sinicae, 29(2), 78-83.
doi: 10.3321/j.issn:1001-7488.2003.02.013
[ 马祥庆, 范少辉, 陈绍栓, 林上杰 ( 2003). 杉木人工林连作生物生产力的研究. 林业科学, 29(2), 78-83.]
doi: 10.3321/j.issn:1001-7488.2003.02.013
[19] Mi GH, Xing JP, Chen FJ, Liu XS, Liu Y ( 2004). Maize root growth in relation to tolerance to low phosphorus. Plant Nutrition and Fertilizer Science, 10, 468-472.
doi: 10.3321/j.issn:1008-505X.2004.05.004
[ 米国华, 邢建平, 陈范骏, 刘向生, 刘燕 ( 2004). 玉米苗期根系生长与耐低磷的关系. 植物营养与肥料学报, 10, 468-472.]
doi: 10.3321/j.issn:1008-505X.2004.05.004
[20] Postma JA, Lynch JP ( 2011). Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany, 107, 829-841.
doi: 10.1093/aob/mcq199 pmid: 20971728
[21] Qiang JY ( 2004). Study of phosphate absorption and distribution characteristics in potato and bean by using 32P . Guihaia, 24, 52-54.
doi: 10.3969/j.issn.1000-3142.2004.01.013
[ 强继业 ( 2004). 32P研究马铃薯(合作-88)和黄豆对磷素营养的吸收及分布规律 . 广西植物, 24, 52-54.]
doi: 10.3969/j.issn.1000-3142.2004.01.013
[22] Qiang JY, Wang J, Chen GH, Guo M, Zhang X ( 1997). Study on phosphorus metabolism of maize seedlings using 32P tracer . Journal of Yunnan Agricultural University, 12(3), 169-172.
[ 强继业, 王晋, 陈光宏, 郭敏, 张旭 ( 1997). 利用 32P示踪研究玉米苗期的磷素代谢 . 云南农业大学学报, 12(3), 169-172.]
[23] Raghothama KG ( 1999). Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693.
doi: 10.1146/annurev.arplant.50.1.665
[24] Ruan JY, Zhang FS, Wong MH ( 2000). Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L. Plant and Soil, 223, 63-71.
doi: 10.1023/A:1004882001803
[25] Sheng WT, Fan SH, Ma XQ ( 2005). Study on Long-term Productivity Maintenance Mechanism of Cunninghamia lanceolata Plantation. Science Press, Beijing.
[ 盛炜彤, 范少辉, 马祥庆 ( 2005). 杉木人工林长期生产力保持机制研究. 科学出版社, 北京.]
[26] Shenoy V, Kalagudi G ( 2005). Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnology Advances, 23, 501-513.
doi: 10.1016/j.biotechadv.2005.01.004 pmid: 16140488
[27] Su SS, Li M, Wu PF, Zhang Y, Ma XQ ( 2017). Cloning and expression analysis of phosphate transporter gene ClPht1;1 in Cunninghamia lanceolata. Scientia Silvae Sinicae, 53(5), 33-42.
doi: 10.11707/j.1001-7488.20170505
[ 苏烁烁, 李明, 吴鹏飞, 张颖, 马祥庆 ( 2017). 杉木磷转运蛋白基因ClPht1;1的克隆及表达分析. 林业科学, 53(5), 33-42.]
doi: 10.11707/j.1001-7488.20170505
[28] Su SZ, Wu FK, Liu D, Wu L, Gao SB ( 2013). Cloning and functional analysis of a phosphor transporter gene from a Phtl family of maize. Journal of Nuclear Agricultural Sciences, 27, 885-894.
doi: 10.11869/hnxb.2013.07.0885
[ 苏顺宗, 吴锋锴, 刘丹, 吴玲, 高世斌 ( 2013). 一个玉米Phtl家族磷转运蛋白基因克隆和功能分析. 核农学报, 27, 885-894.]
doi: 10.11869/hnxb.2013.07.0885
[29] Vance CP, Uhde-Stone C, Allan DL ( 2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
doi: 10.1046/j.1469-8137.2003.00695.x
[30] Veneklaas EJ, Shane MW, White PJ ( 2012). Opportunities for improving phosphorus-use efficiency in crop plants . New Phytologist, 195, 306-320.
doi: 10.1111/j.1469-8137.2012.04190.x
[31] Wu PF, Ma XQ, Tigabu M, Chen W, Liu AQ, Pre CO ( 2011). Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress. Canadian Journal of Forest Research, 41, 228-234.
doi: 10.1139/X10-198
[32] Wu PF, Wang GY, Taimoor HF, Li Q, Zou XH, Ma XQ ( 2017). Low phosphorus and competition affect Chinese fir cutting growth and root organic acid content: Does neighboring root activity aggravate P nutrient deficiency? Journal of Soils and Sediments, 17, 2775-2785.
doi: 10.1007/s11368-017-1852-8
[33] Wu WH ( 2003). Plant Physiology. Science and Technology Press, Beijing. 91-92.
[ 武维华 ( 2003). 植物生理学. 科学技术出版社, 北京. 91-92.]
[34] Wu YQ, Lin Q, Yan MJ, Zhang H, Chen ZC, Li XF ( 2017). Effect of phosphorus on growth and nutrient uptake of tomato. Chinese Agricultural Science Bulletin, 33(9), 74-77.
[ 吴一群, 林琼, 颜明娟, 张辉, 陈子聪, 李祥发 ( 2017). 不同磷素水平对番茄生长及养分吸收的影响. 中国农学通报, 33(9), 74-77.]
[35] Xie YR, Zhou ZC, Liao GH, Jin GQ, Chen Y ( 2005). Difference of induced acid phosphate activity under low phosphorus stress of Pinus massoniana provenances. Scientia Silvae Sinicae, 41(3), 58-62.
doi: 10.3321/j.issn:1001-7488.2005.03.010
[ 谢钰容, 周志春, 廖国华, 金国庆, 陈跃 ( 2005). 低磷胁迫下马尾松种源酸性磷酸酶活性差异. 林业科学, 41(3), 58-62.]
doi: 10.3321/j.issn:1001-7488.2005.03.010
[36] Yang Q, Zhang Y, Zhou ZC, Feng ZP ( 2012). Root architecture and phosphorus efficiency of different provenance Pinus massoniana under low phosphorous stress. Chinese Journal of Applied Ecology, 23, 2339-2345.
[ 杨青, 张一, 周志春, 丰忠平 ( 2012). 低磷胁迫下不同种源马尾松的根构型与磷效率. 应用生态学报, 23, 2339-2345.]
[37] Yu XT ( 1993). Research and views on sustainable utilization of Chinese fir woodland. World Forestry Research, ( 2), 80-87.
[ 俞新妥 ( 1993). 杉木林地持续利用问题的研究和看法. 世界林业研究, ( 2), 80-87.]
[38] Yu XT ( 1996). Fir Cultivation. Fujian Science and Technology Press, Fuzhou.
[ 俞新妥 (1996). 杉木栽培学. 福建科学技术出版社, 福州. 18.]
[39] Zhang AQ, He LY, Men YY, Zhao HE, Yang JF, Li DH ( 2008). Effect of phosphorus levels on growth and nutrient absorption of low-P tolerant maize seedlings. Chinese Journal of Applied and Environmental Biology, 14, 347-350.
doi: 10.3321/j.issn:1006-687X.2008.03.012
[ 章爱群, 贺立源, 门玉英, 赵会娥, 杨建峰, 李德华 ( 2008). 磷水平对不同耐低磷玉米基因型幼苗生长和养分吸收的影响. 应用与环境生物学报, 14, 347-350.]
doi: 10.3321/j.issn:1006-687X.2008.03.012
[40] Zhang B, Qin L ( 2010). Plants tolerance to low phosphorus and its molecular basis. Molecular Plant Breeding, 8, 776-783.
doi: 10.3969/mpb.008.000776
[ 张斌, 秦岭 ( 2010). 植物对低磷胁迫的适应及其分子基础. 分子植物育种, 8, 776-783.]
doi: 10.3969/mpb.008.000776
[41] Zhang LH, Zhang H, Huang YF, Ye YL, Zhang ZS, Zhan ZL ( 2013). Effect of phosphorus application on soil available phosphorus and maize phosphorus uptake and yield. Chinese Journal of Eco-Agriculture, 21, 801-809.
doi: 10.3724/SP.J.1011.2013.00801
[ 张立花, 张辉, 黄玉芳, 叶优良, 张占胜, 詹宗立 ( 2013). 施磷对玉米吸磷量、产量和土壤磷含量的影响及其相关性. 中国生态农业学报, 21, 801-809.]
doi: 10.3724/SP.J.1011.2013.00801
[42] Zhang LM, HE LY, Li JS, Xu SZ ( 2004). Investigation of maize inbred lines on tolerance to low-phosphorus stress at seedling stage. Scientia Agricultura Sinica, 37, 1955-1959.
doi: 10.3321/j.issn:0578-1752.2004.12.028
[ 张丽梅, 贺立源, 李建生, 徐尚忠 ( 2004). 玉米自交系耐低磷材料苗期筛选研究. 中国农业科学, 37, 1955-1959.]
doi: 10.3321/j.issn:0578-1752.2004.12.028
[43] Zhang YL, Wang JY, Ma XZ, Chen LJ ( 2009). Research progress on activating technology for increasing phosphate efficiency. Chinese Journal of Soil Science, 40, 194-202.
doi: 10.3321/j.issn:0564-3945.2009.01.049
[ 张玉兰, 王俊宇, 马星竹, 陈利军 ( 2009). 提高磷肥有效性的活化技术研究进展. 土壤通报, 40, 194-202.]
doi: 10.3321/j.issn:0564-3945.2009.01.049
[44] Zhou YR, Chen ML ( 1996). Study on absorption and distribution of 32P in Hemerocallis citrina. Journal of Southwest University (Natural Science Edition), 18, 416-420.
[ 周裕荣, 陈明莉 ( 1996). 黄花菜对 32P的吸收运转及分配研究 . 西南大学学报(自然科学版), 18, 416-420.]
[45] Zou XH, Wei D, Wu PF, Zhang Y, Hu YN, Chen ST, Ma XQ ( 2018). Strategies of organic acid production and exudation in response to low-phosphorus stress in Chinese fir genotypes differing in phosphorus-use efficiencies. Trees, 32, 897-912.
doi: 10.1007/s00468-018-1683-2
[46] Zou XH, Wu PF, Chen NL, Wang P, Ma XQ ( 2015). Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 45, 402-410.
doi: 10.1139/cjfr-2014-0384
[1] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[2] CHEN Ri-Sheng, KANG Wen-Xing, ZHOU Yu-Quan, TIAN Da-Lun, XIANG Wen-Hua . Changes in nutrient cycling with age in a Cunninghamia lanceolata plantation forest [J]. Chin J Plan Ecolo, 2018, 42(2): 173-184.
[3] PENG Xi, YAN Wen-De, WANG Feng-Qi, WANG Guang-Jun, YU Fang-Yong, ZHAO Mei-Fang. Specific leaf area estimation model building based on leaf dry matter content of Cunninghamia lanceolata [J]. Chin J Plan Ecolo, 2018, 42(2): 209-219.
[4] Shun-Zeng SHI, De-Cheng XIONG, Fei DENG, Jian-Xin FENG, Chen-Sen XU, Bo-Yuan ZHONG, Yun-Yu CHEN, Guang-Shui CHEN, Yu-Sheng YANG. Interactive effects of soil warming and nitrogen addition on fine root production of Chinese fir seedlings [J]. Chin J Plan Ecolo, 2017, 41(2): 186-195.
[5] Zhi-Yu CHEN, Qi LI, Xian-Hua ZOU, Xiang-Qing MA, Peng-Fei WU. Effect of neighboring competition on photosynthetic characteristics and biomass allocation of Chinese fir seedlings under low phosphorus stress [J]. Chin J Plan Ecolo, 2016, 40(2): 177-.
[6] Xiang GU, Shi-Ji ZHANG, Wen-Hua XIANG, Lei-Da LI, Zhao-Dan LIU, Wei-Jun SUN, Xi FANG. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China [J]. Chin J Plan Ecolo, 2016, 40(10): 1064-1076.
[7] WAN Jing-Juan,GUO Jian-Fen,JI Shu-Rong,REN Wei-Ling,SI You-Tao,YANG Yu-Sheng. Effects of different sources of dissolved organic matter on soil CO2 emission in subtropical forests [J]. Chin J Plan Ecolo, 2015, 39(7): 674-681.
[8] WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation [J]. Chin J Plan Ecolo, 2015, 39(12): 1166-1175.
[9] YANG Yu-Sheng, QIU Ren-Hui, YU Xin-Tuo, Huang Bao-Long, . Study on soil microbes and biochemical activity in the continuous plantations of Cunninghamia lanceolata [J]. Biodiv Sci, 1999, 07(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhi-Duan Chen, Tuo Yang, Li Lin, Li-Min Lu, Hong-Lei Li, Miao Sun, Bing Liu, Min Chen, Yan-Ting Niu, Jian-Fei Ye, Zhi-Yong Cao, Hong-Mei Liu, Xiao-Ming Wang, Wei Wang, Jing-Bo Zhang, Zhen Meng, Wei Cao, Jian-Hui Li, Sheng-Dan Wu, Hui-Ling Zhao, Zhong-Jian Liu, Zhi-Yuan Du, Qing-Feng Wang, Jing Guo, Xin-Xin Tan, Jun-Xia Su, Lin-Jing Zhang, Lei-Lei Yang, Yi-Ying Liao, Ming-He Li, Guo-Qiang Zhang, Shih-Wen Chung, Jian Zhang, Kun-Li Xiang, Rui-Qi Li, Douglas E. Soltis, Pamela S. Soltis, Shi-Liang Zhou, Jin-Hua Ran, Xiao-Quan Wang, Xiao-Hua Jin, You-Sheng Chen, Tian-Gang Gao, Jian-Hua Li, Shou-Zhou Zhang, An-Ming Lu, China Phylogeny Consortium. Tree of life for the genera of Chinese vascular plants[J]. J Syst Evol, 2016, 54(4): 277 -306 .
[2] LI Jun, WANG Xue-Chun, SHAO Ming-An, ZHAO Yu-Juan, LI Xiao-Fang. Simulation of biomass and soil desiccation of Robinia pseudoacacia forestlands on semi-arid and semi-humid regions of China’s Loess Plateau[J]. Chin J Plan Ecolo, 2010, 34(3): 330 -339 .
[3] ZENG Yi, XIA Nian-He, LIN Ru-Shun. A New Species of Gigantochloa Kurz ex Munro (Poaceae: Bambusoideae) from Yunnan Province, China[J]. Plant Diversity, 2014, 36(05): 581 -583 .
[4] Yihao Shi, Jiaying Huang, Tianshu Sun, Xuefei Wang, Chenqi Zhu, Yuxi Ai and Hongya Gu. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana[J]. J Integr Plant Biol, 2017, 59(2): 118 -133 .
[5] SHI Wei, WANG Zheng-Quan, LIU Jin-Liang, GU Jia-Cun, GUO Da-Li. FINE ROOT MORPHOLOGY OF TWENTY HARDWOOD SPECIES IN MAOERSHAN NATURAL SECONDARY FOREST IN NORTHEASTERN CHINA[J]. Chin J Plan Ecolo, 2008, 32(6): 1217 -1226 .
[6] Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan. Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chin Bull Bot, 2015, 50(2): 171 -179 .
[7] YANG Long-Long, WU Yan-Ru. Species diversity of bees in different habitats in Xishuangbanna tropical forest region[J]. Biodiv Sci, 1998, 06(3): 197 -204 .
[8] . [J]. Plant Diversity, 2005, 27(01): 11 -18 .
[9] He Ting-Nong, Liu Shang-Wu. New taxa of Swertia L. from China[J]. J Syst Evol, 1980, 18(1): 75 -85 .
[10] XU Zhen-Zhu, ZHOU Guang-Sheng, XIAO Chun-Wang, WANG Yu-Hui. INTERACIVE EFFECTS OF DOUBLED ATMOSPHERIC CO2 CONCENTRATIONS AND SOIL DROUGHT ON WHOLE PLANT CARBON ALLOCATION IN TWO DOMINANT DESERT SHRUBS[J]. Chin J Plan Ecolo, 2005, 29(2): 281 -288 .