Chin J Plan Ecolo ›› 2011, Vol. 35 ›› Issue (4): 389-401.doi: 10.3724/SP.J.1258.2011.00389

• Research Articles • Previous Articles     Next Articles

Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China

AN Ran1, GONG Ji-Rui1*, YOU Xin2, GE Zhi-Wei3, DUAN Qing-Wei1, and YAN Xin1   

  1. 1State Key Laboratory of Surface Processes and Resource Ecology, College of Resources Science and Technology, Beijing Normal University, Beijing 100875,China

    2Party School of the Jiangxi Provincial Committee of People’s Republic of China, Nanchang 330003, China

    3College of Forest Resources andEnvironmental Science, Nanjing Forestry University, Nanjing 210037, China
  • Received:2010-04-12 Revised:2010-12-29 Online:2011-04-13 Published:2011-04-01
  • Contact: GONG Ji-Rui E-mail:jrgong@bnu.edu.cn

Abstract:

Aims Our objective was to better understand the distribution and seasonal dynamics of soil microorganisms and soil nutrients of fast-growing Populus (Populus × euramericana) plantations of different ages (5, 10 and 15 years) in Yili Xinjiang, China. Methods We investigated the number and species composition of soil microorganisms and organic carbon/ nitrogen by means of plate count and conventional chemical methods, respectively. Important findings The three plantation forests were significantly different in microbial numbers and species compositions as affected by soil depth and season. The soil microbes were mainly distributed at 10–40 cm, and bacteria accounted the largest proportion. The total number of microorganisms and bacteria decreased with age, but the 15-year forest had the highest number of fungi and actinomycetes. The ratio of three kinds of microbial communities was relatively stable in soil and did not change with season. The content of soil organic carbon and nitrogen was mainly concentrated at 0–20 cm, decreased with increasing soil depth and responded differently to change of seasons and soil depth. Soil organic carbon increased with stand age, while nitrogen decreased and then increased. The correlation between soil microbes and soil organic carbon was negative, and the correlation between number of fungi and soil organic nitrogen was positive. The ratio of soil organic C/N was consistent with the ratio of bacteria number/ actinomycetes number, illustrating poplar plantation forests fix carbon and improve soil fertility.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Lu Baorong Yan Ji Yang Junliang. BIOSYSTEMATIC STUDIES AMONG ROEGNERIA PENDULINA,R. CILIARIS ANDR. KAMOJI OF THE TRIBE TRITICEAE, GRAM1NEAE[J]. Plant Diversity, 1990, 12(02): 1 -3 .
[2] Linshu Zhao, Luxiang Liu, Jiayu Gu, Huijun Guo, Junhui Li, Yongdun Xie, Shirong Zhao. A Method to Improve Sample Preparation for Observing Stomata Guard Cells in Triticum aestivum[J]. Chin Bull Bot, 2014, 49(1): 120 -126 .
[3] Martin A.J. Parry, and Hai-Chun Jing. Bioenergy Plants: Hopes, Concerns and Prospectives[J]. J Integr Plant Biol, 2011, 53(2): 94 -95 .
[4] Mo Gao, Renyong Hu, Xianxing Chen, Weicheng Li, Bingyang Ding. Effects of disturbance, topography, and soil conditions on the distribution of invasive plants in Wenzhou[J]. Biodiv Sci, 2011, 19(4): 424 -431 .
[5] Xiao Zhou, Dongdong Chen, Stephen W. Kress, Shuihua Chen. A review of the use of active seabird restoration techniques[J]. Biodiv Sci, 2017, 25(4): 364 -371 .
[6] Chen Feng-Huei, Ling Yong, Chen Yi-Ling, Shih Chu , Wang Wei. De Genere Anaphalis DC. Familiae Compositarume Florae Sinicae[J]. J Syst Evol, 1966, 11(1): 91 -112 .
[7] Bao-Rong Lu, Hui Xia, Xiao Yang, Xin Jin, Ping Liu, Wei Wang. Evolutionary theory of hybridization-introgression: its implication in en-vironmental risk assessment and research of transgene escape[J]. Biodiv Sci, 2009, 17(4): 362 -377 .
[8] ZHONG Yang, ZHANG Liang, REN Wen-Wei, CHEN Jia-Kuan. Biodiversity Informatics: a new direction of bioinformatics and biodiversity science and related key techniques[J]. Biodiv Sci, 2000, 08(4): 397 -404 .
[9] Xie Zong-qiang,Chen Wei-lie, Jiang Ming-xi, Huang Han-dong and Zhu Ri-guang. A Preliminary Study on the Population of Cathaya argyrophylla in Bamianshan Mountain[J]. J Integr Plant Biol, 1995, 37(1): .
[10] Luciano J. Selzer, Carlos A. Busso. Different canopy openings affect underground traits in herbaceous plants of a southern forest in Patagonia[J]. J Plant Ecol, 2016, 9(5): 542 -552 .