植物生态学报 ›› 2006, Vol. 30 ›› Issue (4): 703-712.DOI: 10.17521/cjpe.2006.0092
• 综述 • 上一篇
谭万能1,2, 李志安1,*, 邹碧1
收稿日期:
2005-04-05
接受日期:
2005-10-11
出版日期:
2006-07-30
发布日期:
2006-07-30
通讯作者:
李志安
作者简介:
*E-mail:lizan @scbg.ac.cn基金资助:
TAN Wan-Neng1,2, LI Zhi-An1,*, ZOU Bi1
Received:
2005-04-05
Accepted:
2005-10-11
Online:
2006-07-30
Published:
2006-07-30
Contact:
LI Zhi-An
摘要:
植物适应重金属元素胁迫的机制包括阻止和控制重金属的吸收、体内螯合解毒、体内区室化分隔以及代谢平衡等。近年来,随着分子生物学技术在生态学研究中的深入应用,控制这些过程的分子生态机理逐渐被揭示出来。菌根、根系分泌物以及细胞膜是控制重金属进入植物根系细胞的主要生理单元。外生菌根能显著提高寄主植物的重金属耐性,根系分泌物通过改变根际pH、改变金属物质的氧化还原状态和形成络合物等机理减少植物对重金属的吸收。目前,控制菌根和根系分泌物重金属抗性的分子生态机理还不清楚。但细胞膜跨膜转运器已得到深入研究,相关金属离子转运器被鉴定和分离,一些控制基因如铁锌控制运转相关蛋白(ZIP)类、自然抵抗相关巨噬细胞蛋白(Nramp)类、P1B-type ATPase类基因已被发现和克隆。金属硫蛋白(MTs)、植物螯合素(PCs)、有机酸及氨基酸等是植物体内主要的螯合物质,它们通过螯合作用固定金属离子,降低其生物毒性或改变其移动性。与MTs合成相关的MT-like基因已经被克隆,PCs合成必需的植物螯合素合酶(PCS), 即γ-Glu-Cys二肽转肽酶(γ-ECS) 的编码基因已经被克隆,控制麦根酸合成的氨基酸尼克烟酰胺(NA)在重金属耐性中的作用和分子机理也被揭示出来。ATP 结合转运器(ABC)和阳离子扩散促进器(CDF) 是植物体内两种主要膜转运器,通过它们和其它跨膜方式,重金属被分隔贮藏于液泡内。控制这些蛋白转运器合成的基因也已经被克隆,在植物中的表达证实其与重金属的体内运输和平衡有关。热休克蛋白(HSP)等蛋白类物质的产生是一种重要的体内平衡机制,其分子机理有待进一步研究。重金属耐性植物在这些环节产生了相关响应基因或功能蛋白质,分子克隆和转基因技术又使它们在污染治理上得到了初步的应用。
谭万能, 李志安, 邹碧. 植物对重金属耐性的分子生态机理. 植物生态学报, 2006, 30(4): 703-712. DOI: 10.17521/cjpe.2006.0092
TAN Wan-Neng, LI Zhi-An, ZOU Bi. MOLECULAR MECHANISMS OF PLANT TOLERANCE TO HEAVY METALS. Chinese Journal of Plant Ecology, 2006, 30(4): 703-712. DOI: 10.17521/cjpe.2006.0092
[1] | Baker AJM (1981). Accumulators and excluders-strategies in the response of plant to heavy metals. Journal of Plant Nutrition, 3, 643-654. |
[2] | Baker AJM, Brooks RR (1989). Terrestrial higher plants which hyperaccumulate metal elements—A review of their distribution, ecology, and photochemistry. Biorecovery, 1, 81-126. |
[3] |
Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004). A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Letters, 569, 140-148.
DOI URL PMID |
[4] |
Bloβ T, Clemens S, Nies DH (2002). Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta, 214, 783-791.
DOI URL PMID |
[5] | Cao H( 曹慧), Han ZH( 韩振海), Xu XF( 许雪峰), Zhang Y( 张勇) (2002). Iron nutrition in higher plants. Plant Physiology Communications(植物生理学通讯), 38, 180-186. (in Chinese) |
[6] | Chai TY( 柴团耀), Zhang YX( 张玉秀), Burkard G (1998). Heavy metal-responsive genes in Kidney bean: cloning of cDNA and gene expression analysis. Acta Phytophysiologica Sinica(植物生理学报), 24, 399-404.(in Chinese with English abstract) |
[7] | Chai TY, Zhang YX, Zhao WM (2000). Cloning of cDNA and expression analysis of a DnaJ-like gene under heavy metal stress in bean. Progress in Natural Science, 2000, 198-203. |
[8] |
Chai TY, Chen Q, Zhang YX, Dong J, An CC (2003). Cadmium resistance in transgenic tobacco plants enhanced by expressing bean heavy metal-responsive gene PvSR2. Science in China: Series C-life sciences, 46, 623-630.
DOI URL PMID |
[9] | Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997). Phytoremediation of soil metals. Current Opinions in Biotechnology, 8, 279-284. |
[10] | Clemens S, Kim EJ, Neumann D, Schroeder JI (1999). Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO Journal, 18, 3325-3333. |
[11] |
Clemens S (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475-486.
URL PMID |
[12] |
Cobbett CS (2000). Phytochelatins and their role in heavy metal detoxification. Plant Physiology, 123, 825-833.
DOI URL PMID |
[13] |
Cobbett CS, Goldsbrough P (2002). Phytochelatins and metallothioneins, roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159-182.
DOI URL PMID |
[14] | Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000). Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal, 347, 749-755. |
[15] |
Curie C, Briat JF (2003). Iron transport and signaling in plants. Annual Review of Plant Biology, 54, 183-206.
DOI URL PMID |
[16] |
Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003). Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell, 15, 1131-1142.
URL PMID |
[17] | Douchkov D, Gryczka C, Stephan UW, Hell R, Baumlein H (2005). Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant, Cell and Environment, 28, 365-374. |
[18] |
Eide D, Broderius M, Fett J, Guerinot ML (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America, 93, 5624-5628.
DOI URL PMID |
[19] |
Eren E, Argüello JM (2004). Arabidopsis HMA2, a divalent heavy metal-transporting PIB-Type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiology, 136, 3712-3723.
URL PMID |
[20] |
Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004). Increased glu tathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell, 16, 2176-2191.
DOI URL PMID |
[21] | Galli U, Schüepp H, Brunold C (1994). Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 92, 364-368. |
[22] |
Garcia-Hernandez M, Murphy A, Taiz L (1998). Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiology, 118, 387-397.
URL PMID |
[23] | Gong JM, Lee DA, Schroeder JI (2003). Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 10118-10123. |
[24] |
Grill E, Winnacker EL, Zenk MH (1985). Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 230, 674-676.
DOI URL PMID |
[25] |
Grill E, Loffler S, Winnacker EL, Zenk MH (1989). Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America, 86, 6838-6842.
DOI URL PMID |
[26] |
Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America, 95, 7220-7224.
URL PMID |
[27] |
Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, OConnell MJ, Goldsbrough PB, Cobbett CS (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell, 11, 1153-1163.
DOI URL PMID |
[28] |
Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa N K, Mori S (1999). Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiology, 119, 471-480.
DOI URL PMID |
[29] | Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996). CAX1, an H+/Ca2+ antiporter fromArabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 93, 8782-8786. |
[30] |
Hirschi KD (1999). Expression ofArabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell, 11, 2113-2122.
DOI URL PMID |
[31] |
Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000). Expression ofArabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiology, 124, 125-133.
URL PMID |
[32] |
Jasinski M, Ducos E, Martinoia E, Boutry M (2003). The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiology, 131, 1169-1177.
DOI URL PMID |
[33] | Jentschke G, Goldbold DL (2000). Metal toxicity and ectomycorrhizas. Physiologia Plantarum, 107, 107-116. |
[34] | Kampfenkel K, Kushnir S, Babiychuk E, Inze D, van Montagu M (1995). Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. Journal of Biological Chemistry, 270, 28479-28486. |
[35] | Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith AC (1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635-638. |
[36] | Lane BG, Kajioka R, Kennedy TD (1987). The wheat germ Ec protein is a zinc-containing metallothionein. Biochemical and Cell Biology, 65, 1001-1005. |
[37] |
Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I, Martinoia E, Lee Y (2003). Functional expression of a bacteral heavy metal transporter in Arabidopsis enhances resistance to and decrease uptake of heavy metals. Plant Physiology, 133, 589-596.
DOI URL PMID |
[38] |
Lee J, Shim D, Song WY, Hwang I, Lee Y (2004). Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Molecular Biology, 54, 805-815.
DOI URL PMID |
[39] | Li L, Kaplan J (1998). Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. Journal of Biological Chemistry, 273, 22181-22187. |
[40] |
Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997). A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathiona-to) cadmium. Proceedings of the National Academy of Sciences of the United States of America, 94, 42-47.
DOI URL PMID |
[41] |
Lu YP, Li ZS, Rea PA (1997). AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene. Proceedings of the National Academy of Sciences of the United States of America, 94, 8243-8248.
DOI URL PMID |
[42] |
Lu YP, Li ZS, Drozdowicz YM, Hortensteiner S, Martinoia E, Rea PA (1998). AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell, 10, 267-282.
DOI URL PMID |
[43] |
Ma JF, Zheng SJ, Matsumoto H (1997a). Detoxifying aluminium with buckwheat. Nature, 390, 569-570.
DOI URL PMID |
[44] |
Ma JF, Ryan PR, Delhaize E (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273-278.
DOI URL PMID |
[45] | Ma M, Tsang WK, Lau PS, Wong YS (1997b). Cloning and sequencing of the metallothionein-like cDNA from Festuca rubra. Plant physiology, 114, 1136. |
[46] | Macnair MR (1993). The genetics of metal tolerance in vascular plants. New Phytologist, 124, 541-559. |
[47] | Mench M, Martin E (1991). Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L., Nicotiana rustica L. Plant and Soil, 132, 187-196. |
[48] |
Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK (2003). Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiology, 132, 1989-1997.
DOI URL PMID |
[49] |
Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S (2000). Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Molecular Biology, 44, 199-207.
DOI URL PMID |
[50] | Neumann D, Lichtenberger O, Günther D, Tschiersch K, Nover L (1994). Heat-shock proteins induce heavy-metal tolerance in higher plant. Planta, 194, 360-367. |
[51] | Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992). Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO Journal, 11, 3491-3499. |
[52] | Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995). Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. Journal of Biological Chemistry, 270, 4721-4728. |
[53] |
Papoyan A, Kochian LV (2004). Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology, 136, 3814-3823.
DOI URL PMID |
[54] |
Paulsen IT, Saier MH (1997). A novel family of ubiquitous heavy metal ion transport proteins. Journal of Membrane Biology, 156, 99-103.
DOI URL PMID |
[55] | Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences of the United States of America, 97, 4956-4960. |
[56] |
Persans MW, Yan X, Patnoe JM, Krämer U, Salt DE (1999). Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense. Plant Physiology, 121, 1117-1126.
DOI URL PMID |
[57] | Persans MW, Nieman K, Salt DE (2001). Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proceedings of the National Academy of Sciences of the United States of America, 98, 9995-10000. |
[58] |
Pittman JK, Sreevidya CS, Shigaki T, Ueoka-Nakanishi H, Hirschi KD (2002). Distinct N-terminal regulatory domains of Ca2+/H+ antiporters. Plant Physiology, 130, 1054-1062.
DOI URL PMID |
[59] |
Rauser WE (1999). Structure and function of metal chelators produced by plants. Cell Biochemistry and Biophysics, 31, 19-48.
DOI URL PMID |
[60] |
Rauser WE (1995). Phytochelatins and related peptides: structure, biosynthesis, and function. Plant Physiology, 109, 1141-1149.
URL PMID |
[61] |
Robinson NJ, Wilson JR, Turner JS (1996). Expression of the type2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein-deficient Synechococcus PCC 7942: putative role for MT2 in Zn2+ metabolism. Plant Molecular Biology, 30, 1169-1179.
DOI URL PMID |
[62] | Salt DE, Wagner GJ (1993). Cadmium transport across tonoplast of vesicles from oat roots: evidence for a Cd2+/H+ antiport activity. Journal of Biological Chemistry, 268, 12297-12302. |
[63] |
Salt DE, Rauser WE (1995). MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology, 107, 1293-1301.
DOI URL PMID |
[64] | Salt DE (2001). Responses and adaptations of plants to metal stress. In: Hawkesford MJ, Buchaer P eds. Molecular Analysis of Plant Adaptation to the Environment. Kluwer academic publishers, Dordrecht, 159-177. |
[65] |
Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003). Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnology, 21, 914-919.
DOI URL PMID |
[66] | Steffens JC, Hunt DF, Williams BG (1986). Accumulation of nonprotein metal-binding polypeptides (γ-Glu-Cys)n-Gly in selected cadmium-resistant tomato cells. Journal of Biological Chemistry, 261, 13879-13882. |
[67] | Stephan UW, Scholz G (1993). Nicotianamine: mediator of transport of ion and heavy metals in the phloem? Physiologia Plantarum, 88, 522-527. |
[68] |
Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa N K, Mori S (1999). Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy ii) in graminaceous plants. Plant Physiology, 121, 947-956.
DOI URL PMID |
[69] |
Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences of the United States of America, 97, 4991-4996.
DOI URL PMID |
[70] |
Vallino M, Drogo V, Abba S, Perotto S (2005). Gene expression of the ericoid mycorrhizal fungus Oidiodendron maius in the presence of high zinc concentrations. Mycorrhiza, 15, 333-344.
DOI URL PMID |
[71] |
van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999). Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology, 119, 1047-1055.
DOI URL PMID |
[72] | Verkleij JAC, Koevoets PLM, Blake-Kalff MMA, Chardonnens AN (1998). Evidence for an important role of the tonoplast in the mechanism of naturally selected Zn tolerance in Silene vulgaris. Journal of Plant Physiology, 153, 188-191. |
[73] |
Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P(2005). Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His(11) stretch. FEBS Letters, 579, 1515-1522.
DOI URL PMID |
[74] |
Zhao H, Eide D (1996a). The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proceedings of the National Academy of Sciences of the United States of America, 93, 2454-2458.
DOI URL PMID |
[75] | Zhao H, Eide D (1996b). TheZRT2 gene encodes the low affinity zinc-transporter in Saccharomyces cerevisiae. Journal of Biological Chemistry, 271, 23203-23210. |
[76] | Zhao ZQ( 赵中秋), Cui YJ( 崔玉静), Zhu YG( 朱永官) (2003). Effect of mycorrhiza and roots exudates on resistance of plants to heavy metals. Chinese Journal of Ecology(生态学杂志), 22(1), 8l-84. (in Chinese with English abstract) |
[77] |
Zhou J, Goldsbrough PB (1994). Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell, 6, 875-884.
DOI URL PMID |
[1] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[2] | 陈权, 马克明. 互花米草入侵对红树林湿地沉积物重金属累积的效应与潜在机制[J]. 植物生态学报, 2017, 41(4): 409-417. |
[3] | 黄艺, 王东伟, 蔡佳亮, 郑维爽. 球囊霉素相关土壤蛋白根际环境功能研究进展[J]. 植物生态学报, 2011, 35(2): 232-236. |
[4] | 傅晓萍, 豆长明, 胡少平, 陈新才, 施积炎, 陈英旭. 有机酸在植物对重金属耐性和解毒机制中的作用[J]. 植物生态学报, 2010, 34(11): 1354-1358. |
[5] | 吴福忠, 杨万勤, 张健, 周利强. 镉胁迫对桂花生长和养分积累、分配与利用的影响[J]. 植物生态学报, 2010, 34(10): 1220-1226. |
[6] | 张崇邦, 王江, 柯世省, 金则新. 五节芒定居对尾矿砂重金属形态、微生物群落功能及多样性的影响[J]. 植物生态学报, 2009, 33(4): 629-637. |
[7] | 李剑, 马建华, 宋博. 郑汴路路旁土壤-小麦系统重金属积累及其健康风险评价[J]. 植物生态学报, 2009, 33(3): 624-628. |
[8] | 代全林, 袁剑刚, 方炜, 杨中艺. 玉米各器官积累Pb能力的品种间差异[J]. 植物生态学报, 2005, 29(6): 992-999. |
[9] | 姜瑛楠, 冯保民, 张海燕, 麻密. 大蒜植物络合素合酶基因转化对酵母重金属抗性的提高[J]. 植物生态学报, 2005, 29(4): 659-664. |
[10] | 孙瑞莲, 周启星. 高等植物重金属耐性与超积累特性及其分子机理研究[J]. 植物生态学报, 2005, 29(3): 497-504. |
[11] | 旷远文, 温达志, 钟传文, 周国逸. 根系分泌物及其在植物修复中的作用[J]. 植物生态学报, 2003, 27(5): 709-717. |
[12] | 张志权, 束文圣, 蓝崇钰, 黄铭洪. 土壤种子库与矿业废弃地植被恢复研究:定居植物对重金属的吸收和再分配[J]. 植物生态学报, 2001, 25(3): 306-311. |
[13] | 郑文教, 连玉武, 郑逢中, 林鹏. 广西英罗湾红海榄林重金属元素的累积及动态[J]. 植物生态学报, 1996, 20(1): 20-27. |
[14] | 蒋高明. 运用油松年轮提示承德市硫及重金属污染的历史[J]. 植物生态学报, 1994, 18(4): 314-321. |
[15] | 叶志鸿, 陈桂珠, 蓝崇钰, 李柳川. 铅锌矿废水中重金属在宽叶香蒲(Typha latifolia)的积累与分布[J]. 植物生态学报, 1992, 16(1): 72-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19