植物生态学报 ›› 2019, Vol. 43 ›› Issue (9): 834-842.DOI: 10.17521/cjpe.2018.0153
所属专题: 植被生态学
• 研究论文 • 上一篇
施晶晶1,2,赵鸣飞1,2,王宇航1,2,薛峰1,2,康慕谊3,1,江源1,2,3,*()
收稿日期:
2018-07-03
接受日期:
2018-10-18
出版日期:
2019-09-20
发布日期:
2020-01-03
通讯作者:
江源
基金资助:
SHI Jing-Jing1,2,ZHAO Ming-Fei1,2,WANG Yu-Hang1,2,XUE Feng1,2,KANG Mu-Yi3,1,JIANG Yuan1,2,3,*()
Received:
2018-07-03
Accepted:
2018-10-18
Online:
2019-09-20
Published:
2020-01-03
Contact:
JIANG Yuan
Supported by:
摘要:
群落构建机制是生态学研究的核心论题。生态位理论和中性理论是阐明群落构建的两种主要理论, 但这两种理论分别强调的环境过滤和扩散限制对群落构建的影响尚存争议。该研究以黄土高原人工林下草本层群落为研究对象, 将群落物种组成数据与地理空间、气候、地形以及生物因子相结合, 运用随机森林模型(RF)和基于距离矩阵的多元回归方法(MRM), 探究了各个因子的重要性, 并通过邻体主坐标矩阵(PCNM)和基于距离的冗余分析(db-RDA)分别筛选显著的空间结构和环境因子, 最后结合筛选出的PCNM特征值和环境变量进行变差分解。研究结果显示: 1)林下草本层群落组成相似性随地理距离和生境差异的增加而减小。2)地理距离与生境差异共同解释了群落组成相似性变化的47.8%。其中, 空间因子和环境因子的独立解释率分别为14.1%和9.8%, 两者的联合解释率为23.9%。3)地理距离和年降水量是引起研究区内物种组成变化的关键因子, 且地理距离的重要性大于年降水量。在黄土高原腹地, 扩散限制与环境过滤共同主导了人工林下草本层群落的构建过程。
施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 2019, 43(9): 834-842. DOI: 10.17521/cjpe.2018.0153
SHI Jing-Jing,ZHAO Ming-Fei,WANG Yu-Hang,XUE Feng,KANG Mu-Yi,JIANG Yuan. Community assembly of herbaceous layer of the planted forests in the central Loess Plateau, China. Chinese Journal of Plant Ecology, 2019, 43(9): 834-842. DOI: 10.17521/cjpe.2018.0153
图2 随机森林模型(RF)和基于距离矩阵的多元回归方法(MRM)结果。A1, A2, 分别为生态因子的重要性大小及显著性检验的结果。B, β多样性与地理距离的关系。C, β多样性与环境距离的关系。AP, 年降水量; Asp, 坡向; BA, 胸高断面积和; Den, 立木密度; DeltaH, 冠层厚度; Ele, 海拔; Geo, 地理距离; HC, 草本层盖度; MAT, 年均气温; Slo, 坡度; TC, 乔木层盖度; TH, 乔木高。虚线为Lowess拟合线, 实线为线性拟合回归线。
Fig. 2 Results of random forest (RF) model and multiple regression method (MRM) based on distance matrices. The importance of the ecological factors and the test results of significance are shown in A1 and A2, respectively; B and C respectively shows the relationship between dissimilarity of species composition with increasing geographical and environmental distance. AP, annual precipitation; Asp, aspect; BA, basal area; Den, density; DeltaH, delta height; Ele, elevation; Geo, geographical distance; HC, herbaceous coverage; MAT, mean annual temperature; Slo, slope; TC, tree coverage; TH, tree height. Dashed line represents Lowess line, solid for linear fitted regression line.
分解部分 Partitioned parts | 分解结果 Value of each part |
---|---|
纯环境因子解释部分 Pure interpretation of environmental variables | 9.8 |
纯空间因子解释部分 Pure interpretation of geographic variables | 14.1 |
联合解释部分 Joint interpretation | 23.9 |
未解释部分 Unexplained part | 52.2 |
表1 黄土高原腹地人工林下草本群落物种组成变差分解结果(%)
Table 1 Results of variation partitioning of understory species composition of the planted forests in the central Loess Plateau (%)
分解部分 Partitioned parts | 分解结果 Value of each part |
---|---|
纯环境因子解释部分 Pure interpretation of environmental variables | 9.8 |
纯空间因子解释部分 Pure interpretation of geographic variables | 14.1 |
联合解释部分 Joint interpretation | 23.9 |
未解释部分 Unexplained part | 52.2 |
[1] | Adler PB, HilleRisLambers J, Levine JM ( 2007). A niche for neutrality. Ecology Letters, 10, 95-104. |
[2] | Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG ( 2011). Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecology Letters, 14, 19-28. |
[3] | Baselga A ( 2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143. |
[4] | Bohlman SA, Laurance WF, Laurance SG, Nascimento HEM, Fearnside PM, Andrade A ( 2008). Importance of soils, topography and geographic distance in structuring central Amazonian tree communities. Journal of Vegetation Science, 19, 863-874. |
[5] | Borcard D, Legendre P ( 2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153, 51-68. |
[6] | Breiman L ( 2001). Random forests. Machine Learning, 45, 5-32. |
[7] | Burrascano S, Sabatini FM, Blasi C ( 2011). Testing indicators of sustainable forest management on understorey composition and diversity in southern Italy through variation partitioning. Plant Ecology, 212, 829-841. |
[8] | Chase JM ( 2014). Spatial scale resolves the niche versus neutral theory debate. Journal of Vegetation Science, 25, 319-322. |
[9] | Chase JM, Myers JA ( 2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London, 366, 2351-2363. |
[10] | Chust G, Chave J, Condit R, Aguilar S, Lao S, Pérez R ( 2006). Determinants and spatial modeling of tree β-diversity in a tropical forest landscape in Panama. Journal of Vegetation Science, 17, 83-92. |
[11] | Condit R, Hubbell SP ( 2002). Βeta-diversity in tropical forest trees. Science, 295, 666-669. |
[12] | Condit R, Pitman N, Leigh Jr EG, Chave J, Terborgh J, Foster RB, Núñez V. P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP ( 2002). Βeta- diversity in tropical forest trees. Science, 295, 666-669. |
[13] | Dixon P ( 2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14, 927-930. |
[14] | Donoghue MJ ( 2008). A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 11549-11555. |
[15] | Ehrlinger J ( 2015). ggRandomForests: Visually Exploring a Random Forests. |
[16] | Fu BJ, Liu Y, Lü Y, He CS, Zeng Y, Wu BF ( 2011). Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8, 284-293. |
[17] | George LO, Bazzaz FA ( 2014). The herbaceous layer as a filter determining spatial pattern in forest tree regeneration. In: Gilliam FS, Roberts MR eds. The Herbaceous Layer in Forests of Eastern North America. Oxford University Press, New York. |
[18] | Gibson N, Prober S, Meissner R, Van Leeuwen S ( 2017). Implications of high species turnover on the south-western Australian sandplains. PLOS ONE, 12, e0172977. DOI: 10.1371/journal.pone.0172977. |
[19] | Gilliam FS ( 2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57, 845-858. |
[20] | Gilliam FS, Hockenberry AW, Adams MB ( 2006). Effects of atmospheric nitrogen deposition on the herbaceous layer of a Central Appalachian hardwood forest. Journal of the Torrey Botanical Society, 133, 240-254. |
[21] | Goslee SC, Urban DL, Leeuw JD, Zeileis A ( 2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1-19. |
[22] | Gravel D, Canham CD, Beaudet M, Messier C ( 2006). Reconciling niche and neutrality: The continuum hypothesis. Ecology Letters, 9, 399-409. |
[23] | Grime JP ( 1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111, 1169-1194. |
[24] | Hubbell SP ( 2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, USA. |
[25] | Ihaddaden A, Velázquez E, Rey-Benayas JM, Kadi-Hanifi H ( 2013). Climate and vegetation structure determine plant diversity in Quercus ilex woodlands along an aridity and human-use gradient in Northern Algeria. Flora, 208, 268-284. |
[26] | Jamoneau A, Passy SI, Soininen J, Leboucher T, Tison- Rosebery J ( 2018). Βeta diversity of diatom species and ecological guilds: Response to environmental and spatial mechanisms along the stream watercourse. Freshwater Biology, 63, 62-73. |
[27] | Jones MM, Gibson N, Yates C, Ferrier S, Mokany K, Williams KJ, Manion G, Svenning JC ( 2016). Underestimated effects of climate on plant species turnover in the Southwest Australian Floristic Region. Journal of Biogeography, 43, 289-300. |
[28] | Jones MM, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC ( 2008). Explaining variation in tropical plant community composition: Influence of environmental and spatial data quality. Oecologia, 155, 593-604. |
[29] | Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA ( 2011). Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science, 333, 1755-1758. |
[30] | Legendre P, Anderson MJ ( 1999). Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69, 1-24. |
[31] | Legendre P, de Cáceres M ( 2013). Βeta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16, 951-963. |
[32] | Legendre P, Lapointe FJ, Casgrain P ( 1994). Modeling brain evolution from behavior: A permutational regression approach. Evolution, 48, 1487-1499. |
[33] | Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL ( 2009). Partitioning beta diversity in a subtropical broad- leaved forest of China. Ecology, 90, 663-674. |
[34] | Leibold MA, McPeek MA ( 2006). Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87, 1399-1410. |
[35] | Liu HY, Yin Y, Wang QY, He SY ( 2015). Climatic effects on plant species distribution within the forest-steppe ecotone in northern China. Applied Vegetation Science, 18, 43-49. |
[36] | Liu QF, Kang MY, Liu QR ( 2006). Quantitative classification and environmental interpretation of forest tree species in Hungou, Zhongtiao Mountain. Journal of Plant Ecology (Chinese Version), 30, 383-391. |
[ 刘秋锋, 康慕谊, 刘全儒 ( 2006). 中条山混沟地区森林乔木种的数量分类与环境解释. 植物生态学报, 30, 383-391.] | |
[37] | Lu P, Jin Y, Chen JH, Li MH, Yu MJ ( 2013). Influence of geographical distance and topographic difference on β diversity in two large-scale forest dynamics plots. Biodiversity Science, 21, 554-563. |
[ 卢品, 金毅, 陈建华, 李铭红, 于明坚 ( 2013). 地理距离和地形差异对两个大型森林动态样地β多样性的影响. 生物多样性, 21, 554-563.] | |
[38] | Márialigeti S, Tinya F, Bidló A, Ódor P ( 2016). Environmental drivers of the composition and diversity of the herb layer in mixed temperate forests in Hungary. Plant Ecology, 217, 549-563. |
[39] | Marmion M, Luoto M, Heikkinen RK, Thuiller W ( 2009). The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecological Modelling, 220, 3512-3520. |
[40] | May F, Huth A, Wiegand T ( 2015). Moving beyond abundance distributions: Neutral theory and spatial patterns in a tropical forest. Proceedings of the Royal Society B Biological Sciences, 282, 20141657. DOI: 10.1098/rspb.2014.1657. |
[41] | Mouquet N, Loreau M ( 2003). Community patterns in source- sink metacommunities. The American Naturalist, 162, 544-557. |
[42] | Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R ( 2013). Βeta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157. |
[43] | Page NV, Shanker K ( 2018). Environment and dispersal influence changes in species composition at different scales in woody plants of the Western Ghats, India. Journal of Vegetation Science, 29, 74-83. |
[44] | Petermann JS, Kratina P, Marino NAC, MacDonald AAM, Srivastava DS ( 2015). Resources alter the structure and increase stochasticity in bromeliad microfauna communities. PLOS ONE, 10, e0118952. DOI: 10.1371/journal. pone.0118952. |
[45] | Qian H ( 2009). Βeta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327-332. |
[46] | Réjou-Méchain M, Pélissier R, Gourlet-Fleury S, Couteron P, Nasi R, Thompson JD ( 2008). Regional Variation in tropical forest tree species composition in the Central African Republic: An assessment based on inventories by forest companies. Journal of Tropical Ecology, 24, 663-674. |
[47] | Sabatini F, Jiménez-Alfaro B, Burrascano S, Blasi C ( 2014). Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecology, 15, 147-157. |
[48] | Saura S, Pascual-Hortal L ( 2007). A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning, 83, 91-103. |
[49] | Seidler TG, Plotkin JB ( 2006). Seed dispersal and spatial pattern in tropical trees. PLOS Biology, 4, e344. DOI: 10.1371/journal.pbio.0040344. |
[50] | Siefert A, Ravenscroft C, Weiser MD, Swenson NG ( 2013). Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Global Ecology and Biogeography, 22, 682-691. |
[51] | Smith TW, Lundholm JT ( 2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655. |
[52] | Sun L, Zhang GH, Luan LL, Li ZW, Geng R ( 2016). Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly. Chinese Journal of Applied Ecology, 27, 532-538. |
[ 孙龙, 张光辉, 栾莉莉, 李振炜, 耿韧 ( 2016). 黄土丘陵区表层土壤有机碳沿降水梯度的分布. 应用生态学报, 27, 532-538.] | |
[53] | Tan LZ, Fan CY, Zhang CY, von Gadow K, Fan XH ( 2017). How beta diversity and the underlying causes vary with sampling scales in the Changbai mountain forests. Ecology and Evolution, 7, 10116-10123. |
[54] | Tan SS, Ye ZL, Yuan LB, Zhou RF, Hu G, Jin XF, Yu MJ ( 2013). Βeta diversity of plant communities in Baishanzu Nature Reserve. Acta Ecologica Sinica, 33, 6944-6956. |
[ 谭珊珊, 叶珍林, 袁留斌, 周荣飞, 胡广, 金孝锋, 于明坚 ( 2013). 百山祖自然保护区植物群落beta多样性. 生态学报, 33, 6944-6956.] | |
[55] | Tang ZY, Fang JY, Chi XL, Yang YH, Ma WH, Mohhamot A, Guo ZD, Liu YN, Gaston KJ ( 2012). Geography, environment, and spatial turnover of species in China’s grasslands. Ecography, 35, 1103-1109. |
[56] | Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Chuviña J, Leaño C, Licona JC, ter Steege H, Bongers F ( 2011). Patterns and determinants of floristic variation across lowland forests of Bolivia. Biotropica, 43, 405-413. |
[57] | Tuomisto H, Ruokolainen K, Vormisto J, Duque A, Sánchez M, Paredes VV, Lähteenoja O ( 2017). Effect of sampling grain on patterns of species richness and turnover in Amazonian forests. Ecography, 40, 840-852. |
[58] | Urban DL, Minor ES, Treml EA, Schick RS ( 2009). Graph models of habitat mosaics. Ecology Letters, 12, 260-273. |
[59] | van Oijen D, Feijen M, Hommel P, den Ouden J, de Waal R ( 2005). Effects of tree species composition on within-forest distribution of understorey species. Applied Vegetation Science, 8, 155-166. |
[60] | Vavrek MJ ( 2012). Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontologia Electronica, 14, 50-64. |
[61] | Viana DS, Figuerola J, Schwenk K, Manca M, Hobæk A, Mjelde M, Preston CD, Gornall RJ, Croft JM, King RA, Green AJ, Santamaría L ( 2016). Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography, 39, 281-288. |
[62] | Wang D, Wang XA, Guo H, Wang SX, Zhen WN, Liu SL ( 2013). Effect of species dispersal and environmental factors on species assemblages in grassland communities. Acta Ecologica Sinica, 33, 4409-4415. |
[ 王丹, 王孝安, 郭华, 王世雄, 郑维娜, 刘史力 ( 2013). 环境和扩散对草地群落构建的影响. 生态学报, 33, 4409-4415.] | |
[63] | Wang SX, Zhao L, Li N, Guo H, Wang XA, Duan RY ( 2016). Community heterogeneity of undergrowth vegetation in Pinus tabuliformis forest on the Loess Plateau of Northwest China. Chinese Journal of Ecology, 35, 1197-1203. |
[ 王世雄, 赵亮, 李娜, 郭华, 王孝安, 段仁燕 ( 2016). 黄土高原油松林林下群落异质性分析. 生态学杂志, 35, 1197-1203.] | |
[64] | Wright DH, Currie DJ, Maurer BA ( 1993). Energy supply and patterns of species richness on local and regional scales. In: Ricklef RE, Schluter D eds. Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press, Chicago. 66-74. |
[65] | Xiao JF ( 2014). Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China. Journal of Geophysical Research Biogeosciences, 119, 2261-2275. |
[66] | You YM, Xu JY, Cai DX, Liu SR, Zhu HG, Wen YG ( 2016). Environmental factors affecting plant species diversity of understory plant communities in a Castanopsis hystrix plantation chronosequence in Pingxiang, Guangxi, China. Acta Ecologica Sinica, 36, 164-172. |
[ 尤业明, 徐佳玉, 蔡道雄, 刘世荣, 朱宏光, 温远光 ( 2016). 广西凭祥不同年龄红椎林林下植物物种多样性及其环境解释. 生态学报, 36, 164-172.] | |
[67] | Yu M, Zhou ZY, Kang FF, Ouyang S, Mi XC, Sun JX ( 2013). Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 37, 373-383. |
[ 余敏, 周志勇, 康峰峰, 欧阳帅, 米湘成, 孙建新 ( 2013). 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释. 植物生态学报, 37, 373-383.] | |
[68] | Zhao MF, Wang GY, Xing KX, Wang YH, Xue F, Kang MY, Luo K ( 2017). Patterns and determinants of species similarity decay of forest communities in the western Qinling Mountains. Biodiversity Science, 25, 3-10. |
[ 赵鸣飞, 王国义, 邢开雄, 王宇航, 薛峰, 康慕谊, 罗开 ( 2017). 秦岭西部森林群落相似性递减格局及其影响因素. 生物多样性, 25, 3-10.] |
[1] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[2] | 韩大勇, 张维, 努尔买买提•依力亚斯, 杨允菲. 植物种群更新的补充限制[J]. 植物生态学报, 2021, 45(1): 1-12. |
[3] | 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. 华北区域环境梯度上阔叶林构建模式及分布成因[J]. 植物生态学报, 2019, 43(9): 732-741. |
[4] | 柴永福, 许金石, 刘鸿雁, 刘全儒, 郑成洋, 康慕谊, 梁存柱, 王仁卿, 高贤明, 张峰, 福臣, 刘晓, 岳明. 华北地区主要灌丛群落物种组成及系统发育结构特征[J]. 植物生态学报, 2019, 43(9): 793-805. |
[5] | 唐丽丽, 张梅, 赵香林, 康慕谊, 刘鸿雁, 高贤明, 杨彤, 郑璞帆, 石福臣. 华北地区胡桃楸林分布规律及群落构建机制分析[J]. 植物生态学报, 2019, 43(9): 753-761. |
[6] | 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. 长白山温带森林不同演替阶段群落功能性状的空间变化[J]. 植物生态学报, 2019, 43(3): 208-216. |
[7] | 程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. 功能多样性和谱系多样性对热带云雾林群落构建的影响[J]. 植物生态学报, 2019, 43(3): 217-226. |
[8] | 刘金亮, 于明坚. 片段化森林群落构建的生态过程及其检验方法[J]. 植物生态学报, 2019, 43(11): 929-945. |
[9] | 车应弟, 刘旻霞, 李俐蓉, 焦骄, 肖卫. 基于功能性状及系统发育的亚高寒草甸群落构建[J]. 植物生态学报, 2017, 41(11): 1157-1167. |
[10] | 闫琰, 张新娜, 姚杰, 张春雨, 赵秀海. 吉林蛟河不同演替阶段针阔混交林乔木幼苗数量组成及其时间动态[J]. 植物生态学报, 2016, 40(2): 127-139. |
[11] | 吕美强,朱志红,李英年,姚天华,潘石玉,孔彬彬. 刈割与施肥干扰下高寒草甸植物功能性状的构建模式[J]. 植物生态学报, 2014, 38(9): 916-928. |
[12] | 杨婧, 褚鹏飞, 陈迪马, 王明玖, 白永飞. 放牧对内蒙古典型草原α、β和γ多样性的影响机制[J]. 植物生态学报, 2014, 38(2): 188-200. |
[13] | 张敏,潘艳霞,杨洪晓. 山东半岛潮上带沙草地的物种多度格局及其对人为干扰的响应[J]. 植物生态学报, 2013, 37(6): 542-550. |
[14] | 黄运峰,路兴慧,臧润国,丁易,龙文兴,王进强,杨民,黄运天. 海南岛热带低地雨林刀耕火种弃耕地自然恢复过程中的群落构建[J]. 植物生态学报, 2013, 37(5): 415-426. |
[15] | 付登高, 何锋, 郭震, 阎凯, 吴晓妮, 段昌群. 滇池流域富磷区退化山地马桑-蔗茅植物群落的生态修复效能评价[J]. 植物生态学报, 2013, 37(4): 326-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19