植物生态学报 ›› 2010, Vol. 34 ›› Issue (11): 1354-1358.DOI: 10.3773/j.issn.1005-264x.2010.11.013
• 综述 • 上一篇
傅晓萍1, 豆长明2, 胡少平2, 陈新才2, 施积炎1,2, 陈英旭1,2,*()
收稿日期:
2010-04-27
接受日期:
2010-07-05
出版日期:
2010-04-27
发布日期:
2010-10-31
通讯作者:
陈英旭
作者简介:
(E-mail: yingxu_chen@hotmail.com)FU Xiao-Ping1, DOU Chang-Ming2, HU Shao-Ping2, CHEN Xin-Cai2, SHI Ji-Yan1,2, CHEN Ying-Xu1,2,*()
Received:
2010-04-27
Accepted:
2010-07-05
Online:
2010-04-27
Published:
2010-10-31
Contact:
CHEN Ying-Xu
摘要:
植物对重金属的耐受和解毒机制可分为外部排斥和内部耐受两大类。该文综述了有机酸作为一类金属配位体, 在植物对重金属的这两大类机制中的重要作用。在重金属的外部排斥过程中, 植物根系分泌有机酸, 与金属离子形成稳定的金属配位体复合物, 改变重金属的移动性和生物可利用性, 阻止金属离子进入植物体内或避免其在根部敏感位点累积。此外, 有机酸还可与进入植物体内的金属离子螯合, 使其转化为无毒或毒性较小的结合形态, 缓解重金属的毒害效应, 实现植物对重金属的内部耐受。
傅晓萍, 豆长明, 胡少平, 陈新才, 施积炎, 陈英旭. 有机酸在植物对重金属耐性和解毒机制中的作用. 植物生态学报, 2010, 34(11): 1354-1358. DOI: 10.3773/j.issn.1005-264x.2010.11.013
FU Xiao-Ping, DOU Chang-Ming, HU Shao-Ping, CHEN Xin-Cai, SHI Ji-Yan, CHEN Ying-Xu. A review of progress in roles of organic acids on heavy metal resistance and detoxification in plants. Chinese Journal of Plant Ecology, 2010, 34(11): 1354-1358. DOI: 10.3773/j.issn.1005-264x.2010.11.013
有机酸 Organic acid | 重金属 Heavy metal | 植物 Plant species | 参考文献 Reference |
---|---|---|---|
乙醇酸、马来酸、乙酸、乳酸、琥珀酸 Glycolic acid, maleic acid, acetic acid, lactic acid, succinic acid | Cd | 烟草 Nicotiana benthamiana | |
乙酸、马来酸、琥珀酸、苹果酸 Acetic acid, maleic acid, succinic acid, malic acid | 向日葵 Helianthus annuus | ||
乙酸、甲酸 Acetic acid, formic acid | 水稻 Oryza sativa | ||
柠檬酸、乳酸、乙酸 Citric acid, lactic acid, acetic acid | 秋茄 Kandelia candel | ||
柠檬酸 Citric acid | 玉米 Zea mays | ||
苹果酸 Malic acid | 高粱 Sorghum bicolor | ||
草酸、酒石酸 Oxalic acid, tartaric acid | Zn | 黑麦草 Lolium perenne | |
苹果酸、柠檬酸 Malic acid, citric acid | 水稻 Oryza sativa | ||
草酸、苹果酸、柠檬酸 Oxalic acid, malic acid, citric acid | Cr | 水稻 Oryza sativa | |
柠檬酸、苹果酸 Citric acid, malic acid | Cu | 大豆 Glycine max 小麦 Triticum aestivum | |
柠檬酸 Citric acid | 黑麦 Secale cereale 黑小麦 Triticosecale wittmack 玉米 Zea mays | ||
丙二酸、柠檬酸、琥珀酸 Malonic acid, citric acid, succinic acid | Mn | 紫花苜蓿 Medicago sativa |
表1 重金属胁迫下某些植物根系分泌的有机酸
Table 1 Organic acids in root exudates of some plants under heavy metal stress
有机酸 Organic acid | 重金属 Heavy metal | 植物 Plant species | 参考文献 Reference |
---|---|---|---|
乙醇酸、马来酸、乙酸、乳酸、琥珀酸 Glycolic acid, maleic acid, acetic acid, lactic acid, succinic acid | Cd | 烟草 Nicotiana benthamiana | |
乙酸、马来酸、琥珀酸、苹果酸 Acetic acid, maleic acid, succinic acid, malic acid | 向日葵 Helianthus annuus | ||
乙酸、甲酸 Acetic acid, formic acid | 水稻 Oryza sativa | ||
柠檬酸、乳酸、乙酸 Citric acid, lactic acid, acetic acid | 秋茄 Kandelia candel | ||
柠檬酸 Citric acid | 玉米 Zea mays | ||
苹果酸 Malic acid | 高粱 Sorghum bicolor | ||
草酸、酒石酸 Oxalic acid, tartaric acid | Zn | 黑麦草 Lolium perenne | |
苹果酸、柠檬酸 Malic acid, citric acid | 水稻 Oryza sativa | ||
草酸、苹果酸、柠檬酸 Oxalic acid, malic acid, citric acid | Cr | 水稻 Oryza sativa | |
柠檬酸、苹果酸 Citric acid, malic acid | Cu | 大豆 Glycine max 小麦 Triticum aestivum | |
柠檬酸 Citric acid | 黑麦 Secale cereale 黑小麦 Triticosecale wittmack 玉米 Zea mays | ||
丙二酸、柠檬酸、琥珀酸 Malonic acid, citric acid, succinic acid | Mn | 紫花苜蓿 Medicago sativa |
[1] | Bhatia NP, Walsh KB, Baker AJM (2005). Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. Journal of Experimental Botany, 56, 1343-1349. |
[2] |
Boominathan R, Doran PM (2003). Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. Journal of Biotechnology, 101, 131-146.
DOI URL PMID |
[3] | Chen YX (陈英旭), Lin Q (林琦), Lu F (陆芳), He YF (何云峰 ) (2000). Study on detoxification of organic acid to raddish under the stress of Pb and Cd. Acta Scientiae Circumstantiae (环境科学学报), 20, 467-472. (in Chinese with English abstract) |
[4] |
Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003). The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 50, 807-811.
URL PMID |
[5] | Chiang PN, Wang MK, Chiu CY, Chou SY (2006). Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environmental Toxicology, 21, 479-488. |
[6] |
Clemens S (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475-486.
URL PMID |
[7] | do Nascimento CWA, Amarasiriwardena D, Xing BS (2006). Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi- metal contaminated soil. Environmental Pollution, 140, 114-123. |
[8] |
Duarte B, Delgado M, Cacador I (2007). The role of citric acid in cadmium and nickel uptake and translocation in Halimione portulacoides. Chemosphere, 69, 836-840.
DOI URL PMID |
[9] | Ernst WHO (1975. Physiology of heavy metal resistance in plants. In: Hutchinson TC, Epstein S, Page AL, van Loon J, Davey T eds. Proceedings of an International Conference on Heavy Metals in the Environment, Vol. 2. CEP Consultants Ltd., Edinburgh, UK. 121-136. |
[10] | Gherardi MJ, Rengel Z (2004). The effect of manganese supply on exudation of carboxylates by roots of lucerne (Medicago sativa). Plant and Soil, 260, 271-282. |
[11] | Guo YB, Peng ZL, Han F, Shan XQ, Lin JM (2007). Study of low-molecular weight organic acids in maize roots under the stress of cadmium using capillary zone electrophoresis. Journal of Separation Science, 30, 2742-2747. |
[12] |
Hall JL (2002). Cellular mechanism for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1-11.
URL PMID |
[13] | Jiang LY (姜理英), Yang XE (杨肖娥), Shi WY (石伟勇), Ye ZQ (叶正钱 ) (2003). Activation of soil heavy metals for phytoremediation. Chinese Journal of Soil Science (土壤通报), 34(2), 154-157. (in Chinese with English abstract) |
[14] | Lin Q (林琦), Chen YX (陈英旭), Chen HM (陈怀满), Zheng CR (郑春荣 ) (2003). Study on chemical behavior of root exudates with heavy metals. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 9, 425-431. (in Chinese with English abstract) |
[15] | Liu JG, Qian M, Cai GL, Zhu QS, Wong MH (2007). Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environmental Geochemistry and Health, 29, 189-195. |
[16] | Long XX (龙新宪), Yang XE (杨肖娥), Ye ZQ (叶正钱 ) (2003). Metal chelators in hyperaccumulator and their application in phytoremediation. Plant Physiology Communications (植物生理学通讯), 39(1), 71-77. (in Chinese with English abstract) |
[17] | Lu HL, Yan CL, Liu JC (2007). Low molecular weight organic acids exuded by Mangrove (Kandelia candel(L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environmental and Experimental Botany, 61, 159-166. |
[18] |
Ma JF, Ryan PR, Delhaize E (2001). Aluminum tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273-278.
URL PMID |
[19] | Marschner P, Crowley D, Yang CH (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, 261, 199-208. |
[20] | Mathys W (1977). The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Physiologia Plantarum, 40, 130-136. |
[21] | Memon AR, Aktoprakligil D, Özdemir A, Vertii A (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turkey Journal of Botany, 25, 111-121. |
[22] | Memon AR, Yatazawa M (1982). Chemical nature of manganese in the leaves of manganese accumulator plants. Soil Science and Plant Nutrition, 28, 401-412. |
[23] | Memon AR, Yatazawa M (1984). Nature of manganese complexes in manganese accumulator plant Acanthopanax sciadophylloides. Journal of Plant Nutrition, 7, 961-974. |
[24] |
Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008). Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study. Phytochemistry, 69, 1695-1709.
URL PMID |
[25] |
Najeeb U, Xu L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009). Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. Journal of Hazardous Materials, 170, 1156-1163.
DOI URL PMID |
[26] | Nian H, Yang NM, Ahn SJ, Cheng ZJ, Matsumoto H (2002). A comparative study on the aluminium- and copper-induced organic acid exudation from wheat roots. Physiologia Plantarum, 116, 328-335. |
[27] | Pinto AP, Simões I, Mota AM (2008). Cadmium impact on root exudates of sorghum and maize plant: a speciation study. Journal of Plant Nutrition, 31, 1746-1755. |
[28] | Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frérot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P (2009). Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytologist, 184, 581-595. |
[29] | Strobel BW (2001). Influence of vegetation on low-molecular- weight carboxylic acids in soil solution—a review. Geoderma, 99, 169-198. |
[30] | Widodo, Broadley MR, Rose T, Frei M, Pariasca-Tanaka J, Yoshihashi T, Thomson M, Hammond JP, Aprile A, Close TJ, Ismail AM, Wissuwa M (2010). Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytologist, 186, 400-414. |
[31] | Xu WH, Liu H, Ma QF, Xiong ZT (2007). Root exudates, rhizosphere Zn fractions, and Zn accumulation of ryegrass at different soil Zn levels. Pedosphere, 17, 389-396. |
[32] | Yang XE, Baligar VC, Foster JC, Martens DC (1997). Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant and Soil, 196, 271-276. |
[33] |
Zeng FR, Chen S, Miao Y, Wu FB, Zhang GP (2008). Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environmental Pollution, 155, 284-289.
DOI URL PMID |
[34] | Zhang KM (张开明), Huang SZ (黄苏珍), Yuan HY (原海燕), Gu YH (顾永华 ) (2005). Progress in copper toxicity of plant, resistance mechanism and phytoremediation. Jiang- su Environmental Science and Technology (江苏环境科技), 18(1), 4-6. (in Chinese with English abstract) |
[1] | 白雪, 李玉靖, 景秀清, 赵晓东, 畅莎莎, 荆韬羽, 刘晋汝, 赵鹏宇. 谷子及其根际土壤微生物群落对铬胁迫的响应机制[J]. 植物生态学报, 2023, 47(3): 418-433. |
[2] | 陈权, 马克明. 互花米草入侵对红树林湿地沉积物重金属累积的效应与潜在机制[J]. 植物生态学报, 2017, 41(4): 409-417. |
[3] | 刘娜娜,田秋英,张文浩. 内蒙古典型草原优势种冷蒿和克氏针茅对土壤低磷环境适应策略的比较[J]. 植物生态学报, 2014, 38(9): 905-915. |
[4] | 庞丽, 张一, 周志春, 丰忠平, 储德裕. 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响[J]. 植物生态学报, 2014, 38(1): 27-35. |
[5] | 黄艺, 王东伟, 蔡佳亮, 郑维爽. 球囊霉素相关土壤蛋白根际环境功能研究进展[J]. 植物生态学报, 2011, 35(2): 232-236. |
[6] | 吴福忠, 杨万勤, 张健, 周利强. 镉胁迫对桂花生长和养分积累、分配与利用的影响[J]. 植物生态学报, 2010, 34(10): 1220-1226. |
[7] | 梁胜伟, 胡新文, 段瑞军, 符少萍, 郭建春. 海马齿对无机汞的耐性和吸附积累[J]. 植物生态学报, 2009, 33(4): 638-645. |
[8] | 张崇邦, 王江, 柯世省, 金则新. 五节芒定居对尾矿砂重金属形态、微生物群落功能及多样性的影响[J]. 植物生态学报, 2009, 33(4): 629-637. |
[9] | 李剑, 马建华, 宋博. 郑汴路路旁土壤-小麦系统重金属积累及其健康风险评价[J]. 植物生态学报, 2009, 33(3): 624-628. |
[10] | 谭万能, 李志安, 邹碧. 植物对重金属耐性的分子生态机理[J]. 植物生态学报, 2006, 30(4): 703-712. |
[11] | 代全林, 袁剑刚, 方炜, 杨中艺. 玉米各器官积累Pb能力的品种间差异[J]. 植物生态学报, 2005, 29(6): 992-999. |
[12] | 刘鹏, 徐根娣, 郭水良, 汪敏. 南方4种草本植物对铝胁迫生理响应的研究[J]. 植物生态学报, 2005, 29(4): 644-651. |
[13] | 姜瑛楠, 冯保民, 张海燕, 麻密. 大蒜植物络合素合酶基因转化对酵母重金属抗性的提高[J]. 植物生态学报, 2005, 29(4): 659-664. |
[14] | 孙瑞莲, 周启星. 高等植物重金属耐性与超积累特性及其分子机理研究[J]. 植物生态学报, 2005, 29(3): 497-504. |
[15] | 旷远文, 温达志, 钟传文, 周国逸. 根系分泌物及其在植物修复中的作用[J]. 植物生态学报, 2003, 27(5): 709-717. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19