Chin J Plan Ecolo ›› 2008, Vol. 32 ›› Issue (2): 355-362.doi: 10.3773/j.issn.1005-264x.2008.02.012

• Research Articles • Previous Articles     Next Articles


WANG Ya-Li1; LI Yi1,2*   

  1. 1College of Forestry, Gansu Agricultural University, Lanzhou 73007, China; 2 Key Laboratory of Forest and Flower Genetics and Breeding, Ministry of Education, Beijing Forestry University, Beijing 100083, China
  • Online:2008-03-30 Published:2008-03-30
  • Contact: LI Yi


Aims Our objective was to determine 1) the phenotypic variation of cone and seed in natural populations and 2) the relationship between phenotypic variation of natural population and different distribution areas in Picea crassifolia.
Methods Field investigation and analysis of the natural distribution of P. crassifolia in Qilian Mountain led to our selection of four cone characters and four seed traits in 10 trees from each of 10 populations. We examined morphological diversity among/within populations based on analysis of eight phenotypic traits. Variance analysis, multi-comparison, correlation analysis and hierarchical cluster analysis were used to analyze experimental results.
Important finding Analysis of variance for all traits showed significant differences among/within populations except for cone dry weight and cone length/cone width. The mean phenotypic differentiation coefficient (Vst) among populations was 27.18%, compared to 72.82% within populations. In different individuals within populations, the CV of cone length, cone width, cone dry weight, cone length/cone width, seed length, seed width, seed length/seed width, 1 000 seeds weight was 10.08%, 5.80%, 19.29%, 9.66%, 8.38%, 15.34%, 6.52% and 13.94%, respectively . Most of the cone and seed traits were positively correlated. The cone dry weight, seed length, 1 000 seeds weight, cone length, cone width were thought to be the most important cone and seed traits that were easy to measured in P. crassifolia. The spatial variation of traits of natural populations was related most strongly to longitude. According to UPGMA cluster analysis, the 10 populations of P. crassifolia could be divided into four groups. This study indicates that there is rich phenotypic variation of cone and seed in natural populations of P. crassifolia in Qilian Mountain and thereby provides theoretical references and basic data for genetic resources conservation, utilization and improvement in P. crassifolia.

No related articles found!
Full text



[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] DU Gui-Sen;ZANG Yu-Long and WANG Mei-Zhi. Study on Spore Morphology of 6 Species of The Family Pottiaceae in China[J]. Chin Bull Bot, 1998, 15(03): 57 -60 .
[5] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[6] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[7] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[8] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[9] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[10] Xiaofen Sun;Yu Chen;Junsong Pan;Yuliang Wang;Kexing Sun;Kexuan Tang*;Run Cai*. Correlation and Path Analyses of Vindoline with Major Agronomic Traits in Catharanthus roseus[J]. Chin Bull Bot, 2009, 44(01): 96 -102 .